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Abstract

Motivation: Analysis of rare variants in family-based studies remains a challenge. Transmission-based approaches
provide robustness against population stratification, but the evaluation of the significance of test statistics based on
asymptotic theory can be imprecise. Also, power will depend heavily on the choice of the test statistic and on the
underlying genetic architecture of the locus, which will be generally unknown.

Results: In our proposed framework, we utilize the FBAT haplotype algorithm to obtain the conditional offspring
genotype distribution under the null hypothesis given the sufficient statistic. Based on this conditional offspring
genotype distribution, the significance of virtually any association test statistic can be evaluated based on simula-
tions or exact computations, without the need for asymptotic approximations. Besides standard linear burden-type
statistics, this enables our approach to also evaluate other test statistics such as variance components statistics,
higher criticism approaches, and maximum-single-variant-statistics, where asymptotic theory might be involved or
does not provide accurate approximations for rare variant data. Based on these P-values, combined test statistics
such as the aggregated Cauchy association test (ACAT) can also be utilized. In simulation studies, we show that our
framework outperforms existing approaches for family-based studies in several scenarios. We also applied our
methodology to a TOPMed whole-genome sequencing dataset with 897 asthmatic trios from Costa Rica.

Availability and implementation: FBAT software is available at https://sites.google.com/view/fbatwebpage.
Simulation code is available at https://github.com/julianhecker/FBAT_rare_variant_test_simulations. Whole-genome
sequencing data for ‘NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica’ is available at https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id¼phs000988.v4.p1.

Contact: rejhe@channing.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the increasing availability of whole-genome sequencing (WGS)
studies, the development of region-based rare variant analysis
approaches is becoming an important research question. Region-
based approaches are motivated by the idea that, if we can combine

association signals across rare variants in a pre-defined region, a
suitable region-based association test has increased statistical power
compared to single variant tests, which are typically underpowered
for rare variant analysis. Simultaneously, the multiple testing prob-
lem is less severe as fewer association tests are computed. The power
of a specific region-based association test statistic depends heavily
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on the underlying genetic architecture of the signal, which is typical-
ly unknown. For studies with unrelated samples, therefore, numer-
ous region-based tests have been proposed. For example, burden
tests and variance component tests (SKATs) (Li et al., 2008; Wu
et al., 2011), combinations of both approaches (Lee et al., 2012a,b)
and higher criticism or maximum statistic-based approaches for
sparse signals (Barnett et al., 2017; Mukherjee et al., 2015).
Recently, the aggregated Cauchy association test (ACAT) was pro-
posed to efficiently combine information across different test statis-
tics (Liu et al., 2019). The ACAT has the advantage that P-values
can be evaluated quickly and weights based on prior biological
knowledge can be incorporated (Li et al., 2020). However, popula-
tion stratification is a potential problem in population-based designs
that can be even more severe in the analysis of rare variants, since
standard correction for population stratification often captures only
the structure based on the common genetic variation (Bouaziz et al.,
2020; Ma et al., 2020; Mathieson et al., 2012; Sha et al., 2016). In
family-based association studies, the concept of Mendelian transmis-
sions can be utilized to construct single variant association tests that
are robust against genetic confounding [Transmission
Disequilibrium Tests (TDTs) (Spielman et al., 1993) or Family-
based Association Tests (FBATs) (Laird et al., 2006)]. For the
region-based rare variant analysis, burden tests and the SKAT ap-
proach have been translated to the FBAT context (De et al., 2013;
Ionita-Laza et al., 2013). As with their population-based equiva-
lents, these two approaches estimate the correlation between the
genetic loci empirically. Since family-based studies have often mod-
erate sample sizes and the transmission structure introduces add-
itional sparseness, this can lead to numerical instabilities, and
asymptotic theory can provide imprecise approximations. This
problem also translates to other potential approaches, such as higher
criticism and maximum statistics, where asymptotic theory is even
more involved. Motivated by the concerns regarding population
stratification, the availability of several family-based cohorts in the
TOPMed WGS program (Taliun et al., 2019), and the described
technical issues with the translation of recent approaches to the
family-based context, we propose a general FBAT framework for
the region-based rare variant analysis that can evaluate the signifi-
cance of any arbitrary test statistic without asymptotic theory.
Based on the FBAT haplotype algorithm, we obtain the conditional
offspring genotype distribution under the null hypothesis and given
the sufficient statistic (Hecker et al., 2017b; Horvath et al., 2004).
While the utilization of this conditional distribution provides robust-
ness against population stratification, a second key advantage is that
exact or simulation-based P-values can be obtained for virtually any
test statistic. Multiple offspring per family can be used, founder/
phase information can be missing, phenotypes can be dichotomous
or quantitative, and pedigrees can be collected based on phenotype
data. We describe the implementation of different test statistics such
as Burden, SKAT (Ionita-Laza et al., 2013; Wu et al., 2011), higher
criticism as well as maximum single variant statistic approaches
(Barnett et al., 2017; Donoho et al., 2004; Mukherjee et al., 2015).
As a referee suggested, based on the robust P-values for these four
statistics that can be obtained by our approach, ACAT can efficient-
ly summarize signals while reducing the multiple testing burden. For
different scenarios, e.g. regions with sparse signals or varying local
linkage disequilibrium (LD) structure, we compare our proposed
FBAT framework to existing methodology, using extensive simula-
tion studies. We also applied our methodology framework to a
TOPMed whole-genome sequencing study for childhood asthma
with 897 trios from Costa Rica.

