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Abstract

Summary: A visualization suite for major forms of bulk and single-cell RNAseq data in R. dittoSeq is color blindness-
friendly by default, robustly documented to power ease-of-use and allows highly customizable generation of both

daily-use and publication-quality figures.

Availability and implementation: dittoSeq is an R package available through Bioconductor via an open source MIT

license.
Contact: daniel.bunis@ucsf.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The tools available for analysis of sequencing-based transcriptomic
data are quite diverse. Unfortunately, so are the data structures used
by analysis tools for holding such data. Ideally, therefore, visualiza-
tion tools would be structure agnostic. In the case of single-cell next
generation sequencing (NGS) analysis, the demand for a universal
and flexible visualization tool is especially high considering the
popularity of the Seurat (Butler ez al., 2018; Stuart et al., 2019) ana-
lysis package, as well as the plethora of analysis packages in
Bioconductor (Amezquita et al., 2020) that generally utilize the
SingleCellExperiment (SCE) structure. In order to optimally take ad-
vantage of all potential datasets and analysis tools, users often must
work with data in both the Seurat and SCE formats, but preferably
users would not also need to learn quirks of multiple, separate,
structure-specific visualization tools. Although Seurat offers SCE
compatibility via a conversion function, in addition to imposing jar-
gon changes (such as ‘slot’ versus ‘assay’ or ‘pca’ rather than ‘PCA’),
there are gaps in this compatibility stemming from how the function
does not transfer features metadata (rowData) nor any more than
two expression data matrices (assays). Any data not transferred is
then inaccessible to plotting functions. Here, we present dittoSeq, a
diverse and powerful visualization toolset that works natively with
both structures, as well as the SummarizedExperiment structure (SE;
the Bioconductor storage structure for bulk NGS data), to allow dir-
ect comparison across diverse analysis tools and out-of-the-box

visualization of pre-processed data, no matter which structure.
Further, dittoSeq is color blind-friendly by default, enables side-by-
side visualization of single-cell and bulk RNAseq data and balances
its powerful flexibility with intuitiveness and robust documentation.

2 Software description

2.1 Universal to the most common single-cell and bulk

RNAseq data structures in R

dittoSeq was built with enabling side-by-side analysis of single-cell
and bulk RNAseq data in mind. Thus, its visualizations rely on a set
of helper functions (gene, isGene, getGenes, meta, metaLevels,
isMeta, getMetas and getReductions) that properly navigate Seurat,
SCE and SE object structures to retrieve necessary data. dittoSeq
also allows import of DGEList bulk RNAseq data and raw matrices
through conversion of such objects into an SCE via an
importDittoBulk function. The most common tools used for differ-
ential gene expression of bulk RNAseq data are edgeR (Robinson
et al., 2010), which uses the DGEList structure, and DESeq2 (Love
et al., 2014), which uses a structure that extends the SE structure.
Thus, by accepting Seurat, SCE and SE structures natively, and by
providing a conversion tool for DGEList and raw data structures,
dittoSeq becomes universally applicable to the most common
RNAseq data structures in R.
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(a) UMAF plot, by celltypes
dittoDimPlot

(b) Sample makeup
dittoBarPlot

W ( ductal | . ha
E beta
' ervdothelal | . =
75 i N beta . B o=
o ] fisd £
= Ldexa ; & ductal
3 g W srotrtal
| gamma | B e
-10
| alpha " 4
12 ) @Q & \‘\Q &
UMAP_1 & & o
(€) Insulin expression (d) Gene exprassion Heatmap
dittoPlot dittoHeatmap i
e et Sampie
) - calltyps [l sampia—1
g - A e PR
2 50 £ Sl Sampio-3
-5 i r_T b il . sar [0 o8l sampla—t
H
a: = ceiitype
g ;5 = l PRY o
oo dca i
- 02
& & .ﬂ:ﬂ
.(\‘4" _s\\‘ I ACTGA o -
o Il endottetin
* il S

Fig. 1. dittoSeq offers a plethora of highly customizable visualization options. Data
for these figures come from Baron et al. (2016), subset to only some of the most
common cell types for simplicity, then processed with a standard Seurat workflow.
Plots were made with (a) dittoDimPlot, (b) dittoBarPlot, (c) dittoPlot and (d)
dittoHeatmap. Data are available in the Gene Expression Omnibus at
www.ncbi.nlm.nih.gov/geo and and can be accessed with GSE84133.

2.2 Diverse visualizations that are powerfully

customizable

Visualizations supported in dittoSeq have comparable breadth to
Seurat’s but with improved handling of categorical data and
enhanced customizability. Visualization functions include dimen-
sionality reduction plots (dittoDimPlot and dittoDimHex), scatter
plots  (dittoScatterPlot ~ and  dittoScatterHex),  heatmaps
(dittoHeatmap), percent composition or expression across groups
(dittoBarPlot and dittoPlot) and plotting of multiple features at once
either as a single plot (dittoDotPlot and dittoPlotVarsAcrossGroups)
or multiple plots (multi_dittoPlot, multi_dittoDimPlot and
multi_dittoDimPlotVaryCells). All functions allow extensive cus-
tomization via simple, discrete inputs that are robustly documented
for ease-of-use. Examples of such customizations include: subsetting
to certain cells or samples, changing sizes of data points and other
representations, title adjustments, grouping data reordering and/or
re-naming, automatic generation of annotations for heatmaps, over-
lay of trajectory analysis or density gradients onto scatter and
dimensionality reduction plots, interactive plotting via plotly
(Sievert, 2020) conversion and rasterization of plots with many
points/cells for ease-of-use with vector-based figure editing software.
Additionally, because most dittoSeq plot outputs are ggplot objects,
extra layers and adjustments can be added manually via standard
ggplot code. To make such manual alterations even easier, while
also powering the publication-ready nature of dittoSeq plots, all
functions also allow output of their underlying data via a ‘data.out’
put.

2.3 Color blindness-friendly by default

dittoSeq utilizes a modified version of the 8-color Okabe-Ito color
panel—which is distinguishable by individuals with the most com-
mon forms of color blindness (Wong, 2011). By extending this panel
to 40 colors, with lighter and darker repeats, we ensure that

dittoSeq’s default color set is equally accessible to most users, yet
also amenable to the many color requirement of complex scRNAseq
data. Additional tweaks and options add to the color blindness com-
patibility of the package as well: default legend adjustments
(enlarged keys); optional use of shapes, letter-overlay and/or facet-
ing, in addition to coloring, when possible; optional labeling or cir-
cling of groups in scatter plots; and interactive plotting where data
are displayed, in text, upon cursor hovering.

2.4 Example: visualizing expression of the human

pancreas on the single-cell level

Figure 1 provides an example of how dittoSeq visualizations might
be used to explore the cell type specific expression profiles of a
human pancreas scRNAseq dataset (Baron et al., 2016) with visual-
izations that include: a UMAP plot with cell types labeled (Fig. 1a),
a bar graph displaying cell type frequencies within each sample
(Fig. 1b), a violin plot showing expression of a gene of interest
across cell types (Fig. 1c) and a heatmap with metadata annotations
(Fig. 1d). Code for producing these figures is available in
Supplementary Material. dittoSeq figures like these, each obtained
via a single line of code, allow viewing of expression data in multiple
ways to power both initial, iterative, data interrogation as well as
the production of precisely tuned, deliberately labeled, publication-
quality figures.
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