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BACKGROUND: Experimental evidence and studies of children and adolescents suggest that ambient fine particulate matter [particulate matter
≤2:5 lm in aerodynamic diameter (PM2:5)] air pollution may be obesogenic, but the relationship between PM2:5 and the risk of body weight gain and
obesity in adults is uncertain.
OBJECTIVES: Our goal was to characterize the association between PM2:5 and the risks of weight gain and obesity.

METHODS: We followed 3,902,440 U.S. Veterans from 2010 to 2018 (median 8.1 y, interquartile range: 7.3–8.4) and assigned time-updated PM2:5
exposures by linking geocoded residential street addresses with satellite-based estimates of surface-level PM2:5 mass (at ∼ 1-km2 resolution).
Associations with PM2:5 were estimated using Cox proportional hazards models for incident obesity [body mass index (BMIÞ≥ 30 kg=m2] and a
10-lb increase in weight relative to baseline and linear mixed models for associations with intra-individual changes in BMI and weight.

RESULTS: A 10-lg=m3 higher average annual PM2:5 concentration was associated with risk of incident obesity [n=2,325,769;
hazard ratio ðHRÞ=1:08 (95% CI: 1.06, 1.11)] and the risk of a 10-lb (4:54 kg) increase in weight [HR=1:07 (95% CI: 1.06, 1.08)] and with higher
intra-individual changes in BMI [0:140 kg=m2 per year (95% CI: 0.139, 0.142)] and weight [0:968 lb=y (95% CI: 0.955, 0.981)]. Nonlinear exposure–
response models indicated associations at PM2:5 concentrations below the national standard of 12 lg=m3. As expected, a negative exposure control
(ambient air sodium) was not associated with obesity or weight gain. Associations were consistent in direction and magnitude across sensitivity analy-
ses that included alternative outcomes and exposures assigned at different spatial resolutions.
DISCUSSION: PM2:5 air pollution was associated with the risk of obesity and weight gain in a large predominantly male cohort of U.S. Veterans.
Discussions about health effects of PM2:5 should include its association with obesity, and deliberations about the epidemiology of obesity should con-
sider its association with PM2:5. Investigation in other cohorts will deepen our understanding of the relationship between PM2:5 and weight gain and
obesity. https://doi.org/10.1289/EHP7944

Introduction
Experimental evidence in animals suggests that ambient fine par-
ticulate matter [particulate matter ≤2:5 lm in aerodynamic diam-
eter (PM2:5)] air pollution may be obesogenic (Madrigano et al.
2010; Sun et al. 2009; Xu et al. 2010; Zou 2010). For example,
compared with mice exposed by inhalation to filtered air, mice
exposed to PM2:5 exhibited increased subcutaneous and abdomi-
nal fat mass (Sun et al. 2009; Xu et al. 2010). Reports in children
and adolescents suggest that exposure to higher levels of PM2:5
may be associated with adiposity and higher risk of weight gain
(Bloemsma et al. 2019; de Bont et al. 2019; Jerrett et al. 2010,
2014; McConnell et al. 2015). However, to our knowledge, the
associations between PM2:5 and the risks of body weight gain
and obesity in adults have not been investigated. A greater under-
standing of the relationship between PM2:5 air pollution and the

risks of weight gain and obesity—upstream risk factors for sev-
eral noncommunicable diseases, including cardiovascular disease
and diabetes—would enhance our understanding of the health
effects of air pollution.

We hypothesized that exposure to higher levels of PM2:5 may
increase the risk of weight gain and obesity. In this study, we
built a large longitudinal cohort of 3,902,440 U.S. Veterans and
followed them for a median of 8.1 y (27,628,688 total person-
years) to investigate the relationship between PM2:5 and the risks
of weight gain and obesity.

Methods

Cohort Construction
We built a cohort of U.S. Veterans from the U.S. Department of
Veterans Affairs (VA) databases (Al-Aly et al. 2012; Bowe et al.
2017, 2018a, 2018b, 2019a, 2019b; Xie et al. 2016, 2017). We
included Veterans who had at least one weight measurement
recorded between 1 July 2010 and 31 June 2011 (n=4,595,876)
(Figure S1) (Goodloe et al. 2017; Muthalagu et al. 2014; Noël
et al. 2010). We then excluded weight measurements of <75 lb
(34:0 kg) or >700 lb (317:5 kg) (resulting in 4,595,342 unique
Veterans). Weight measurements that exceeded any other weight
measurement within the year before to a year after its date of
record by ≥50 lb (22:7 kg) were removed from measures in
this time period (Goodloe et al. 2017). Of the resulting weight
measurements left after application of these criteria
(Veterans = 4,543,894), the data of the first weight measurement
was set as time zero (T0). To obtain a height value, we selected
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all heights for an individual Veteran that was available in VA
records from 1999 to 2019. We then excluded height measure-
ments of <48 or >84 in (<121:92 or >213:36 cm) and height
measurements that varied more than 2 in (5:08 cm) from the me-
dian value of all of the individual Veteran’s height measurements
(Muthalagu et al. 2014); the median height was then taken,
and those with no height measure were excluded (resulting in
4,528,288 Veterans remaining in the cohort).

