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Abstract

The Data Storage for Computation and Integration (DSCI) proposes management innovations for 

web-based secure data storage, algorithms deployment, and task execution. Its architecture allows 

inclusion of plugins for upload, browsing, sharing, and task execution in remote computing grids. 

Here, we demonstrate the DSCI implementation and the deployment of Image processing tools 

(TMJSeg), machine learning algorithms (MandSeg, DentalModelSeg), and advanced statistical 

packages (Multivariate Functional Shape Data Analysis, MFSDA), with data transfer and task 

execution handled by the clusterpost plug-in. Due to its comprehensive web-based design, local 

software installation is no longer required. The DSCI aims to enable and maintain a distributed 

computing and collaboration environment across multi-site clinical centers for the data processing 

of multisource features such as clinical, biological markers, volumetric images, and 3D surface 

models, with particular emphasis on analytics for temporomandibular joint osteoarthritis (TMJ 

OA).

1 Introduction

In the field of medical research, one of the main objectives is to develop tools that can be 

widely used by dentists, researchers, and the general public. Algorithms for image 

processing, such as deep neural networks[5,1] and shape statistics [4], are being used more 

frequently. Such algorithms are at the forefront of healthcare and life science and they are 

changing diagnostics and treatments. In order to make these algorithms accessible to more 

users, it is essential to simplify their usability and access to them.

On the other hand, deep learning algorithms require large quantities of samples for training, 

state of the art performance of deep-learning algorithms is largely driven by the number of 

samples used for training. Ideally, standardized protocols for data collection in each clinical 

site should be implemented to increase sample size without compromising data 

homogeneity, as few training samples or distinct homogeneous data sets might lead to 
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trained models or algorithms that perform poorly when data samples from other sites are 

analyzed by them. However, implementing such standardized protocols require coordinating 

efforts among the clinical centers involved.

The Data Storage for Computation and Integration (DSCI) aims to solve these challenging 

issues by facilitating collaboration across medical centers and offering services for data 

transfer, sharing, and deployment of algorithms for image processing and statistics. Up to 

date, the DSCI has particularly focused on research on temporomandibular joint (TMJ) 

osteoarthritis (OA) and dentistry applications.

In this paper, we describe an open source web-based software solution for data transfer, 

sharing, and task execution in remote computing grids. We test our framework by deploying 

algorithms for: 1) automatic image processing tool for TMJ segmentation of small field of 

view high resolution volumetric images; 2) automatic segmentation of the mandible based 

on UNET[7] architecture for cone-beam computed tomography (CBCT); 3) automatic 

segmentation of digital dental models acquired with intraoral scanners, using a modified 

UNET with residual connections similar to RESNET[2], that we define as RUNET from 

now on. The algorithms described above produce segmentation of the TMJ condyles and 

mandibular ramus in both high and lower resolution volumetric images, as well as 

segmentation of intraoral surface meshes. The graphical user interface (GUI) enables users 

to perform uploads of large data sets, provides common functionalities for file manipulation 

and sharing with collaborators, and simplifies the execution of the software tools with the 

data sets.

The paper is organized as follows. Section 2 describes the materials or data sets used for the 

experiments. Section 3 describes the architecture of the DSCI framework, and describes the 

methods or algorithms deployed. Section 4 and 5 shows the results and presents the 

conclusions of this work.

2 Materials

The de-identified patient data used for task execution, computing, and deploying algorithms 

in the DSCI are stored in user secure folders, shared only with members of each project. 

Each project has its specific institutional review board approval. The datasets used int the 

TMJSeg tool consisted of CBCT scans with small field of view (FOV) that contain only the 

TMJ region and images of 0.08 mm3 voxel size. The datasets used in the MandSeg tool 

consist large FOV scans obtained from 3 different centers with voxel size varying from 0.3 

mm3 to 0.5mm3. The datasets used int the DentalModelSeg tool consist of digital dental 

models (DDM) that were acquired with a 3D intraoral scanner that generates 3D models 

with accuracy of 0.0069 mm.

3 Methods

3.1 DSCI implementation

Figure 2 shows the different components of DSCI. The React4 library is used to build the 

graphical user interface (GUI), the Hapi5 library is used to build the back-end server or 
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orchestrator. Both frameworks allow designing reusable components with scalability in 

mind. All of the plug-ins are self-contained and are used in other web applications such as 

CIVILITY[6].

Front-end—The dsci-public serves the web application or static content. The react-hapi-

jwt-auth contains the GUI for new account, log in, password reset, user profiles, user scopes 

(normal user, admin, etc.), and implements the required HTTP requests to handle such 

transactions. The security and access to the different services and data sets is controlled 

using Json Web Tokens (JWT) which are encrypted and verified for every transaction. The 

dsci-filebrowser which is one of the contributions of this work implements a whole set of 

functionalities for data management (file browsing, copy, paste, move, etc.) and sharing 

capabilities with collaborators. The clusterpost-list-react6 is design to manage task execution 

and monitoring. By combining the file-browser and clusterpost, a GUI component is 

developed to facilitate task creation and execution.

