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Abstract

Motivation: Polygenic scores have become a central tool in human genetics research. LDpred is a popular method
for deriving polygenic scores based on summary statistics and a matrix of correlation between genetic variants.
However, LDpred has limitations that may reduce its predictive performance.

Results: Here, we present LDpred2, a new version of LDpred that addresses these issues. We also provide two new
options in LDpred2: a ‘sparse’ option that can learn effects that are exactly 0, and an ‘auto’ option that directly learns
the two LDpred parameters from data. We benchmark predictive performance of LDpred2 against the previous ver-
sion on simulated and real data, demonstrating substantial improvements in robustness and predictive accuracy
compared to LDpred1. We then show that LDpred2 also outperforms other polygenic score methods recently devel-
oped, with a mean AUC over the 8 real traits analyzed here of 65.1%, compared to 63.8% for lassosum, 62.9% for
PRS-CS and 61.5% for SBayesR. Note that LDpred2 provides more accurate polygenic scores when run genome-
wide, instead of per chromosome.

Availability and implementation: LDpred2 is implemented in R package bigsnpr.

Contacts: florian.prive.21@gmail.com and bjv@econ.au.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, the use of polygenic scores (PGS) has become wide-
spread. A PGS aggregates (risk) effects across many genetic variants
into a single predictive score. These scores have proven useful for
studying the genetic architecture and relationships between diseases
and traits (Kong et al., 2018; Purcell et al., 2009). Moreover, there
are high hopes for using these scores in clinical practice to improve
disease risk estimates and predictive accuracy. The heritability, i.e.
the proportion of phenotypic variance that is attributable to genet-
ics, determines an upper limit on the predictive performance of PGS
and thus their value as a predictive tool. Nevertheless, a number of
studies have shown the potential benefits of using PGS in clinical set-
tings (Abraham et al., 2019; Pashayan et al., 2015; Willoughby
et al., 2019). PGS are also extensively used in epidemiology and eco-
nomics as predictive variables of interest (Barth et al., 2020; Harden
and Koellinger, 2020; Horsdal et al., 2019; Musliner et al., 2015).
For example, a recently derived PGS for education attainment has
been one of the most predictive variables in behavioral sciences so
far (Allegrini et al., 2019).

LDpred is a popular method for deriving polygenic scores based
on summary statistics and a Linkage Disequilibrium (LD) matrix
only (Vilhjálmsson et al., 2015). However, LDpred has several limi-
tations that may reduce its predictive performance. The non-
infinitesimal version of LDpred, which assumes there is a proportion
p of variants that are causal, is a Gibbs sampler and is particularly
sensitive to model misspecification when applied to summary

statistics with large sample sizes. It is also unstable in long-range LD
regions such as the human leukocyte antigen (HLA) region of
chromosome 6. This issue has led to the removal of such regions
from analyses (Lloyd-Jones et al., 2019; Marquez-Luna et al.,
2020), which is unfortunate since this region of the genome contains
many known disease-associated variants, particularly with auto-
immune diseases and psychiatric disorders (Matzaraki et al., 2017;
Mokhtari and Lachman, 2016).

2 Approach

Here, we present LDpred2, a new version of LDpred that addresses
these issues while markedly improving its computational efficiency,
allowing exploring a larger grid of parameters in the same computa-
tional time as LDpred1. We provide this faster and more robust im-
plementation of LDpred in R package bigsnpr (Privé et al., 2018).
We also provide two new options in LDpred2. First, we provide a
‘sparse’ option, where LDpred2 truly fits some effects to zero, there-
fore providing a sparse vector of effects. Second, we also provide an
‘auto’ option, where LDpred2 automatically estimates the sparsity p
and the SNP heritability h2, and therefore does not require valid-
ation data to tune hyper-parameters. We show that LDpred2 pro-
vides higher predictive performance than LDpred1 (LDpred v1.0.0),
especially when there are causal variants in long-range LD regions,
when the proportion of causal variants is small, and when GWAS
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sample size is large. We also show that the new sparse option per-
forms equally well as the non-sparse version, enabling LDpred2 to
provide sparse effects without losing any predictive accuracy.
Moreover, LDpred2-auto, which does not require any validation
set, performs almost as well as the main LDpred2 model that tunes
hyper-parameters from a grid in a validation set, provided some
quality control is performed on the summary statistics.

3 Materials and methods

3.1 Simulation analyses
We use the UK Biobank imputed data for both real data analyses
and simulations (Bycroft et al., 2018). We use dosage data for
LDpred2, which we read from BGEN files using function
snp_readBGEN from R package bigsnpr (Privé et al., 2018). For the
other software that require a PLINK bed file as input, we use func-
tion snp_writeBed that round dosages to write genotype data in bed
format. We restrict individuals to the ones used for computing the
principal components (PCs) in the UK Biobank (Field 22020). These
individuals are unrelated and have passed some quality control
including removing samples with a missing rate on autosomes larger
than 0.02, having a mismatch between inferred sex and self-reported
sex, and outliers based on heterozygosity (more details can be found
in section S3 of Bycroft et al. (2018)). To get a set of genetically
homogeneous individuals, we compute a robust Mahalanobis dis-
tance based on the first 16 PCs and further restrict individuals to
those within a log-distance of 5 (Privé et al., 2020). We restrict var-
iants to the HapMap3 variants used in PRS-CS (Ge et al., 2019).
This results in 362 320 individuals and 1 117 493 variants. We use
10 000 individuals as validation set for choosing optimal hyper-
parameters and for computing correlations between variants (LD
matrix R). We use 300 000 other individuals for running logistic
GWAS to create summary statistics. We use the remaining 52 320
individuals as test set for evaluating models.