Overall, 1.5% of Veterans were excluded from the cohort af-
ter applying data-cleaning criteria to weight and height measure-
ments (Figure S1). Weight and height measurements were used
to calculate body mass index (BMI) {[ðweight in pounds× 703Þ
divided by the square of the height in inches] (or weight in
kilograms divided by the square of the height in meters)}, and
Veterans with a BMI value outside the range of 10–80 were
excluded (n=4,527,985) (Noël et al. 2010). We finally selected
those Veterans who had data on all individual and contextual
covariates and were linkable at baseline to PM2:5 data, excluding
those where PM2:5 was not available for their residential location
in the year prior to T0 (e.g., Alaska), yielding an analytic cohort
of 3,902,440 (Figure S1). Veterans were followed from T0 until
death or end of follow-up, 31 December 2018, and were interval
censored when their residential location was not linkable to
PM2:5 data, such as in instances where they moved outside the
contiguous United States. Mortality and the date of death were
obtained from the VA Vital Status file (Maynard C 2017). This
study was approved by the Saint Louis Veterans Affairs Health
Care System institutional review board (IRB). A waiver of
informed consent was granted by the IRB because it determined
that this study involved no more than minimal risk, was deemed
to not adversely affect the rights and welfare of studied Veterans,
and could not have been practically carried out without waivers
of consent. To protect the privacy and security of study informa-
tion, all study members underwent Collaborative Institutional
Training Initiative training for the protection of human subjects
in biomedical research, Privacy and Health Insurance Portability
and Accountability Act of 1996 training from the VA, and VA
Privacy and Information Security Awareness and Rules of
Behavior training and followed the guidelines set forth by the
Veterans Health Administration (VHA) Handbook 1200.12, Use
of Data and Data Repositories in VHA Research (Department of
Veterans Affairs 2009). Identifying protected health information
was limited to only information required to conduct the study,
did not include any names or social security numbers, and will
not appear in any presentations of publications of the results of
this study. In addition, all study data was accessed and stored
only on VA servers and maintained behind a VA firewall, where
data usage is routinely audited to ensure compliance with VHA
data storage guidelines.

Exposure Data
Validated satellite-based (V4.NA.04.MAPLE) estimates of
ground-level PM2:5 over the contiguousUnited Stateswere derived
using satellite remote sensing, chemical transport modeling,
and ground-based PM2:5 measurement data (R2 = 0:70 with
ground-based observations) (van Donkelaar 2019). Measured
PM2:5 concentrations were obtained from the U.S. Environmental
Protection Agency (U.S. EPA 2020). Estimates of annual average
PM2:5 were available for 0:01� ×0:01� grids (∼ 1 km2) for each
year from 2009 to 2017. Geocoded street addresses and county and
state of residence from 1 July 2009 throughout the follow-up pe-
riod were available for studied Veterans from the U.S. Department
of Veterans Affairs Planning Systems Support Group Enrollee File
(U.S. Department of Veterans Affairs Information Resource
Center 2015). Latitude and longitude coordinates for each

geographic grid were matched with the latitude and longitude of
each Veteran’s residence throughout follow-up. In VA data, 90%
of Veteran-geocoded residential locations were based on mapping
to the Veteran’s street address or an interpolation based on the
building number and the location of their street. Otherwise,
addresses were geocoded to the ZIP code tabulation area centroid.
In primary analyses, each individual’s residential address in the
previous year was linked to the average annual PM2:5 in that loca-
tion for that year (Crouse et al. 2016; Lepeule et al. 2012).
Residential addresses were updated every quarter of a year during
follow-up to account for changes in PM2:5 exposures over time and
according to residential location. In all analyses, because satellite-
based estimates in the very low range of PM2:5 were sparse and in
some instances resulted in null and negative exposure values, we
excluded annual PM2:5 concentrations that were <2:4lg=m3 (the
0.1th percentile of all PM2:5 values during follow-up) from expo-
sure data for an individual, thus interval censoring Veterans during
these time points.

Outcomes
Height and weight, as measured and recorded for each Veteran dur-
ing routine clinical encounters, were available from the VA
MedSAS inpatient and outpatient data sets (Bowe et al. 2021;
Murphy et al. 2002; Oddone and Eisen 2008; U.S. Department of
Veterans Affairs Information Resource Center 2009; U.S.
Department of Veterans Affairs Information Resource Center
2007a; U.S. Department of Veterans Affairs Information Resource
Center 2007b; Xie et al. 2020). As primary outcomes, we investi-
gated time until obesity (BMI≥30 kg=m2) among study Veterans
whose baseline BMI was <30 kg=m2, and time until a 10-lb
(4:54 kg) increase in weight from each Veteran’s baseline value.
Events were assumed to occur on the date when a post-baseline
BMI of≥30 or a 10-lb (4:54 kg) weight gain was first recorded in a
Veteran’s record. To better account for intra-personal characteris-
tics, we also investigated the intra-individual change in BMI and
weight over time. The timing of changes in weight or BMI was
determined by the date on which each measurement was recorded.
Similar to data-cleaning procedures employed in the cohort con-
struction, we excluded weight measurements of <75 lb (34 kg) or
>700 lb (317:5 kg) and excluded weight measurements that
exceeded any other weight measurement within the year before to a
year after its date of record by ≥50 lb (22:7 kg) (Goodloe et al.
2017). The value assigned as the baseline height was used as the
height value for outcomeBMI assessment.

Covariates
Individual-level covariates. State and county of residence, age,
race, sex, andmarital status at baseline were collected from the VA
MedSAS (Murphy et al. 2002) inpatient and outpatient data sets.
Self-reported race was identified based on encounter data and clas-
sified as White, Black or African American, or other (including
American Indian or Alaska Native, Asian, Native Hawaiian or
other Pacific Islander, and multiracial Veterans). If self-reported
race differed across different VA encounters, the most frequently
recorded classification was used. Missing self-reported race was
supplemented by information from other data sources, including
the Medicare and the Beneficiary Identification Records Locator
Subsystem (Bowe et al. 2018b, 2019b; Xie et al. 2019). Ethnicity
was not assessed. Data from the VA Corporate Data Warehouse
Health Factors domain were used to classify baseline smoking sta-
tus based on work byMcGinnis et al. (2011). In brief, an algorithm
validated against self-reported smoking survey data was used to
convert text entries from health factors data into categories of
never, former, and current smoker (for example, a Veteran whose
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VA record included text indicating former or previous smoking
would be classified as a former smoker.) The report prior but clos-
est to baseline was used to classify smoking; Veteranswithmissing
smoking status data were classified as never smokers. BMI catego-
ries, used in reporting of cohort characteristics at baseline, were
defined as normal or underweight (BMI<25 kg=m2), overweight
(BMI between 25 and <30 kg=m2), and obese (BMI≥30 kg=m2);
BMIwas otherwise treated as continuous.

Contextual covariates (Table S1). Population density at the
county level was obtained from the U.S. Census Bureau’s Small
Area Income and Poverty Estimates data (Bell et al. 2016). Diet
(percentage of population with limited access to healthy foods),
exercise (percentage of population with adequate access to exer-
cise opportunities), excessive alcohol use (percentage of adults
reporting excessive consumption), and rurality (percentage of pop-
ulation living in a rural area) were obtained from the County
Health Rankings (Remington et al. 2015). The 2015 area depriva-
tion index (ADI) was obtained from the University of Wisconsin
(University of Wisconsin School of Medicine and Public Health
2015). The ADI allows for the rankings of census block groups by
socioeconomic status disadvantage and is a composite measure of
education, employment, housing quality, and poverty measures
(Kind and Buckingham 2018; University of Wisconsin School of
Medicine and Public Health 2015). The normalized difference veg-
etation index (NDVI), an indicator for green space, was obtained
from the National Oceanic and Atmospheric Administration
Climate Data Record of Advanced Very High-Resolution
Radiometer Surface Reflectance (Vermote 2019). The NDVI for
each residential location was classified for 0:05� ×0:05� geo-
graphic grids based on the mean of the top three highest daily val-
ues during July 2010 (Crouse et al. 2017; James et al. 2016; Orioli
et al. 2019; Vienneau et al. 2017). The NDVI measures surface
vegetation by comparing red and near-infrared spectral bands and
ranges from −1 (water), to 0 (bare ground), and, maximally, to 1
(dense vegetation). Contextual covariates were updated every 3
months to reflect changes in residential location during follow-up.

Statistical Analyses
A conceptual framework for the association between PM2:5 and
obesity, including relations between exposure, covariates, and
outcomes, is provided in Figure S2.

Incident obesity and weight gain. We constructed Cox pro-
portional hazards models to estimate hazard ratios (HRs) for inci-
dent obesity (among Veterans with a BMI of <30 at baseline
only) and a 10-lb (4:54 kg) increase in weight relative to baseline
(among all Veterans). Models with a linear functional form of the
annual PM2:5 concentration in the previous year (averaged over
all residences in the previous year) were sequentially adjusted for
a) baseline BMI for the obesity outcome, and weight and height
for the weight outcome to account for differences in time to out-
comes that may result from differences in baseline values; b) State
of residence to account for potential differences in state-level
PM2:5 composition and potential differences in state-level policies
and other factors that may also affect the outcomes (Chen et al.
2020); c) age, race, and sex; d) contextual characteristics to account
for the influence of the broader contextual milieu—socioeconomic
deprivation, residential greenness, population density, rurality, and
other measures—which may correlate with both exposure and out-
comes; and e) smoking status—a putative confounder of the asso-
ciation under examination. All continuous covariates (baseline
BMI or weight and height, age, and the contextual factors) were
modeled as restricted cubic splines unless otherwise indicated.

In separate analyses we also explored nonlinearity by con-
structing an ensembled estimate of the risk relationship in our

cohort (Nasari et al. 2016). Specifically, we constructed Cox pro-
portional hazards models of the form:

kðtjx,zÞ=k0ðtÞ× exp fc0
x+ b×wðzjl,sÞ× f ðzÞg,

where k0ðtÞ is the baseline hazard at time t; and c0 is the vector of
coefficients for covariate vector x. b is the coefficient for trans-
formed PM2:5, which is the product of wðzjl,sÞ, a logistic weight-
ing function, and f(z), which is either the identity or natural log
transformation of the PM2:5 concentration, z. The logistic weight-
ing function was as follows:

wðzjl,sÞ ¼ 1+ exp
−zþ l
s× r

� �� �−1
(

where l is a location parameter representing a percentile of the
PM2:5 distribution; s is a parameter that controls the curvature of
the weighting function; and r is the range of PM2:5 concentra-
tions. This logistic weighting function specifies a monotonic sig-
moidal hazard function for the relation between PM2:5 and the
outcome, with larger values of tau resulting in less curvature, and
the value of l determining the location of the inflection point or
maximum slope along the PM2:5 distribution. Multiple models
were constructed by adjusting the parameters l, s, and f(z), until
optimal fit was achieved. The three models that best fit the data
were averaged, weighted by their model fit (log-likelihood), and
used to construct an ensembled estimate. We present both the
ensembled estimates and the estimates from the best-fitting model
for each outcome. Ranges of the PM2:5 concentrations covered in
the analyses of obesity were from 3:308 to 14:655lg=m3 and
from 3:324 to 14:645lg=m3 in the analyses of weight gain, where
the difference is the value of r. Ranges were determined by the
range of PM2:5 concentrations experienced by Veterans included
in each analysis (with models of incident obesity restricted to
Veterans with BMI of <30 at baseline), where the distribution
included one observation per time period per cohort member at
risk in the cohort and, thus, differed by corresponding cohort
inclusion/exclusion criteria (Nasari et al. 2016). In addition, max-
imum values were excluded beyond the 99th percentile and mini-
mum values were excluded below the 1st percentile. Models of
both outcomes included two possible values of τ, 0.1 and 0.2,
which were selected a priori based on prior examinations by the
method authors on their influence on variation in the shape of
possible curves, which suggested that values beyond these two
did not appreciably change examined curves’ forms (Nasari et al.
2016). Finally, we modeled seven possible values of l corre-
sponding to the –5th, 0th, 5th, 10th, 25th, 50th, and 75th percen-
tiles of the PM2:5 distributions for each set of study Veterans
(1.671, 3.327, 4.983, 5.823, 7.159, and 9:872lg=m3 for models
of incident obesity and 1.752, 3.369, 4.986, 5.827, 7.185, and
9:925lg=m3 for models of a 10-lb (4:54 kg) gain in weight).
Values for the –5th percentile were derived by subtracting the
difference between the 5th and 0th percentile from the value of
the 0th percentile. The percentiles used as possible percentiles for
l were selected a priori based on work by the authors on the
modeling approach that found these values sufficiently covered
possible inflection points in the logistic curve across the distribu-
tion (Nasari et al. 2016).