Back-end—The application is deployed in the Amazon Web Services (AWS) Elastic 

Compute Cloud (EC2). The Hapi framework, which is designed to facilitate scalability, 

allows developing plug-ins that are integrated in the application. The couch-provider7 

package is loaded into the Hapi framework and allows other plug-ins/services to discover the 

functions implementing the operations of couchdb8 to store, retrieve, delete, etc. entries 

from the database. The hapi-jwtauth9 implements the end points to handle all user related 

request which includes the emission of tokens (JWT) for user authentication and allowing 

access to other services, and storing user information. The dsci-filebrowser implements the 

end points for file management and sharing among collaborators. The clusterpost-provider10 

plug-in handles task creation in the server. The task is described by the software/tool to run 

in the compute node, the data inputs and outputs.

Compute node—The compute node contains containerized software tools. Each container 

has the specific requirements such as specific versions of the deep learning libraries like 

tensorflow11. The clusterpost-execution daemon checks periodically for new tasks to 

executes and communicates with the end points in the clusterpost-provider plug-in. Once a 

task is in the queue, is retrieved and executed. Once the task is completed, the outputs are 

submitted. The clusterpost-execution is flexible and allows running task in different engines 

such as UNIX based systems, load sharing facilities (LSF), Sun Grid Engine (PBS), and the 

SLURM Workload Manager.

3.2 Deployment of algorithms and tools in the DSCI

TMJSeg: Small field of view scan segmentation.—Figure 3 shows the processing 

steps for the segmentation of small field of view scans. The first step is contrast adjustment 

4https://reactjs.org/
5https://hapi.dev/
6https://www.npmjs.com/package/clusterpost-list-react
7https://www.npmjs.com/package/couch-provider
8https://couchdb.apache.org/
9https://www.npmjs.com/package/hapi-jwt-couch
10https://www.npmjs.com/package/clusterpost-provider
11https://www.tensorflow.org/
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of the image by using median and image guided filtering, in order to remove the noise while 

preserving the shape of the condyle. The contour of the condyle is then detected using a 3D 

version of the Canny edge detection method. The biggest element by size was removed, 

which left only the condyle remaining in the scans. That remaining contour was 

reconstructed to obtain the perfect shape of the condyle. To do so, a convex hull envelope 

was used on the contour, in order to reconstruct most of the shape. An active contour method 

was finally used to match the original shape of the condyle and get significant improvement 

of the segmentation. The code was then package and deployed in our compute node.

MandSeg: Segmentation of large field of view scans.—A deep neural network 

based on the UNET architecture was trained for this task. The ground truth label maps were 

manually segmented by clinicians. The UNET takes 2D slices that are extracted from the 3D 

volumetric images. All the 3D scans were cropped depending on their size in order to keep 

only the region of interest where the condyle was in the slices. The same anatomic cropping 

region was used for every scan in the dataset. The scans were acquired at different centers, 

therefore, every slice is interpolated linearly and resampled to 512×512 pixels. As a 

preprocessing step, contrast adjustment was performed, because the original scans were low 

contrast images. This helped the deep learning model to make a better prediction. After 

image preprocessing, 300–400 slices were extracted from each scan. These were used to 

train the UNET algorithm. We chose to use a cross-validation method. For that, we take 20% 

of the data set for testing the models and divide the remaining into 10 folds. The training has 

been done with 60 epochs, a batch size of 8 and a learning rate of 10−5. So, 10 models were 

trained using this method, and we obtain the output for the 10 folds. The scans are 

reconstructed using the slices from the output prediction of each model.

DentalModelSeg: Segmentation of Digital Dental Models.—Fast and accurate 

segmentation of Digital Dental Models (DDM) remains a challenge due to the various 

geometrical shapes of teeth, complex tooth arrangements, different dental model qualities, 

and varying degrees of crowding problems[3]. Figure 4 describes the training approach for 

the DDM segmentation. A DDM segmentation is produced by acquiring snapshots, running 

them through the trained model, and setting the resulting label back in the surface. A 

majority voting scheme is used to decide the resulting value of a vertex if multiple 

intersections occur.

MFSDA: Multivariate Functional Shape Data Analysis.—The MFSDA is a 

statistical package that builds associations among features (biological markers, clinical, 

radiomics etc) and computes the global correlations with morphological variability, as well 

as local p-values in the 3D TMJ condylar morphology [4].