We simulate binary phenotypes with a heritability of h2 ¼ 0:4
using a Liability Threshold Model (LTM) with a prevalence of 15%
(Falconer, 1965). We vary the number of causal variants (300,
3000, 30 000 or 300 000) to match a range of genetic architectures
from low to high polygenicity. Causal variants are chosen randomly
anywhere on the genome. Liability scores are computed from a
model with additive effects only: we compute the liability score of
the i-th individual as yi ¼

P
j2Scausal

wj
~Gi;j þ �i; where Scausal is the set

of causal variants, wj are weights generated from a Gaussian distri-
bution Nð0; h2=jScausaljÞ; Gi;j is the allele dosage of individual i for
variant j, ~Gi;j corresponds to its standardized version (zero mean
and unit variance), and �i follows a Gaussian distribution
Nð0; 1� h2Þ. Both parts of the yi’s are scaled such that the variance
of the genetic liability is exactly h2 and the variance of the total li-
ability is exactly 1. Such simulation of phenotypes based on real gen-
otypes is implemented in function snp_simuPheno of R package
bigsnpr. We also vary the sample size to compute GWAS summary
statistics in the scenario with 3000 causal variants; in addition to a
GWAS sample size of 300 000, we also use 10 000, 20 000, 50 000
and 120 000. We design two other simulation scenarios with 300 or
3000 causal variants randomly chosen in the HLA region (chromo-
some 6, 25.5-33.5 Mb). In these two scenarios, we use h2 ¼ 0:3

instead of h2 ¼ 0:4 because the total heritability is gathered in one
chromosome only. Finally, we design a seventh simulation scenario
as a mixture of previous scenarios; we simulate 300 causal variants
in the HLA region explaining 20% of the variance in liability, and
10 000 causal variants anywhere on the genome explaining another
20% (h2 ¼ 0:4 in total).

All simulation scenarios are summarized in Table 1. Each simu-
lation scenario is repeated 10 times and averages of the Area Under
the ROC Curve (AUC) are reported. The 95% confidence interval
(CI) from 10 000 non-parametric bootstrap replicates of the mean
AUC of the 10 simulations for each scenario is also reported. In
other words, we sample 10 000 bootstrap replicates of these 10
AUC values and compute their respective mean. We then report the
mean of these 10 000 values, along with their quantile at 2.5% and at
97.5% to act as the 95% confidence interval (CI) for the mean AUC.

3.2 Real data analyses
We use the same data as in the simulation analyses. We use the same
10 000 individuals as validation set, and use the remaining 352 320
individuals as test set. We use external published GWAS summary
statistics listed in Table 2. We defined phenotypes as in Privé et al.
(2019). Briefly, we use self-reported illness codes (field 20001 for
cancers and 20002 otherwise) and ICD10 codes (fields 40001,
40002, 41202 and 41204 for all diseases and field 40006 specifically
for cancers). Some quality control is applied to summary statistics
(see Method section ‘Quality control of summary statistics’ below).
For more details, please refer to our R code (Software and code
availability section).

In real data applications, we first compare all four LDpred2
models to the two LDpred1 models. Then, we compare LDpred2-
inf, LDpred2-grid and LDpred2-auto to several other methods:
Clumping and Thresholding (CþT), Stacked CþT (SCT), lassosum(-
auto), PRS-CS(-auto) and SBayesR (Ge et al., 2019; Lloyd-Jones
et al., 2019; Mak et al., 2017; Privé et al., 2019). For CþT and SCT
(Privé et al., 2019), we use the default large grid of hyper-
parameters testing a threshold of clumping r2

c within f0.01, 0.05,
0.1, 0.2, 0.5, 0.8, 0.95g, a base size of clumping window within
f50, 100, 200, 500g in Kb where the actual window size is then
computed as the base size divided by r2

c , and a sequence of 50 thresh-
olds on -log10(P-values) between 0.1 and the most significant P-
value, equally spaced on a log scale. For lassosum (Mak et al.,
2017), we use the default grid of hyper-parameters s and k. We
also alternatively choose the optimal hyper-parameters based
on pseudo-validation (instead of choosing them based on perform-
ance in the validation set) and refer to this method as lassosum-
auto. For PRS-CS (Ge et al., 2019), we use the grid
f10�6; 10�5; 10�4; 10�3; 0:01; 0:1; 1g for the global scaling hyper-
parameter U, and the default values for hyper-parameters a (1) and
b (0.5). PRS-CS-auto automatically estimates U. Finally, for
SBayesR (Lloyd-Jones et al., 2019), shrunk LD matrices are built
using option ‘–make-shrunk-ldm’ and SBayesR is run with parame-
ters ‘–pi 0.95,0.02,0.02,0.01’ and ‘–gamma 0.0,0.01,0.1,1’, and a
chain of length 10 000 with 2000 burn-in iterations. Note that we
use the 10 000 individuals of the validation set as LD reference for
all methods, except for PRS-CS which provides its own LD reference
based on 503 individuals from the 1000 Genomes data; Ge et al.

Table 1. The seven simulations scenarios

Simulation Number and location of causal variants Heritability N (�1000) Prevalence

all_40_300 300 anywhere on the genome 40% 300 15%

all_40_3000 3000 anywhere on the genome 40% 10, 20, 50, 120, 300 15%

all_40_30000 30 000 anywhere on the genome 40% 300 15%

all_40_300000 300 000 anywhere on the genome 40% 300 15%

HLA_30_300 300 in the HLA region 30% 300 15%

HLA_30_3000 3000 in the HLA region 30% 300 15%

both_40 10 000 anywhere on the genome þ 300 in the HLA region 20% þ 20% 300 15%

N, GWAS sample size.
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(2019) argued that the sample size of the LD reference has little im-
pact on the performance of PRS-CS.

We use the Area Under the ROC Curve (AUC) to compare meth-
ods. We sample 10 000 bootstrap replicates of the individuals in the
test set and compute the AUC for each of these. We then report the
mean of these 10 000 values, along with their quantile at 2.5% and
at 97.5% to act as the 95% confidence interval (CI) for the AUC.
This is implemented in function AUCBoot of R package bigstatsr.

3.3 From marginal effects to joint effects
In this section, we explain how we can obtain joint effects from sum-
mary statistics (marginal effects) and a correlation matrix R. Let us
denote by S the diagonal matrix with standard deviations of the m
variants, Cn ¼ In � 11T=n the centering matrix, G the genotype ma-
trix of n individuals and m variants and y the phenotype vector for n
individuals.

When solving a joint model with all variants and an intercept a,
the joint effects cjoint are obtained by solving

½ â
ĉ^joint

� ¼ ð½ 1 G �T ½ 1 G �Þ�1½ 1 G �Ty :

Using the Woodburry formula, we get

ĉ^joint ¼ ðGTCnGÞ�1GTCny :

When fitting each variant separately in GWAS, the marginal
effects (assuming no covariate) simplify to

ĉ^marg ¼
1

n� 1
S�2GTCny :

We further note that the correlation matrix of G is

R ¼ 1

n� 1
S�1GTCnGS�1 :

Then we get

ĉ^joint ¼ S�1R�1Sĉ^marg : (1)

In practice, the correlation matrix R is usually not available but
is computed from another dataset. Also note that c are the effects on
the allele scale while we denote by b ¼ Sc the effects of the scaled
genotypes.

For the marginal effect ĉ j of variant j, let us denote by y
^

and G
^

j

the vectors of phenotypes and genotypes for variant j residualized
from K covariates, e.g. centering them. Then,

�
seðĉ jÞ

�2

¼
ðy^ � ĉ jG

^

jÞTðy^ � ĉ jG
^

jÞ

ðn� K� 1Þ G
^

j
TG

^

j

� y
^T

y
^

n G
^

j
TG

^

j

� varðyÞ
n varðGjÞ

:

The first approximation is possible because ĉ j is expected to be
small, while the second approximation assumes that the effects from
covariates are small. Thus we can derive

sdðGjÞ �
sdðyÞ

seðĉ jÞ
ffiffiffi
n
p (2)

and then
�

sdðGjÞ ĉj

�
� ĉ j

seðĉ jÞ
sdðyÞffiffi

n
p . Let us go back to equation 1. As

sdðyÞ is the same for all variants, it is canceled out by S�1 and S,
therefore we can assume that varðyÞ ¼ 1. It justifies the use of the Z-
scores (ĉj = seðĉ jÞ) divided by

ffiffiffi
n
p

as input for LDpred (first line of
algorithm 1). Then, the effect sizes that LDpred outputs need to be
scaled back by multiplying by

�
seðĉ jÞ

ffiffiffi
n
p �

(last line of algorithm 1).
In LDpred2, we allow for having different nj for different variants.
Note that LDpred1 and other similar methods scale the output
dividing by the standard deviation of genotypes. This is correct
when varðyÞ ¼ 1 only.

3.4 Quality control of summary statistics
For summary statistics of binary traits derived from a logistic regres-
sion, instead of equation (2), we have

sdðGjÞ �
2

seðĉ jÞ
ffiffiffiffiffiffiffi
neff
p ; (3)

where neff ¼ 4
1=ncaseþ1=ncontrol

. We strongly recommend to verify this as-
sumption and to perform some quality control. Indeed, in simula-
tions, the approximation of equation (3) seems valid
(Supplementary Fig. S6). However, in real data applications, where
summary statistics come from a meta-analysis of many external
datasets, this approximation can be invalidated (Supplementary Fig.
S7). Let us denote by SDss the standard deviations derived from the
summary statistics (right-hand side of equation (2) or (3)) and by
SDval the standard deviations of genotypes of individuals in the val-
idation set (left-hand side). Note that, in order to compute SDss in
the case of summary statistics from a linear regression, sdðyÞ from
equation (2) can be estimated e.g. by the median value of

�
sdðGjÞ �

seðĉ jÞ �
ffiffiffi
n
p �

or by using the fact that the maximum value of SDss

should be
ffiffiffiffiffiffiffi
0:5
p

, i.e. estimating sdðyÞ by min
� ffiffiffiffiffiffiffi

0:5
p

� seðĉ jÞ �
ffiffiffi
n
p �

. We
recommend removing variants with SDss < 0:5 � SDval or SDss >
0:1þ SDval or SDss < 0:1 or SDval < 0:05 (Supplementary Fig. S7).

3.5 Overview of LDpred model
LDpred assumes the following model for effect sizes,

bj ¼ Sj;jcj �
N 0;

h2

Mp

 !
with probability p;

0 otherwise;

8><
>: (4)

Table 2. Summary of external GWAS summary statistics used

Trait GWAS citation GWAS sample

size

No. of GWAS

variants

No. of matched

variants

Mean

v2

No. of

hits

No. of

indep

hits

Breast cancer (BRCA) Michailidou et al. (2017)137 045/119 078 11 792 542 1 114 424 1.70 2941 157

Rheumatoid arthritis (RA) Okada et al. (2014) 29 880/73 758 9 739 303 656 087 2.10 3663 75

Type 1 diabetes (T1D) Censin et al. (2017) 5913/8828 8 996 866 514 420 1.93 1902 39

Type 2 diabetes (T2D) Scott et al. (2017) 26 676/132 532 12 056 346 1 108 760 1.24 388 39

Prostate cancer (PRCA) Schumacher et al. (2018)79 148/61 106 20 370 946 1 115 688 1.55 2762 137

Depression (MDD) Wray et al. (2018) 59 851/113 154 13 554 550 1 103 440 1.27 166 5

Coronary artery disease (CAD)Nikpay et al. (2015) 60 801/123 504 9 455 778 1 108 313 1.13 352 37

Asthma Demenais et al. (2018) 19 954/107 715 2 001 280 980 430 1.10 365 15

Note: The GWAS sample size is the number of cases/controls in the GWAS. The mean chi-squared statistics v2 and the number of hits (P < 5 � 10�8) are

reported after restricting to HapMap3 variants and matching with the UKBB data. Independent hits are the hits remaining after clumping at r2 > 0:01 within 10 Mbp.
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where p is the proportion of causal variants, M the number of var-
iants and h2 the (SNP) heritability. Vilhjálmsson et al. (2015) esti-
mate h2 using constrained LD score regression (intercept fixed to 1)
and recommend testing a grid of hyper-parameter values for p (1,
0.3, 0.1, 0.03, 0.01, 0.003 and 0.001).

To estimate effect sizes bj, we use a Gibbs sampler as in
Vilhjálmsson et al. (2015), which is described in algorithm 1. First,
the residualized marginal effect for variant j is computed as

~bj ¼ b̂j � b�j
TR�j;j (5)

where R�j;j is the j-th column without the j-th row of the correlation
matrix, b̂

^
is the vector of marginal effect sizes, b is the vector of cur-

rent effect sizes in the Gibbs sampler, and b�j is b without the j-th
element. Then, the probability that variant j is causal is computed as

pj ¼ P
�
bj � Nð�; �Þ j ~bj

�

¼

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

Mp
þ 1

n

s exp �1

2

~b
2

j

h2

Mp
þ 1

n

8>><
>>:

9>>=
>>;

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

Mp
þ 1

n

s exp �1

2

~b
2

j

h2

Mp
þ 1

n

8>><
>>:

9>>=
>>;
þ 1� pffiffiffi

1

n

r exp �1

2

~b
2

j

1

n

8><
>:

9>=
>;

;

which we rewrite as

pj ¼
1

1þ 1�p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nh2

Mp

q
exp � 1

2

n~b
2

j

1þMp

nh2

� �
:

(6)

Computing pj using the second expression is important to avoid
numerical issues when ðn~b

2

j Þ is large.
Then, bj is sampled according to

bj j ~b j �
N 1

1þMp

nh2

~b j;
1

1þMp

nh2

1

n

0
@

1
A with probability pj;

0 otherwise:

8>><
>>: (7)

Therefore, the posterior mean of bj j ~bj is given by

xj ¼
pj

~bj

1þ Mp
nh2

: (8)

3.6 New LDpred2 models
LDpred2 comes with two extensions of the LDpred model.

The first extension consists in estimating p and h2 within the
model, as opposed to testing several values of p and estimating h2

using constrained LD score regression (Bulik-Sullivan et al., 2015).
This makes LDpred2-auto a method free of hyper-parameters which
can therefore be applied directly to data without the need of a valid-
ation dataset to choose best-performing hyper-parameters. To esti-
mate p in the Gibbs sampler, we count the number of non-zero
variants (i.e. Mc ¼

P
jðbj 6¼ 0Þ in equation 7). We can assume that

Mc � BinomðM; pÞ, so if we place a prior p � Betað1;1Þ � Uð0; 1Þ,
we can sample p from the posterior p � Betað1þMc; 1þM�McÞ.
Due to complexity reasons, we could not derive a Bayesian estima-
tor of h2. Instead, we estimate h2 ¼ bTRb, where R is the correlation
matrix. These parameters p and h2 are updated after the inner loop
in Algorithm 1, then these new values are used in the next iteration
of the outer loop.

The second extension, which can be enabled using a third hyper-
parameter in LDpred2-grid, aims at providing sparse effect size esti-
mates, i.e. some resulting effects are exactly 0. When the sparse solu-
tion is sought and when pj < p, we set bj and xj to 0 (lines 6–8 of
Algorithm 1). We also provide a sparse option for LDpred2-auto by
running LDpred2-grid with one set of parameters only: with the
sparsity enabled and using the estimates of p and h2 from LDpred2-
auto.

When running LDpred2-grid, we test a grid of hyper-parameters
with p from a sequence of 21 values from 10�5 to 1 on a log-scale;
h2 within f0:7; 1;1:4g � h2

LDSC, where h2
LDSC is the heritability esti-

mate from the constrained LD score regression Bulik-Sullivan et al.
(2015); and whether sparsity is enabled or not. In total, this grid is
of size 21� 3� 2 ¼ 126. When running LDpred2-auto, we run it
30 times with h2

LDSC as initial value for h2 and a sequence of 30 val-
ues from 10�4 to 0.9 equally spaced on a log scale as initial values
for p. Running many Gibbs chains aims at checking whether models
did not diverge (and hopefully converged). As a criterion for non-
divergence, we compute the standard deviations of the resulting pre-
dictors from the 30 models, keep only those within three median ab-
solute deviations from their median, and average the remaining
vectors of effects as final effect sizes for the ‘auto’ version.

3.7 New strategy for local correlation
There is a window size parameter that needs to be set in LDpred; for
a given variant, correlations with other variants outside of this win-
dow are assumed to be 0. The recommended value for this window
(in number of variants) has been to use the total number of variants
divided by 3000, which corresponds to a window radius of around
2 Mb (Vilhjálmsson et al., 2015). We have come to the conclusion
that this window size is not large enough. Indeed, the human leuko-
cyte antigen (HLA) region of chromosome 6 is 8 Mb long (Price
et al., 2008). Using a window of 8 Mb would be computationally
and memory inefficient. Instead, we propose to use genetic distan-
ces. Genome-wide, 1 Mb corresponds on average to 1 cM. Yet, the
HLA region is only 3 cM long (versus 8 Mb long). Therefore, genetic
distances enable to capture the same LD using a globally smaller
window. We provide function snp_asGeneticPos in package bignspr
to easily interpolate physical positions (in bp) to genetic positions
(in cM). We recommend to use genetic positions and to use a size
parameter of 3 cM when computing the correlation between var-
iants for LDpred2. Note that, in the code, we use ‘size ¼ 3/1000’
since parameter size is internally multiplied by 1000 in the bigsnpr
functions.

Algorithm 1 LDpred, with hyper-parameters p and h2, LD

matrix R and summary statistics ĉ^; seðĉ^Þ and n

1: b̂ ĉ^

seðĉ^Þ �
ffiffiffi
n
p

" Initialization of scaled marginal effects (see

previous section)

2: X 0 " Initialization of posterior means

3: for k ¼ 1; . . . ;Nburn�in þNiter do " Gibbs iterations

4: for each variant j do " All variants

5: Compute ~bj according to (5)

6: Compute pj according to (6)

7: Sample bj according to (7)

8: Compute xj according to (8)

9: end for

10: if k > Nburn�in then

11: X Xþ x

12: end if

13: end for

14: X X=Niter " Average of all x after burn-in

15: Return X � seð̂c^Þ �
ffiffiffi
n
p

" Return posterior means, scaled

back (see previous section)
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3.8 Running LDpred2 per chromosome or genome-

wide?
In this paper, we investigate if it would be beneficial to run LDpred2
per chromosome, instead of genome-wide. It may be beneficial for
some phenotypes to assume that their genetic architecture is differ-
ent for different chromosomes. For example, chromosome 6 clearly
encompasses a larger proportion of the heritability of autoimmune
diseases compared to other chromosomes (Shi et al., 2016).
Assuming the same model for genetic effects genome-wide could re-
sult in model misspecification, which may lead to suboptimal pre-
dictive performance. Moreover, running LDpred2 per chromosome
allows to process chromosomes on different compute nodes in paral-
lel. Note that, to run LDpred2-grid-gwide, one could estimate the
heritability genome-wide, run LDpred2-grid per chromosome, then
combine scores for all chromosomes for each hyper-parameter set,
and finally choose the final genome-wide score corresponding to the
best-performing set of hyper-parameters. However, for the sake of
simplicity, because computations of LDpred2-auto-gwide cannot be
easily split like this, we recommend to run all LDpred2-gwide mod-
els using the full LD matrix. When restricting to HapMap3 variants,
the full sparse LD matrix is around 30 GB. To choose the best
LDpred2 model, one can choose the best model according to their
preferred criterion (e.g. max AUC). Here, we use the Z-Score from
the regression of the phenotype by the PRS since we have found it
more robust than using the AUC when running LDpred2 per
chromosome.

3.9 Providing an LD reference
We provide an LD reference for European ancestry to be used by
researchers who cannot compute their own. We use the 362 320
UKBB individuals as used here, with some further quality control
based on allele frequencies. Indeed, some large allele frequency mis-
matches have been reported recently in the UKBB when comparing
to other datasets, which are apparently due to mismappings
(Kunert-Graf et al., 2020). Note that most of these errors should be
captured by the quality control we propose in this paper. Using 503
European individuals from the 1000 Genomes (1000 G) data, we re-
move variants with allele frequency differences between UKBB and
1000 G at p < 10�5 (Supplementary Fig. S10). We also remove var-
iants with minor allele frequencies less than 1% in the 1000 G or
less than 0.5% in the UKBB. 1 054 330 variants remain, which we
use to compute the LD reference provided. We also provide an ex-
ample R script on how to use this LD reference provided.

4 Results

4.1 Overview of methods
Here, we present LDpred2, a new version of LDpred (Vilhjálmsson
et al., 2015). LDpred2 has three options: (i) LDpred2-inf, which
provides an analytical solution under the infinitesimal model of
LDpred1; (ii) LDpred2-grid (or simply LDpred2) that is the main
LDpred model, where a grid of values for hyper-parameters p (the
proportion of causal variants), h2 (the SNP heritability), and pos-
sibly the sparsity option (as a third hyper-parameter) are tuned using
a validation set; (iii) LDpred2-auto, which automatically estimates p
and h2 from data and therefore is free of hyper-parameters to tune.
Note that the sparse option in LDpred2-grid slightly modifies the
Gibbs sampler in LDpred2 to be able to fit effects that are exactly 0.
For users who do not particularly care about sparsity, they can still
tune this parameter in LDpred2-grid to explore a larger parameter
space. For this paper, in order to show the effect of this sparse op-
tion on predictive performance, we deliberately separate the
LDpred2-grid method in two ‘different’ methods that we call
LDpred2-grid-nosp (sparse option always disabled) and LDpred2-
grid-sp (sparse option always enabled) in the results. As a recall,
LDpred v1 has two options: LDpred1-inf, and LDpred1-grid where
only p is tuned while h2 is estimated from constrained LD score re-
gression (Bulik-Sullivan et al., 2015).

We use the UK Biobank data to compare the two versions of
LDpred using several simulation scenarios to understand the
expected impact of using the new version of LDpred. We also com-
pare these two versions of LDpred using eight case-control pheno-
types of major interest and for which there are published external
summary statistics available and a substantial number of cases in the
UK Biobank data. We also compare running LDpred2 per chromo-
some (‘perchr’, including choosing optimal hyper-paramaters) or
genome-wide (‘gwide’). Finally, we compare LDpred2 to several
other methods: Clumping and Thresholding (CþT), Stacked CþT
(SCT), lassosum, PRS-CS and SBayesR (Ge et al., 2019; Lloyd-Jones
et al., 2019; Mak et al., 2017; Privé et al., 2019). Area Under the
ROC Curve (AUC) values are reported.

4.2 Simulations
Figure 1 presents the simulation results comparing LDpred1 [v1.0.0
as implemented by Vilhjálmsson et al. (2015)] with the new
LDpred2 (as implemented in R package bigsnpr). Seven simulation
scenarios are used, each repeated 10 times. 300 000 individuals are
used for computing the GWAS summary statistics, 10 000 for com-
puting the LD matrix and choosing the best-performing hyper-
parameters, and the remaining 52 320 individuals for testing. In the
first four simulation scenarios, a heritability h2 of 40% and a preva-
lence of 15% are used. We simulate 300, 3000, 30 000 or 300 000
causal variants anywhere on the genome. In these scenarios, infini-
tesimal models perform similarly. When testing a grid of hyper-
parameters, LDpred2 performs substantially better than LDpred1 in
the cases where the number of causal variants is small, i.e. in the
case of 300 or 3000 causal variants (p¼2.7e-4 and 2.7e-3). For ex-
ample, in simulations with 300 causal variants, a mean AUC of
73.6% is obtained with LDpred1 while a value of 81.7% is obtained
with LDpred2. In these scenarios, all non-infinitesimal models of
LDpred2 perform equally well. As expected, LDpred1 performs
poorly in HLA scenarios, i.e. when causal variants are located in a
long-range LD region. In contrast, all LDpred2 models perform well
in these two HLA scenarios, but LDpred2-auto performs slightly
worse. There are two possible explanations for this: first, these two
scenarios are very extreme scenarios where causal effects may have
large effects in strong LD; second, because there is no contribution
from the other chromosomes in these scenarios, any prediction
added to the score from other chromosomes would be noise that
could reduce the performance of the overall score. In the ‘both_40’
simulation scenario, where effects in HLA are generated with a
smaller heritability (20%) and where there are also other effects all
over the genome contributing another 20% of heritability, predict-
ive performance of LDpred2-auto are on par with the other
LDpred2 models.

Figure 2 presents the simulation results comparing LDpred1-grid
and LDpred2-grid when varying the GWAS sample size from
10 000 to 300 000 in the simulation scenario with 3000 causal var-
iants anywhere on the genome (‘all_40_3000’). LDpred1-grid

Fig. 1. Two variants of LDpred1 are compared with four variants of LDpred2 (run

per chromosome) in the seven simulation scenarios summarized in Table 1. Briefly,

the first part of the scenario name corresponds to the location of causal variants, the

second part is the heritability (in %), the third part is the number of causal variants,

and the prevalence is always 15%. Bars present the mean and 95% CI of 10 000

non-parametric bootstrap replicates of the mean AUC of 10 simulations for each

scenario. Corresponding values are reported in Supplementary Table S1
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performs equally well as LDpred2-grid (when LDpred2 is run
genome-wide) for the smallest GWAS sample sizes. Yet, LDpred1-
grid starts providing lower predictive performance than LDpred2-
grid when GWAS sample size becomes larger. For example, in the
scenario with a sample size of 120 000, LDpred1 provides a mean
AUC of 70.7% while LDpred2 provides a mean AUC of 74.6%.
Moreover, LDpred1 even performs slightly worse with a mean AUC
of 70.4% when the sample size is increased to 300 000. In contrast,
the performance of LDpred2 continues to increase steadily to 79.1%
toward the maximum achievable AUC of 82.5% for this scenario
with a heritability of 40% and a prevalence of 15% (Wray et al.,
2010).

4.3 Real data
Figure 3 presents the results of real data applications comparing
LDpred1 [v1.0.0 as implemented by Vilhjálmsson et al. (2015)] with
the new LDpred2 (as implemented in R package bigsnpr) when run
genome-wide. Eight case-control phenotypes are used, summarized
in Table 2. For BRCA, CAD, MDD, PRCA, T1D and T2D,
LDpred2-inf and LDpred2-grid perform much better than LDpred1-
inf and LDpred1-grid respectively. For example, for BRCA, AUC
improves from 58.9% with LDpred1-grid to 65.5% with LDpred2-
grid, and from 57.4% to 78.4% for T1D. For Asthma and RA, pre-
dictive performance of LDpred1 and LDpred2 are similar. As in sim-
ulations, the sparse version of LDpred2-grid performs as well as the
non-sparse version. Sparsity of resulting effects ranges from 19.3%
for RA to 54.4% for Asthma (Supplementary Table S5).

Figure 4 presents the results of real data applications comparing
LDpred2 to several other PGS methods. LDpred2 performs best for
all phenotypes, lassosum performs relatively well for all phenotypes,
PRS-CS always performs slightly worse than lassosum, and SBayesR
performs as well as LDpred2 for BRCA, MDD, PRCA and T2D, but
severely underperforms for the autoimmune diseases (T1D and RA).
For example, SBayesR provides an AUC of 58.1% for T1D com-
pared to 78.4% with LDpred2-grid.

Supplementary Figure S1 presents the results of real data applica-
tions comparing ‘grid’ models with their ‘auto’ counterparts, i.e.
models that directly estimate parameters from the data and do not
require tuning hyper-parameters from a grid using a validation set.
We remind readers that SBayesR is such an ‘auto’ model, but does
not have any ‘grid’ counterpart. All ‘grid’ models usually perform
better than their ‘auto’ counterpart. LDpred2-auto performs similar-
ly as LDpred2-grid, except for CAD (AUC of 61.8% versus 63.6%)
and to a lesser extent for Asthma (AUC of 58.4% versus 59.3%).
Similarly, lassosum-auto performs similarly as lassosum, expect for
MDD (AUC of 54.9% versus 59.4%). Similarly, PRS-CS-auto also
underperforms for MDD (AUC of 53.9% for PRS-CS-auto versus
57.5% for PRS-CS). In contrast, SBayesR does not underperform
for MDD but severely underperforms for T1D and RA, as discussed
in the previous paragraph.

4.4 Running LDpred2 per chromosome or genome-

wide?
Most results show that it is beneficial to run LDpred2 genome-wide
instead of per chromosome. Supplementary Figure S2 shows that it
can be beneficial to run all LDpred2 models genome-wide rather
than per chromosome, especially when GWAS sample size is small.
For example, in the simulation scenario with the sample size of
20 000, switching running LDpred2 per chromosome to running it
genome-wide improves AUC of LDpred2-inf from 57.2% to 57.7%,
LDpred2-grid from 58.6% to 59.6%, and LDpred2-auto from
57.3% to 59.3%. Note that the simulation scenario used to produce
results in Supplementary Figure S2 is assuming the same genome-
wide disease architecture, i.e. 3000 causal variants located anywhere
on the genome and whose effects are drawn from the same normal
distribution. However, Supplementary Figure S3 also shows that it
can be beneficial to run all LDpred2 models genome-wide rather
than per chromosome for real traits as well. Indeed, except for
LDpred2-inf applied to T1D, all other cases show similar or better
performance when running LDpred2 genome-wide. For example,
running LDpred2-grid genome-wide rather than per chromosome is
particularly beneficial for CAD (AUC of 63.6% versus 61.5%) and
PRCA (AUC of 70.2% versus 68.2%).

5 Discussion

The previous version of LDpred has been widely used and has the
potential to provide polygenic models with good predictive perform-
ance (Khera et al., 2018). Yet, it has instability issues that have been
pointed out (Lloyd-Jones et al., 2019; Marquez-Luna et al., 2020)
and likely contributed to discrepancies in reported predictive

Fig. 2. LDpred1-grid is compared to LDpred2-grid when varying GWAS sample size

in scenario ‘all_40_3000’. Bars present the mean and 95% CI of 10 000 non-para-

metric bootstrap replicates of the mean AUC of 10 simulations for each scenario.

Corresponding values are reported in Supplementary Table S2

Fig. 3. Two variants of LDpred1 are compared with four variants of LDpred2 (run

genome-wide) in the real data applications using published external summary statis-

tics. Bars present AUC values on the test set of UKBB (mean and 95% CI from

10 000 bootstrap samples). Corresponding values are reported in Supplementary

Table S3

Fig. 4. LDpred2 is compared with CþT, SCT, lassosum, PRS-CS and SBayesR in the

real data applications using published external summary statistics. Bars present

AUC values on the test set of UKBB (mean and 95% CI from 10 000 bootstrap sam-

ples). Corresponding values are reported in Supplementary Table S4
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accuracy of LDpred (Choi and O’Reilly, 2019; Chun et al., 2020;
Ge et al., 2019). We have therefore implemented a new version of
LDpred, LDpred2, to address these issues. We show that LDpred2 is
more stable and provides higher predictive performance than
LDpred1, particularly when handling long-range LD regions, less
polygenic traits, and large GWAS sample sizes. Now that the Gibbs
sampler in LDpred2 is more stable, it seems that the infinitesimal
model never outperforms the grid model (which includes an infini-
tesimal model when using p¼1). We hypothesize that LDpred1
does not use a LD window size that is large enough to account for
long-range LD such as in the HLA region. In LDpred2, we use a
window size of 3 cM, which enables LDpred2 to work well even
when causal variants are located in long-range LD regions. We
argue against removing these regions as sometimes suggested in the
literature (Lloyd-Jones et al., 2019; Marquez-Luna et al., 2020)
since these regions, especially the HLA region, contain many var-
iants associated with many traits, and are therefore often useful for
prediction. As sample size grows, the Gibbs sampler used in LDpred
relies more on the LD being calculated and adjusted for appropriate-
ly, providing an intuitive explanation for why LDpred1 performs
much worse than LDpred2 when GWAS sample size is large. Other
modifications, such as a better handling of numerical errors when
working with exponentials (Equation 6), or a larger hyper-
parameter search space, may also contribute to the improved robust-
ness in LDpred2.