Intra-individual changes in BMI and weight over time. We
constructed linear mixed models to analyze the relationship
between PM2:5 and intra-individual change in BMI and weight
over time (Jerrett et al. 2014). Each individual’s residential
address in the year prior to each recorded weight measurement
was linked to the average annual PM2:5 in that location for that
year (or, for Veterans who moved during a given year, a weighted
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average of annual PM2:5 concentrations for each residential loca-
tion, according to the time spent at each address). When two
weight (i.e., BMI) measures were recorded within 90 d for the
same Veteran, we retained only the earlier value. Mixed-effects
models were used, with a random intercept, a random time slope
at the individual-level, and a compound symmetry covariance
structure. We report the association between PM2:5 and the trajec-
tory of BMI over the next year based on the regression coefficient
of an interaction between time and PM2:5. As in models of inci-
dent obesity and weight gain, we used sequentially adjusted mod-
els for a) height for the weight outcome; b) state of residence; c)
demographics of age, race, and sex; d) contextual characteristics;
and e) smoking status. Height was included as a covariate
because changes under the same conditions in weight may vary
based on a person’s height; baseline BMI and weight were not
adjusted for because these measures were included in the set of
outcome data.

We used slope estimates from the fully adjusted linear mixed
models to plot average trajectories in BMI and weight according to
percentiles of cumulative average PM2:5 exposure throughout
follow-up among subgroups of Veterans with cumulative expo-
sures within ± 0:5% of the 10th, 25th, 50th, 75th, and 90th percen-
tiles, respectively (∼ 39,000 Veterans per subgroup.) Cumulative
average PM2:5 exposure was defined as the average of total expo-
sure to PM2:5 during follow-up, calculated by taking the sum of
exposures at each time point from follow-up to the time being ana-
lyzed and dividing by the difference in time from the start of
follow-up to the time point in question. These trajectories represent
the estimated average change in weight or BMI that Veterans in
each subgroup would have experienced based on their cumulative
average PM2:5 exposure throughout the entire study follow-up pe-
riod (from the start of follow-up to 8 y later). In addition to estimat-
ing linear associations between PM2:5 concentrations and weight
or BMI change within individuals, we estimated associations with
PM2:5 concentrations modeled as a restricted cubic spline, with
knots at the 5th, 25th, 50th, 75th, and 95th percentiles. PM2:5 val-
ues outside the 1st and 99th percentile (3.72 and 15:96 lg=m3)
were excluded to reduce the influence of outliers on thesemodels.

Positive and Negative Controls
We estimated associations between PM2:5 exposures and all-
cause mortality as a positive outcome control given consistent
evidence of associations in other populations (Burnett et al. 2018;
Cohen et al. 2017; GBD 2019 Risk Factors Collaborators 2020).
All-cause mortality was ascertained using mortality data avail-
able from the VA Vital Status Mini file (Maynard 2017). We
evaluated ambient sodium concentration as a negative exposure
control for incident outcomes and weight gain over time among
Veterans living ≤30mi (48:3 km) from a U.S. EPA air monitor-
ing station. Because there is no prior evidence or biologic plausi-
bility for an association between atmospheric sodium and weight
or BMI (Lipsitch et al. 2010), associations with ambient sodium
concentrations would suggest potential bias in associations with
PM2:5 related to the use of air monitoring station data to estimate
exposures in our study population. Ambient sodium exposures
were estimated based on measured concentrations from the near-
est U.S. EPA air monitoring station.

Sensitivity Analyses
We performed multiple sensitivity analyses. First, to enhance the
spatial resolution of PM2:5 exposure assessment, we estimated ex-
posure based on measurements from the air monitoring station
closest to each residence in analyses restricted to Veterans living
within 30mi (48:3 km) and 10mi (16:1 km) of a U.S. EPA air

monitoring station, respectively (Miller et al. 2007). We used the
Haversine formula (Robusto 1957) to link the latitude and longi-
tude of the ZIP code tabulation area centroid for each residential
address to the latitude and longitude of the nearest PM2:5 monitor-
ing station. In addition, we repeated analyses restricted to Veterans
whose residence latitude and longitude did not change by >1 km
during follow-up. We also additionally adjusted for the number of
hospitalizations and number of weight measurements in the year
before baseline to assess potential confounding related to the
frequency of interactions with the health care system, and we
adjusted for marital status at baseline (Umberson 1992).

For models of the risk of obesity and a 10-lb (4:54 kg) increase
in weight we also constructed within-city models [where city was
defined as a metropolitan statistical area (MSA), which can include
multiple 0:01� ×0:01� PM2:5 grids] to further account for shared
regional similarities (Miller et al. 2007). Models included both
city-average exposure levels (defined for each year as the
population-weighted average PM2:5 exposure for all residents of a
givenMSA) as estimates of between-city effects, and the difference
between each individual’s exposure level from the city-level expo-
sure as an estimate of within-city effects. Veterans were interval
censored during time periods where they were not residing in an
MSA. We report HRs for within-city effects corresponding to a
10-lg=m3 higher individual-level PM2:5 relative to the city-level
average.

We also repeated Cox proportional hazards models after strat-
ifying by baseline age (≤50, >50 to ≤60, >60 to ≤70, and
>70 y), sex, race (Black, White, or other), and BMI (<25, >25
to <30, and ≥30 kg=m2) to allow for differences in baseline haz-
ards. In addition, we considered alternative outcome definitions
including 1- and 3-kg=m2 increases in BMI, where we adjusted
for baseline BMI, and a 20-lb (9:07 kg) increase in weight rela-
tive to baseline, where we adjusted for baseline weight and
height, 5% increases in BMI and weight relative to baseline, and
the risk of becoming overweight or obese (BMI≥25) among
Veterans with a BMI of <25 at baseline. Finally, to assess poten-
tial bias due to differential loss to follow-up across PM2:5 levels,
we repeated linear mixed models restricted to Veterans who had
at least one weight measurement ≥6:5 y after baseline, the me-
dian time from baseline to the last recorded weight measurement
during follow-up of each Veteran.

Data were complete for all Veterans included in the analyses
because Veterans with missing exposure, outcome, or covariate
data were excluded from the study cohort. Effect estimates were
considered statistically significant if the 95% confidence interval
(CI) did not include the null value. All analyses were conducted
using SAS Enterprise guide 7.1 (SAS Institute Inc.) and R (ver-
sion 3.5.3; R Development Core Team).

Results
We assembled a cohort of 3,902,440 Veterans followed for a me-
dian 8.1 [interquartile range (IQR): 7.3–8.4 y], corresponding to
27,628,688 person-years. The demographic and health character-
istics of the overall study cohort and by PM2:5 quartile (at cohort
entry) are described in Table 1. The cohort was 94% male, 76%
White, and 14% Black, with a median age at baseline of 64 y
(IQR: 56–75) (Table 1). During the course of follow-up, 28% of
Veterans died. At baseline, most (58%) were married, either cur-
rent (29%) or former smokers (35%), and overweight (38%) or
obese (40%). At baseline, cohort members lived in counties
where 16% of residents were in rural areas, 16% of county adult
residents reported excessive alcohol consumption, and 6% had
limited access to healthy food. Veterans had a median of
10 weight measurements recorded during follow-up (IQR: 7–15).
In general, Veteran characteristics were similar across PM2:5
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quartiles at baseline, though Veterans in the highest PM2:5 quar-
tile (10:6–20:2lg=m3) were more likely to be Black (24%) and
less likely to be married (49%), and lived in counties with a
smaller proportion of rural residents (4%) and a higher population
density (785=mi2 (303=km2) compared with 71=mi2 (27=km2)
for those with baseline PM2:5 2:4–7:8lg=m3).

The distributions of PM2:5 levels for each year during follow-
up are depicted in Figure S3. During follow-up, average annual
PM2:5 concentrations ranged from 2.4 to 21:4 lg=m3 (Table S2).
During the first calendar year of follow-up, in 2010, the median
PM2:5 exposure in our cohort was 9:2 lg=m3, which decreased to
a median of 7:3 lg=m3 in 2018.

PM2:5 and the Risk of Weight Gain and Obesity
Among the subgroup of Veterans who were not obese at baseline
(n=2,325,768, 60% of the total cohort), 446,113 (19%) became

obese (BMI≥30) during follow-up (Table 2). The risk of obesity
was positively associated with a 10-lg=m3 higher average annual
PM2:5 concentration, with an HR from the fully adjusted model
of 1.08 (95% CI: 1.06, 1.11). In the entire cohort, 42% gained
10 lb (4:54 kg) during follow-up relative to their baseline weight.
As for risk of obesity, the risk of a 10-lb (4:54 kg) increase in
weight was also positively associated with 10-lg=m3 higher av-
erage annual PM2:5 concentration [fully adjusted HR=1:07 (95%
CI: 1.06, 1.08)].

To characterize the shape of the relationship between PM2:5
concentrations and risk of obesity or a 10-lb (4:54 kg) weight gain,
we used an ensemble modeling approach that accommodates a va-
riety of nonlinear relations. The resulting estimates indicated posi-
tive associations for both outcomes (Figure 1A,B). Parameters for
the top three best-fittingmodels for both outcomesmay be found in
Table S3. Resulting curves had a single inflection point, with
steeper slopes for lower PM2:5 concentrations. For both the risk of

Table 2. Association of PM2:5 with risk of obesity and gain in body mass index or body weight in a national cohort of U.S. Veterans selected from 1 July 2010
through 31 June 2011 and followed until 31 December 2018 (n=3,902,440).

Risk of obesity
{BMI≥30 kg=m2

[HR/10-lg=m3 PM2:5
(95% CI)]}a

Risk of 10-lb body weight gain
[HR/10-lg=m3 PM2:5

(95% CI)]
Change in BMI/10-lg=m3PM2:5/y

(95% CI)

Change in body weight (lbs.)/
10-lg=m3

PM2:5 per/y (95% CI)

Events [n (%)] 446,113 (19.18) 1,654,748 (42.40) — —
Sequentially adjusted model
Unadjusted 1.02 (1.01, 1.04) 1.15 (1.14, 1.16) 0.149 (0.147, 0.150) 1.010 (0.998, 1.023)
+Baseline height, body weight,
and/or BMI

1.18 (1.17, 1.20)b 1.14 (1.13, 1.15)c — 1.026 (1.013, 1.038)d

+State of residence 1.30 (1.28, 1.33) 1.24 (1.23, 1.25) 0.149 (0.147, 0.151) 1.026 (1.013, 1.039)
+Age, sex, and race 1.08 (1.06, 1.10) 1.05 (1.04, 1.06) 0.145 (0.143, 0.147) 1.000 (0.988, 1.013)
+Contextual characteristicse 1.10 (1.08, 1.12) 1.08 (1.07, 1.09) 0.144 (0.142, 0.146) 0.994 (0.981, 1.007)
+Smoking status 1.08 (1.06, 1.11) 1.07 (1.06, 1.08) 0.140 (0.139, 0.142) 0.968 (0.955, 0.981)

Note: Cox proportional hazard models and linear mixed models provided hazard ratios and levels of intra-individual change, respectively. Models were sequentially adjusted using the
corresponding covariates listed. —, not applicable; BMI, body mass index; CI, confidence interval; PM2:5, ambient fine particulate matter (particulate matter ≤2:5 lm in aerodynamic
diameter). 2:205 lb= 1 kg.
aRestricted to Veterans with baseline BMI<30 (n=2,325,769).
bBaseline measurement was BMI.
cBaseline measurement was height and body weight.
dBaseline measurement was height.
eContextual characteristics include county-level area deprivation index, normalized difference vegetation index, county-level percentage rural residency, population density, percentage
limited access to healthy food, percentage access to exercise opportunities, and percentage of adults reporting excessive alcohol consumption.

A B

Figure 1. Association of PM2:5 exposure with risk of obesity and gain in body weight in a national cohort of U.S. Veterans selected from 1 July 2010 through
31 June 2011 and followed until 31 December 2018 (n=3,902,440). (A) Obesity, (B) 10-lb gain in body weight. A Shape Constrained Health Impact Function
modeling approach was used. Models were adjusted for BMI (A), or height and body weight (B), and state of residence, age, race, sex, smoking status, area de-
privation index, normalized difference vegetation index, county-level percentage rural residency, population density, percentage limited access to healthy food,
percentage access to exercise opportunities, and percentage of adults reporting excessive alcohol consumption. Lines represent the estimated difference in risk
associated with a given PM2:5 concentration compared with the reference concentration of 1 lg=m3 (in consideration of the log-linear nature of the response).
Bands represent the 95% confidence interval. 2:205 lb= 1 kg. Model parameters of the optimal model and the second and third best-fitting models used to
derive the ensemble estimates are reported in Table S3. Note: BMI, body mass index; PM2:5, ambient fine particulate matter (particulate matter ≤2:5 lm in aer-
odynamic diameter).
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obesity (Figure S4A) and the risk of weight gain (Figure S4B), the
curve based on the ensemble estimate was similar in shape to that
for the optimalmodel. For both outcomes, the ensembled estimates
displayed less precision than those from the optimal models.

PM2:5 and Intra-Individual Changes in Weight
Linear mixedmodels of changes in BMI andweight indicated posi-
tive associations with PM2:5 concentrations (Table 2), and spline
analyses also suggested positive associations across the range of
exposure levels experienced by the cohort (Figure S5). We then
estimated intra-individual changes in weight and BMI according to
the distribution of cumulative average PM2:5 exposure. On aver-
age, Veteranswith cumulative average PM2:5 levels at the 90th per-
centile gained an additional 3:73 lb (1:69 kg) or 0:54 kg=m2 BMI
by the end of follow-up compared with Veterans who had cumula-
tive exposures at the 10th percentile (Figure 2; Tables S4–S5).

Positive and Negative Controls
As expected, a 10-lg=m3 higher average annual PM2:5 was asso-
ciated with all-cause mortality (positive outcome control)

[HR=1:25 (95% CI: 1.23, 1.27)]. In addition, among those
living within 30mi (48:3 km) of an air monitoring station
(n=2,433,367), a 1-IQR change (0:07lg=m3) in ambient sodium
levels (negative exposure control) was not associated with the
risk of obesity [HR=1:0 (CI: 1.00, 1.00), n=1,460,241], a 10-lb
(4:54 kg) weight gain [HR=1:00 (95% CI: 1.00, 1.00)], or intra-
individual changes in BMI [HR=0:001 kg=m2 per year (95% CI:
0.000, 0.001)] and weight [HR=0:004 lb=y (95% CI: −0:007,
0.015)] ([HR=0:002 kg=y (95% CI: −0:003, 0.007)]).

Sensitivity Analyses
Results were generally consistent with the primary analyses
when we assigned PM2:5 exposure levels based on mean annual
measures from the nearest air monitoring station within 30mi
of each residence (n=1,980,554 for incident obesity and
n=3,314,883 for all other outcomes) and 10mi (16:1 km)
from each residence (n=1,320,183 for incident obesity and
n=2,190,712 otherwise); and when analyses were restricted to
nonmovers (n=1,628,448 for incident obesity, n=2,705,653
otherwise) (Table 3). Results were also consistent with the pri-
mary analyses after additional adjustment for the number of

4.70

5.74

6.66

7.53

8.43

0

2

4

6

8

0 2 4 6 8
Follow−up time (years)

C
ha

ng
e 

in
 b

od
y 

w
ei

gh
t (

lb
s.

)

Cumulative average PM2.5

a
a
a
a
a

90th percentile

75th percentile

50th percentile

25th percentile

10th percentile

7.99 8.00

Magnified view

0.68

0.83

0.97

1.09

1.22

0.00

0.25

0.50

0.75

1.00

1.25

0 2 4 6 8
Follow−up time (years)

C
ha

ng
e 

in
 B

M
I (

kg
/m

2 )

Cumulative average PM2.5

a
a
a
a
a

90th percentile

75th percentile

50th percentile

25th percentile

10th percentile

7.99 8.00

Magnified view
A B

Figure 2. Association of PM2:5 exposure with intra-individual change in body weight and BMI in a national cohort of U.S. Veterans selected from 1 July 2010
through 31 June 2011 and followed until 31 December 2018 (n=3,902,440). (A) body weight, (B) BMI. Average change for those at the 10th, 25th, 50th,
75th, and 90th percentile of the cumulative average PM2:5 exposure distribution. Bands represent 95% CI. The inset presents a 20-fold magnification of the
y-axis of the plot. Linear mixed models were used to obtain rates of change in outcomes associated with PM2:5. Models were adjusted for height (A), state of
residence, age, race, sex, area deprivation index, normalized difference vegetation index, county-level percentage rural residency, population density, percent-
age limited access to healthy food, percentage access to exercise opportunities, percentage of adults reporting excessive alcohol consumption, and smoking sta-
tus. Lines represent the change in outcome measured from the beginning of follow-up. Lines are labeled by the average total change in body weight (A) and
BMI (B) from baseline by year 8 of follow-up. Shapes indicate different percentiles of the cumulative average PM2:5. 2.205 lb = 1 kg. Note: BMI, body mass
index; CI, confidence interval; PM2:5, ambient fine particulate matter (particulate matter ≤2:5 lm in aerodynamic diameter).

Table 3. Sensitivity analyses in a national cohort of U.S. Veterans selected from 1 July 2010 and 31 June 2011 and followed until 31 December 2018
(n=3,902,440).

Model

Hazard ratio per 10 lg=m3 of PM2:5 (95% CI)
Intra-individual increase per 10 lg=m3

of PM2:5 per year (95% CI)

Obesity (BMI≥30 kg=m2) Body weight gain (10 lb) BMI (kg=m2) Body weight (lbs.)

Air monitoring station (30-mi radius)a 1.12 (1.09, 1.15) 1.10 (1.09, 1.12) 0.087 (0.084, 0.089) 0.598 (0.580, 0.615)
Air monitoring station (10-mi radius)b 1.10 (1.03, 1.15) 1.08 (1.04, 1.12) 0.093 (0.090, 0.097) 0.639 (0.615, 0.664)
Nonmoversc 1.08 (1.05, 1.10) 1.07 (1.05, 1.08) 0.191 (0.189, 0.194) 1.317 (1.300, 1.334)
Additional adjustment for baseline markers

of hospital interactiond
1.06 (1.04, 1.08) 1.04 (1.03, 1.05) 0.140 (0.138, 0.142) 0.967 (0.955, 0.980)

Additional adjustment for baseline marital status 1.05 (1.03, 1.08) 1.04 (1.03, 1.05) 0.137 (0.136, 0.139) 0.947 (0.934, 0.960)

Note: Cox proportional hazard models and linear mixed models provided hazard ratios and levels of intra-individual change, respectively. Models were adjusted for BMI (obesity out-
come), height and body weight (body weight gain outcome), or height (body weight outcome), and state of residence, age, race, sex, area deprivation index, normalized difference veg-
etation index, county-level percentage rural residency, population density, percentage limited access to healthy food, percentage access to exercise opportunities, percentage of adults
reporting excessive alcohol consumption, and smoking status. BMI, body mass index; CI, 95% confidence interval; PM2:5, ambient fine particulate matter (particulate matter ≤2:5 lm
in aerodynamic diameter). 2:205 lb= 1 kg. 0:6214mi= 1 km.
aWithin a cohort of those living within 30mi of an air monitoring station (n=1,980,554 for obesity outcome, n=3,314,883 otherwise).
bWithin a cohort of those living within 10mi of an air monitoring station (n=1,320,183 for obesity outcome, n=2,190,712 otherwise).
cWithin a cohort of those who did not move (no difference in latitude or longitude ≥0:1�) during follow-up (n=1,628,448 for obesity outcome, n=2,705,653 otherwise).
dAdditionally adjusted for number of inpatient stays and number of weight measurements in the year prior to baseline.
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inpatient hospital stays and weight measurements in the year before
baseline (as indications of the frequency of interactions with the
health care system), andmarital status at baseline (Table 3).

Models of associations between incident obesity and a 10-lb
(4:54 kg) weight gain also indicated positive associations when
restricted to Veterans living within an MSA throughout follow-
up, with HRs for a 10-lg=m3 increase in within-city PM2:5 of
1.20 (95% CI: 1.16, 1.24), n=1,835,720 and 1.18 (95% CI: 1.15,
1.20), n=3,066,141 for incident obesity and a 10-lb (4:54 kg)
weight gain, respectively (Table S6). Estimates were similar to
primary models when Cox proportional hazard models were
stratified to allow for differences in baseline hazards by age, race,
sex, and BMI [HR=1:05 (95% CI: 1.03, 1.07) and HR=1:07
(95% CI: 1.06, 1.08) for incident obesity and a 10-lb (4:54 kg)
weight gain, respectively] (Table S6). The HR for the incidence
of overweight or obesity among 835,212 Veterans with a
BMI of <25 at baseline was positive but closer to the null
[HR=1:04 (95% CI: 1.01, 1.06)] than the corresponding HR for
incident obesity, whereas the association was stronger for a 20-lb
(9:07 kg) increase in weight [HR=1:18 (95% CI: 1.16, 1.20)]
compared with the HR for a 10-lb (4:54 kg) increase (Table S7).
Associations were also positive for a 10-lg=m3 increase in PM2:5
and the incidence of 1- and 3-kg=m3 increases in BMI, a 5%
increase in BMI, and a 5% increase in weight relative to baseline
(Table S7). Finally, estimates for intra-individual changes in
BMI and weight with a 10-lg=m3 increase in PM2:5 were similar
to primary analyses when restricted to 1,955,448 Veterans who
had at least one recorded weight measurement 6.5–7.5 y after
baseline, with estimated mean increases in BMI and weight of
0:139 kg=m2 (95% CI: 0.137, 0.142) and 0:962 lb (95% CI:
0.947, 0.977) (0:436 kg (95% CI: 0.430, 0.443)), respectively
(Table S8).