2 Materials and methods

In a family-based WGS association study, genotype data for rare
variants are available for a set of marker loci that define a genomic
segment for region-based association analysis. We assume that the
region is sufficiently small to neglect recombination events. The
genotype information may be available for multiple offspring as
well as for the parents. For the ith nuclear family, we introduce the
p � ni genotype matrix Xi and the ni dimensional phenotype vector

Ti, where ni denotes the number of offspring in the ith nuclear fam-
ily, and p denotes the number of variants in the analysis region. The
specific phenotype coding can increase power and was discussed in
previous publications (Lange et al., 2002a,b). We assume an addi-
tive coding of Xi, e.g. the number of minor alleles, but other coding
specifications reflecting recessive or dominant models can be consid-
ered as well. We regard Xi as random while Ti is fixed in the FBAT
approach.

2.1 FBAT sufficient statistic and simulation-based sig-

nificance testing
For each region, using the haplotype algorithm for FBAT (Hecker
et al., 2017b; Horvath et al., 2004), we obtain the conditional distri-
bution of offspring genotypes Xi in the ith nuclear family under the
null hypothesis, given the sufficient statistic Si for the possible miss-
ing founder genotypes (Rabinowitz et al., 2000).

In words, for each nuclear family, the FBAT haplotype algorithm
identifies a set of offspring genotype configurations such that the
corresponding conditional distribution given any parental mating
type, that is compatible with the observed genotypes, is the same
and does not depend on any unknown nuisance parameter (e.g. al-
lele frequencies, haplotype distribution etc.). This illustrates the suf-
ficiency and provides robustness against population stratification
and admixture. For more details and an example, we refer to
Supplementary Appendix SA and SB. It is important to note that the
FBAT haplotype algorithm does not require phased haplotypes and
takes phase uncertainty into account (Horvath et al., 2004). Based
on the conditional genotype distribution and the phenotype data, it
is possible to determine the exact distribution of arbitrary test statis-
tics (Schneiter et al., 2007) and compute specific moments such as
the mean and variance of offspring genotypes, under the null hy-
pothesis. This is an advantage, since asymptotic theory is not avail-
able for all potentially powerful test statistics and asymptotic
approximations are often not accurate for rare variant data with
limited sample size. Since exact computations can be complex, we
propose to evaluate empirical association P-values based on a suffi-
ciently large number of simulated draws from the conditional distri-
bution. For this purpose, potential offspring genotypes are drawn
from the conditional offspring genotype distribution and test statis-
tics are re-evaluated as well as compared to the observed test statis-
tic (see also Supplementary Appendix SB). This procedure can be
combined with adaptive permutation/simulation-based P-value tech-
niques, e.g. controlling the number of simulations depending on the
estimated P-value and expected accuracy. In this context, stopping
rules that are nearly optimal in terms of the required number of sim-
ulations are available (Hecker et al., 2017a). Due to subtle discrete-
ness of this exact distribution of the test statistic, P-values in our
framework can be slightly conservative. However, we demonstrate
substantial power in the simulation studies and the real data
analysis.