In LDpred2, we also expand the grid of hyper-parameters exam-
ined with now more values for p (21 instead of 7 by default in
LDpred1) and for h2 (3 instead of 1). When testing the grid of
hyper-parameters of p and h2, we also allow for testing an option to
enable sparse models in LDpred2 (see below). Overall, we test a grid
of 126 different values in LDpred2 instead of 7 in LDpred1. We also
use a larger window size for computing correlations between var-
iants (see above), yet LDpred2 is still as fast as LDpred1. The effi-
ciency of LDpred2 is achieved through an efficient parallel
implementation in Cþþ. Efficient parallelization over the grid of
hyper-parameters is possible because we use an on-disk sparse ma-
trix format accessed using memory mapping. This new data format
is available in R package bigsparser, which has been developed for
this paper. It takes between 12 and 36 h to run all the LDpred2 mod-
els over 1.1 million HapMap3 variants at once (genome-wide) using
30 cores; LDpred1 takes a similar time (note that LDpred1 cannot
be easily run in parallel). It takes a little more than two hours to pre-
compute the LD matrix for 10 000 individuals and 1.1 million
HapMap3 variants (using 16 cores). This pre-computation is fast
compared to running the Gibbs sampler in LDpred2 and needs to be
performed only once for all traits. It can also be further parallelized
on different compute nodes for different chromosomes; then it takes
only 11 min for the largest chromosome.

LDpred2 also extends the original LDpred model in two ways.
First, we provide a sparse option in LDpred2-grid which provides
models that truly encourage sparsity, in contrast to LDpred1 which
outputs very small non-zero effect sizes (Janssens and Joyner, 2019).
In practice, the sparse version of LDpred2 can drastically reduce the
number of variants used in the PGS without impacting its predictive
performance, as opposed to discarding the smallest effects after hav-
ing run LDpred [as tested in Bolli et al. (2019)]. The second exten-
sion is LDpred2-auto, which automatically estimates values for
hyper-parameters p and h2, which therefore does not require any
validation set to tune hyper-parameters from. LDpred2-auto is an
attractive option in many applications, especially since we also pro-
vide an LD reference that can be used directly (Section ‘Software
and code availability’). LDpred2-auto almost always performs
equally well as LDpred2-grid in simulations as well as in real data
applications.

However, LDpred2-auto requires that some quality control is
performed on summary statistics (see Methods section ‘Quality con-
trol of summary statistics’). This quality control aims at ensuring
that effects are transferable from the external GWAS summary sta-
tistics to the data where PGS are computed. Note that this quality
control is also beneficial for other methods such as lassosum (data
not shown). Even when this quality control is performed, LDpred2-

auto can slightly underperform in some situations, e.g. for CAD and
Asthma here (Fig. 4). When looking more closely at the results for
CAD, even though chains seemed to have converged
(Supplementary Fig. S5), we can see that the heritability estimate
from LDpred2-auto is off compared to the one from LD score re-
gression (Supplementary Table S5), and that its estimate of p
(�0.001) is off compared to the best performing p in LDpred2-grid
(�0.01 in Supplementary Fig. S4). One possible explanation for this
discrepancy is that the summary statistics we use for CAD come
from a meta-analysis of 48 small studies, with some of them from
non-European ancestries. Moreover, the summary statistics we use
for Asthma come from a meta-analysis of 66 small multiancestry
studies. This could break some of the assumptions used in LDpred2-
auto and explain why LDpred2-auto underperforms for CAD and
Asthma compared to LDpred2-grid. For example, for these two phe-
notypes, the summary statistics are off compared to the expected
identity line in the QC screening procedure presented here (see
Supplementary Figs S8 and S9 compared to Supplementary Fig. S7).
Future work is needed to study how to make best use of these multi-
ancestry meta-analyses from many small studies in the context of
genetic prediction. Future work is also needed to assess how relevant
the estimation of parameters from LDpred2-auto is, and whether its
estimates and its predictive performance could be improved by e.g.
incorporating functional annotations.

6 Conclusion

We have shown that LDpred2 provides a better, faster and more ro-
bust implementation of the LDpred model. When compared to re-
cently derived methods that showed higher predictive performance
than LDpred1, LDpred2 provides the highest predictive perform-
ance for all the real traits tested here. For now, we recommend using
the same HapMap3 variants used in PRS-CS and used here when
running LDpred2. Indeed, HapMap3 variants have passed a number
of quality controls, are generally well imputed and offer a good
coverage of the whole genome. However, investigating alternatives
in variant selection for LDpred2 and other PGS methods is a direc-
tion of future research for us. Would it be beneficial e.g. to use a set
enriched for statistically significant variants?

7 Software and code availability

The newest version of R package bigsnpr can be installed from
GitHub (see https://github.com/privefl/bigsnpr). A tutorial on the
steps to run LDpred2 using some small example data is available at
https://privefl.github.io/bigsnpr/articles/LDpred2.html. The
European LD reference we provide here is available at https://doi.
org/10.6084/m9.figshare.13034123. We note that this is LD sum-
mary data and not individual-level data.

All code used for this paper is available at https://github.com/pri
vefl/paper-ldpred2/tree/master/code. We have extensively used R
packages bigstatsr and bigsnpr (Privé et al., 2018) for analyzing
large genetic data, packages from the future framework (Bengtsson,
2020) for easy scheduling and parallelization of analyses on the
HPC cluster, and packages from the tidyverse suite (Wickham et al.,
2019) for shaping and visualizing results.
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Privé,F. et al. (2018) Efficient analysis of large-scale genome-wide data

with two R packages: bigstatsr and bigsnpr. Bioinformatics, 34,

2781–2787.
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