Discussion
In this cohort of 3,902,440 U.S. Veterans followed for a median
8.1 (IQR: 7.3 to 8.4) y, who corresponded to more than 27million
person-years of follow-up, exposure to higher levels of PM2:5 was
associated with an increased risk of weight gain and obesity, and
with intra-individual increases in weight and BMI during follow-
up. Estimated exposure–response functions for incident obesity
and a 10-lb (4:54 kg) weight gain suggested positive associations
at all PM2:5 concentrations above the minimum (2:4 lg=m3),
including concentrations below the 2012 National Ambient Air
Quality Standard of 12lg=m3 (U.S. EPA 2013). Findings were
consistent across multiple sensitivity analyses, including models
using alternate exposure definitions, outcome definitions, and
covariate adjustments. As expected, we also estimated a positive
association with all-cause mortality (as a positive outcome con-
trol), whereas results were null for associations with ambient air
sodium concentrations (as a negative exposure control). The con-
stellation of evidence suggests that PM2:5 may be obesogenic.

Our results build on the seminal discoveries that inhaled nano-
particles when sufficiently small, may permeate through the alveolar
space and enter the bloodstream where they may interact with
extrapulmonary organs (Miller et al. 2017). Animal studies also sug-
gest that exposure to particulate matter activates genes associated
with lipogenesis in adipose tissue leading to increased adipocyte
size, increased adiposity, and increased visceral fat mass
(Hamanaka and Mutlu 2018; Mendez et al. 2013; Sun et al. 2009).
Animals exposed by inhalation to particulate matter also exhibit
increased macrophage infiltration into adipose tissue, elevated con-
centrations of pro-inflammatory cytokines, impaired adipose mito-
chondrial function, increased leptin and adiponectin, and increased
insulin resistance (Hamanaka and Mutlu 2018; Mendez et al. 2013;
Sun et al. 2009). These mechanistic findings are complemented by

evidence from human studies indicating that PM2:5 is a metabolic
risk factor (Pope et al. 2015) that has been associated with diabe-
tes mellitus (Bowe et al. 2018b), chronic kidney disease, and
other cardiometabolic conditions (Al-Aly and Bowe 2020; Bowe
et al. 2020a, 2020b). Furthermore, epidemiologic literature has
suggested that traffic density and traffic-related pollutant levels
were associated with an increased risk of weight gain in children
(Jerrett et al. 2010, 2014). Taken together, these prior studies pro-
vide biologic and epidemiologic plausibility for the findings
reported in this study.

This study has several limitations. The cohort included U.S.
Veterans who were mostly older, white, and male, which limits the
generalizability of the study results. Models of incident obesity (or
overweight) were necessarily restricted to Veterans who were not
obese (or overweight) at baseline, and whomay have therefore dif-
fered in their susceptibility to PM2:5 and other factors that may fur-
ther limit generalizability. Although we adjusted for several
known confounders, we cannot completely rule out the possibility
of residual confounding. Individual information on diet and exer-
cise was not available, and we adjusted for smoking and marital
status at baseline only. Although we used high-resolution exposure
data and linked it to residential addresses, exposure misclassifica-
tion may have been present. Many contextual covariates were
assessed at the county level, and we did not investigate interactions
between contextual characteristics. The use of electronic health
records, which contain only information recorded at receipt of
care, may have resulted in misclassification of outcome measure-
ments and the timing of incident outcomes. Our analyses did not
account for indoor exposure to air pollutants, did not consider lags
in the relation between exposure and outcome, and did not consider
potential heterogeneity in effect across different populations and
by differences in composition and toxic content of PM2:5.

Strengths of the study include the large cohort size with well-
characterized health characteristics and long follow-up time.
PM2:5 concentrations spanned the spectrum of levels experienced
by people throughout the United States. We leveraged the opportu-
nity that the outcomes of interest (weight and BMI) are continuous
variables recurrently measured in the same individual—which
enabled us to develop an analytic approach to estimate intra-
individual change in weight associated with PM2:5. We used an
ensemble modeling approach to characterize the shape of the asso-
ciation between PM2:5 and obesity in our cohort, which allowed
for any nonlinearity in the relationship. Finally, we developed and
tested a negative exposure and a positive outcome control, to
lessen concerns about spurious associations.

In summary, in a cohort of 3:9million Veterans followed for
more than 8 y (corresponding to more than 27million person-
years of follow-up), PM2:5 air pollution was associated with a
higher risk of obesity and weight gain. The association was evi-
dent for the incidence of obesity and a 10-lb (4:54 kg) gain in
weight and for intra-individual changes in weight and BMI dur-
ing follow-up. The shape of the estimated exposure–response
function suggests that risk was evident at PM2:5 concentrations
<12lg=m3—the current U.S. EPA air quality standard for aver-
age annual ambient PM2:5 concentrations. Strategies aimed at
addressing obesity may need to consider air pollution and other
environmental exposures as potential causes.
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