2.2 Test statistics
All test statistics under consideration are based on the following two
objects. For the ith family, we define the p-dimensional vector of
Mendelian residuals, weighted by the phenotype information,
Ui ¼ Xi � E XijSi½ �ð ÞTi. Also, we define the corresponding p� p

variance matrix Vi ¼ Var UiSi;TiÞð . Both objects are computed
based on the conditional offspring genotype distribution, obtained
by the FBAT haplotype algorithm. We use the notation E XijSi½ � and
Var UiSi;TiÞð to emphasize that this conditional distribution equals
the distribution under the null hypothesis, given the sufficient statis-
tic Si. Although we apply simulation-based testing and the respective
moments are invariant for the same nuclear family throughout the rep-
licates, their incorporation increases the power of the test statistics.
The moments are utilized in all test statistics described in the following
section, expressed through their dependency on Ui and Vi. We also de-
fine the p-dimensional vector U¼

P
iUi and the p � p matrix V¼

P
iVi,

with components Uj and V(jl), 1� j, l� p. 1� k, l� p.
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2.2.1 Burden-based approaches

Burden-type FBATs can be implemented by specifying a p-dimen-
sional weight vector W that collapses/summarizes the rare variant
information of the region into a single scalar value. The weights
could contain information about functional annotations, well suited
choices increase the power of the test (Li et al., 2020). The contribu-
tion to the FBAT Burdenstatistic of the ith family is then given by

U�i ¼WT Xi � E XijSi½ �ð ÞTi

The corresponding FBAT-statistic for the simulation-based test-
ing is computed by FBAT Burden ¼

P
iU
�
i

� �2
.

2.2.2 Variance component/SKAT approaches

As an alternative to burden/collapsing association tests, SKAT/
variance-component based region tests have been developed for rare
variant data (Wu et al., 2011). They have the advantage that they do
not require any assumptions about the effect configuration at the
rare variant loci under the alternative hypothesis, but they are not as
powerful as burden/collapsing approaches if one is certain about the
alternative hypothesis. We define the general statistic

FBAT VC ¼ UTWU

where W is a fixed p� p weight matrix. Again, well-suited choices
for the weight matrix could lead to increased power, whereas the de-
fault option is to use the identity matrix. In the scenario of affected
offspring trios and a diagonal weight matrix W, this test statistic
equals the FB-SKAT statistic of Ionita-Laza et al. (2013), but in our
framework, the P-value of the test statistic is obtained based on sim-
ulations from the conditional genotype distribution. If we set W ¼
V�1; we obtain the multivariate FBAT (Rakovski et al., 2007).

2.2.3 Higher criticism and maximum statistics

Besides the commonly used burden and variance component
approaches, we introduce the higher criticism and maximum statis-
tic for region-based analysis in family-based studies. Both
approaches are designed to identify sparse alternatives and have
been introduced to genetic association studies of unrelated individu-
als recently (Barnett et al., 2017; Mukherjee et al., 2015). The opti-
mality results related to the higher criticism/maximum statistic in
the setting of unrelated case-control data and sparse signals devel-
oped in Mukherjee et al. (2015) can be used to motivate the applica-
tion in, for example, affected offspring trios as well (Supplementary
Appendix SC). Define the normalized single variant residuals
Uj=

ffiffiffiffiffiffi
Vjj

p
; j¼1;. . .;p and denote the corresponding association P-

value based on the asymptotic marginal normal distribution by qj.
We emphasize that the variance Vjj can be computed based on the
conditional genotype distribution. Based on the available amount of
information per variant, e.g. the number of informative transmis-
sions/families, we restrict the set of variants to a subset of variants
where the marginal variance is large enough (e.g. we require at least
5 informative nuclear families). Denote the number of variants in
this subset by p

0
. Given the ordered P-values qð1Þ � q 2ð Þ � . . .

� q p0ð Þ, we define the HC statistic as

FBAT HC ¼ max
J

j
p� q jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q jð Þð1� q jð ÞÞ
p

Here, the index set J could be 1; . . . ; p0

2

n o
or f1; . . . ;p0g, for ex-

ample. It is important to note that, while FBAT HCcontains a trans-
formation based on the single variant asymptotic distribution, the
assessment of its significance based on simulations from the condi-
tional distribution remains a valid approach regardless of whether
the assumptions that motivated the transformation hold. The second
approach to detect sparse signals in the tested genomic region is the
MAX statistic which is simply defined as

FBAT MAX ¼ max
1� j�p

j Uj

ffiffiffiffiffiffi
Vjj
p j

2.2.4 Aggregated Cauchy association test (ACAT)

As a referee noted, based on the four robust P-values for the differ-
ent statistics described above, one could also compute an overall test
statistic based on the aggregated Cauchy association test (ACAT)

(Liu et al., 2019). Denoting the P-values by pBurden, pSKAT, pHC , and
pMAX, this test is based on

pACAT ¼ 0:5�
atan FBAT ACAT

4

� �

p

where FBAT ACAT ¼ tanð½0:5� pBurden�pÞ þ tan 0:5� pSKAT½ �pð Þ
þtanð½0:5� pHC�pÞ þtan 0:5� pMAX½ �pð Þ: The motivation of this

combined statistic is to reduce the multiple testing burden while cap-
turing significance if at least one the underlying statistics shows suit-
able evidence. We note that the direct application of the ACAT to

single variant FBAT P-values is problematic. This is because single
variant asymptotic P-values are most likely not reliable for rare var-
iants with small minor allele counts and, for example, in the applica-

tion to affected offspring trios, FBAT P-values can be exactly 1.0 if
Mendelian expectations are matched. A P-value of 1.0 eliminates

signals in the ACAT test.

3 Results
In this section, we describe the results of two simulation studies and
the analysis of a whole-genome sequencing study of childhood-

asthma with 897 affected offspring trios from Costa Rica.

3.1 Simulation studies

3.1.1 Settings and existing methods for comparison. We studied the
performance of our proposed test statistics in two extensive simula-
tion studies. In both studies, we compared the Type I error and

power of our approach with existing methods for family-based re-
gion association analysis. In the first simulation study, we consid-

ered small genetic regions consisting of 30 or 50 rare genetic
variants. This design roughly corresponds to suggested region sizes
of 2–7 kb in the recent literature (Li et al., 2019, 2020). The second

set of simulations looks at larger regions consisting of 1000 genetic
rare variants. This reduces the multiple testing burden but requires

test statistics that can detect sparse signals. In this second set of sim-
ulations, we utilized observed phased genotype data, e.g. haplo-
types. We restricted all simulations to the scenario of trios with an

affected offspring. However, it is important to note that our frame-
work can be applied to any nuclear family and phenotype distribu-

tion. For the test statistics FBAT Burden and FBAT VC, we applied
equal weights to all variants, but more powerful approaches based
on prior information can increase the power in practice (Li et al.,
2020). In the following, we will denote the test statistics
FBAT Burden, FBAT VC, FBAT HC, FBAT MAX, and
FBAT ACAT by Burden, SKAT, HC, MAX, and ACAT for conveni-

ence. Depending on the scenario, we compared our test statistics
with the gTDT (Chen et al., 2015), RV-GDT (He et al., 2017) and

the RV-TDT BRV (He et al., 2014). The gTDT (Chen et al., 2015)
offers five different test statistics for region-based affected offspring
trio analysis, designed for different modes of inheritance and signal

structures. The test statistics require phased haplotype data. If the
phase information is not available, this information is reconstructed

up to small uncertainties. We considered the test statistics gTDT-AD
(additive), gTDT-DOM (dominant) and gTDT-CH (compound het-
erozygous) in our study. The RV-GDT (He et al., 2017) describes a

generalization of the single variant GDT (Chen et al., 2009) for mul-
tiple variants in a genetic region. The RV-GDT can be applied to ar-

bitrary pedigrees where affected and unaffected samples are
collected; members can be missing. We note that this implies that
the phenotype information for parents must be available in the trio

scenario, whereas the classical TDT/FBAT test for offspring trios
does not require this information. We also note that this approach
can be vulnerable to population stratification (Hecker et al., 2019).
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Simulation Study I: Moderately sized genetic regions with unphased

data. To simulate based on real data LD and realistic population
structure, we extracted haplotypes for two subpopulations (CEU
and GBR) from the 1000 Genomes Project (1000 Genomes Project
Consortium et al., 2015), consisting of 30 and 50 consecutive rare
variants with a minor allele frequency (MAF) below 3%. Based on
these haplotypes, we generated genotype data for trios using
Mendelian transmissions. Using a standard relative risk disease
model with a disease prevalence of �10%, we simulated offspring
affection status and collected n¼1000 affected offspring trios. This
simulation study is similar to the simulation studies described in the
existing literature (Chen et al., 2015; He et al., 2017).

To check the Type I error rates and the robustness against popu-
lation stratification, we simulated four different scenarios. In the
‘null’ scenario, we simulated no genetic signal and no within-family
population stratification or admixture. That means, that the paren-
tal haplotypes were drawn uniformly from the combined
CEUþGBR population. In ‘adm1’, one parent was simulated based
on CEU haplotypes, and the other parent based on GBR haplotypes.
Both parents were set to unaffected. This simulates population
stratification in the parents which results in an admixed offspring.
In ‘adm2’, the CEU parent phenotype was set to affected, and the
GBR parent phenotype to unaffected. Scenario ‘adm3’ flipped these
parental phenotypes.

For the power analysis, we simulated seven different scenarios
where the number of causal variants and corresponding effect sizes
differ. (i) three causal variants, effect sizes 0:4jlog10ðMAFÞj, all cor-
responding minor alleles are risk alleles, (ii) three causal variants, ef-
fect sizes 0:4jlog10ðMAFÞj, alternating effect direction, (iii) two
causal variants, effect sizes 0:4jlog10ðMAFÞj, all corresponding
minor alleles are risk alleles, (iv) two causal variants, effect sizes
0:4jlog10ðMAFÞj, different effect direction, (v) four very rare var-
iants, effect sizes 1.0, all corresponding minor alleles are risk alleles,
(vi) three causal variants, effect sizes 0:4jlog10ðMAFÞj, all corre-
sponding minor alleles are risk alleles, strong LD with other variants
and (vii) scenario 6 but with the stratification from scenario ‘adm’.
We note that given the effect sizes, certain exceedingly rare genotype
configurations lead to a disease probability of 1. Empirical power
rates were based on 1000 replicates, Type 1 error rates based on
10 000 replicates. In this set of simulations, we compared the FBAT
statistics, gTDT statistics and the RV-GDT.

Simulation Study II: Large genetic regions with phased data. For our se-
cond set of simulation studies, we utilized the 1006 EUR population
haplotypes from the 1000 Genomes Project based on 1000 consecu-
tive rare genetic variants with MAF below 3%. In this simulation
study, we consider a large number of variants in combination with a
sparse signal, which means a small subset of causal variants that are
not in strong LD with any other variants. We simulated affected off-
spring trios as described in the first simulation study but also stored
the phased haplotypes for all members of the trio. In the scenario
where the haplotypes are observed, the conditional distribution

identified by the FBAT haplotype algorithm equals the distribution
where both parents transmit one of the observed haplotypes with an
equal probability of 0.5. We compared the performance of the
FBAT statistics, the gTDT statistics and the RV-TDT BRV (He
et al., 2014) statistics to demonstrate the potential advantage of
non-burden tests in the presence of sparse signals. We simulated five
different scenarios. The first scenario ‘null’ simulates the null hy-
pothesis, without population stratification or admixture, based on
1000 trios. The four power scenarios are described as follows: (i)
two causal variants, MAF�0.2%, almost no LD to other variants,
effect sizes 1.8, all corresponding minor alleles are risk alleles, 1000
trios, (ii) two causal variants, MAF�2%, almost no LD to other var-
iants, effect sizes 0.7, all corresponding minor alleles are risk alleles,
1000 trios (iii) 16 causal variants, MAF�0.1%, almost no LD to
other variants, effect sizes 0.7, all corresponding minor alleles are
risk alleles, 10 000 trios and (iv) 16 causal variants, MAF�0.1%, al-
most no LD to other variants, effect sizes 0.7, alternating effect
directions, 10 000 trios. We note that, given the effect sizes, certain
exceedingly rare genotype configurations lead to a disease probabil-
ity of 1. In all these power scenarios, we did not simulate population
stratification or admixture. Empirical P-values were based on 1000
replicates.