4 Results

DSCI web user interface

Figure 5 shows different views to perform massive uploads to the system via interactive drag 

and drop, file browsing to organize and share data sets, and task execution showing the 

DentalModelSeg configuration.

Brosset et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TMJSeg: Small field of view scans.

Results were quantified using the Dice similarity coefficient. The algorithm achieves an 

average Dice coefficient of 0.95, it is computed using all available small field of view scans. 

Figure 6 shows a difference between manual segmentation by a clinician (left) and 

segmentation of the TMJSeg algorithm (right).

MandSeg: Segmentation of large field of view scans

Table 1 shows the area under the curve (AUC), F1, sensitivity, specificity, and accuracy 

measures comparing the ground truth segmentation and prediction using a leave-out-out 

cross-validation approach.

MFSDA: Multivariate Functional Shape Data Analysis.

Here, the multivariate varying coefficient model tested the association between biological 

markers and shape morphology. Figure 8 shows the local p-values of association between 

levels of VE-cadherin in the saliva and the surface mesh of the TMJ condyles in the study 

sample.

5 Conclusion

We presented a cloud-based solution for computing intensive algorithms including examples 

of segmentation for small and large field of view scans as well as IOS models. DSCI offers 

the possibility to the users to launch any algorithm in remote compute nodes. Data transfer 

and task monitoring are handled by the application. The objective of this framework is to 

facilitate collaboration of data and algorithms that are containerized and deployed in remote 

compute nodes. This website can be used for distributed learning storage and management 

of data collected at different clinics or hospital, and training of algorithms using state of the 

art neural network architectures. We developed efficient web-based data management, 

mining, and analytics that integrate and analyze clinical, biological, and high-dimensional 

imaging data from TMJ OA patients. The Data Storage for Computation and Integration 

(DSCI) remotely computes machine learning, image analysis, and advanced statistics from 

patients with and without TMJ-OA. Our long-term goal is to create and maintain the data in 

a distributed computational environment to allow contributions to the database from multi-

clinical centers and to share trained models for TMJ classification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Data stored in the DSCI. A, Large field of view CBCT; B, Small field of view CBCT; C, 

digital dental model; D, biological markers; E, clinical markers
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Fig. 2: 
DSCI’s architecture. The three main actors of the system: client (cyan), server (green), 

compute node (orange). The GUI uses the REACT library, the web server uses the Hapi 

framework, both frameworks allows developing reusable components or plugins. The 

compute node runs an application or daemon responsible for data transfer to computing 

grids and task execution.
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Fig. 3: 
TMJSeg processing steps for small field of view scans segmentation.
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Fig. 4: 
The DDM is probed from tangent planes to the unit sphere. 2D images are generated using 

the distance and normal at the intersection point as features. The images are used to train a 

RUNET using the corresponding labeled images as ground truth.
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Fig. 5: 
Different views of the React implementation to upload, browse, and execute tasks in the 

DSCI web application.
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Fig. 6: 
Manual ground truth segmentation and prediction of the segmentation for small field of view 

images. Note how similar the manual and predicted segmentations are.
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Fig. 7: 
Manual segmentations (right), predictions (left), for two different cases.
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Fig. 8: 
MFSDA local p-value maps of the association of Ve-Cadherin levels in saliva and the 

surface meshes of TMJ condylar morphology
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Table 1:

Results for 10 folds using a leave-one-out cross-validation strategy.

N AUC F1 Sensitivity Specificity Accuracy

1 0.9481 0.9142 0.9207 0.9998 0.9996

2 0.9521 0.9153 0.9248 0.9998 0.9996

3 0.9511 0.9147 0.9228 0.9998 0.9996

4 0.9623 0.9159 0.9383 0.9998 0.9996

5 0.9581 0.9172 0.9335 0.9998 0.9996

6 0.9558 0.9096 0.9265 0.9998 0.9996

7 0.9571 0.9137 0.9322 0.9998 0.9996

8 0.9474 0.9148 0.9201 0.9998 0.9996

9 0.9512 0.9128 0.9243 0.9998 0.9996

10 0.9694 0.9093 0.9443 0.9997 0.9996

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2021 April 01.


	Abstract
	Introduction
	Materials
	Methods
	DSCI implementation
	Front-end
	Back-end
	Compute node

	Deployment of algorithms and tools in the DSCI
	TMJSeg: Small field of view scan segmentation.
	MandSeg: Segmentation of large field of view scans.
	DentalModelSeg: Segmentation of Digital Dental Models.
	MFSDA: Multivariate Functional Shape Data Analysis.


	Results
	DSCI web user interface
	TMJSeg: Small field of view scans.
	MandSeg: Segmentation of large field of view scans
	MFSDA: Multivariate Functional Shape Data Analysis.

	Conclusion
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	Fig. 8:
	Table 1:

