Skip to main content
. 2021 Mar 18;12:649551. doi: 10.3389/fimmu.2021.649551

Table 3.

Diagnostic performance of eight machine learning methods for pancreatic cancer.

Methods Validation (30%) External validation (GSE32676)
AUC Se Sp AUC Se Sp
Support vector machine 0.87 (0.79–0.95) 0.92 0.84 0.90 (0.73–1.00) 0.96 0.86
Random forest 0.91 (0.86–0.97) 0.91 0.86 0.94 (0.83–1.00) 0.96 0.86
Naive Bayes 0.91 (0.86–0.96) 0.93 0.84 0.92 (0.77–1.00) 0.96 0.86
Neural network 0.91 (0.86–0.97) 0.94 0.84 0.97 (0.91–1.00) 0.84 1.00
Linear discriminant analysis 0.91 (0.86–0.96) 0.93 0.84 0.95 (0.86–1.00) 1.00 0.86
Mixture discriminant analysis 0.91 (0.87–0.96) 0.91 0.84 0.98 (0.93–1.00) 1.00 0.86
Flexible discriminant analysis 0.91 (0.85–0.96) 0.92 0.84 0.86 (0.71–1.00) 0.84 0.86
Logistic regression 0.92 (0.87–0.97) 0.93 0.84 0.97 (0.90–1.00) 0.96 0.86

AUC, receiver operating characteristic area under the curve value; Se, Sensitivity; Sp, Specificity.