3.1.2 Results. In this section, we summarize the results of both simu-
lation studies.

Simulation Study I: Moderately sized genetic regions with unphased

data. Almost all test statistics controlled the Type I error appropri-
ately (Table 1). The only exception is the RV-GDT in the scenario of
population admixture with discordant parental phenotypes (adm2
and adm3). This is expected, as the GDT/RV-GDT test compares
the frequencies between affected and unaffected family members
and cannot distinguish between association and stratification in the
parents. We note that the RV-GDT computes a one-sided P-value,
which explains the deflation/inflation behavior, depending on the
parental phenotypes. In Supplementary Appendix SD, we also report
the Type 1 error rates for the significance level of a ¼ 0:005
(Supplementary Table S3). The power results are visualized in
Figure 1 and Supplementary Figure S1 and also reported in
Supplementary Table S1 (Supplementary Appendix SD). Since the
results for scenario 6 and 7 are very similar, Figure 1 and
Supplementary Figure S1 are restricted to scenarios 1-6. We discuss
the results of the four FBAT statistics Burden, MAX, HC, and
SKAT, as well as the gTDT and RV-GDT first, and then consider
the combined test ACAT for the FBAT statistics. The SKAT statistic
shows the highest power in the first three scenarios and outperforms
the other tests. However, the MAX and HC statistics also show sub-
stantial power. The results for scenario 4 are comparable between
SKAT, MAX, and HC. In scenario 5, the HC statistics achieves the
highest power, which is supported by our theoretical considerations
as well (see Supplementary Appendix SC). In the last scenario 6, all
FBAT tests achieve substantial power, as expected. The most

Table 1. Simulation Study I: Type I error rates at a significance level of 5%

FBAT gTDT RV-GDT

scenario ACAT Burden HC MAX SKAT gTDT-AD gTDT-CH gTDT-DOM RV-GDT

p¼ 30 null 4.95% 4.58% 4.97% 4.48% 4.59% 4.85% 5.34% 5.53% 4.83%

adm1 4.81% 5.06% 4.65% 4.24% 5.24% 5.48% 5.07% 5.08% 5.48%

adm2 4.51% 4.64% 4.55% 4.04% 4.72% 5.04% 4.95% 5.24% 0.0%

adm3 4.97% 4.37% 4.86% 4.19% 4.95% 4.7% 4.78% 4.94% 99.75%

p¼ 50 null 5.29% 4.71% 5.1% 4.74% 5.07% 4.95% 4.92% 4.69% 4.92%

adm1 4.98% 4.64% 5.00% 4.95% 4.89% 4.99% 4.97% 4.93% 4.92%

adm2 5.21% 4.74% 5.00% 4.97% 4.62% 5.07% 4.54% 5.28% 0.2%

adm3 4.95% 4.79% 5.04% 4.93% 4.99% 4.98% 5.17% 5.15% 36.41%

Note: Type I errors at a significance level of 5% for the FBAT, gTDT and RV-GDT statistics. We considered four scenarios, separately for p¼ 30 and p¼ 50

variants. All results based on 10 000 replicates.
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powerful tests here are SKAT and RV-GDT, but MAX and HC test
statistics achieve similar results. If we have different effect directions
(scenario 2 and 4), the burden test loses power compared to the con-
sistent effect direction scenarios 1 and 3, which is expected. The
FBAT Burden test and gTDT-AD have almost no power in scenarios
4 and 5. It is important to note that the gTDT-AD and Burden are
essentially based on the same test statistic idea, the only difference
lies in the fact that the gTDT assigns haplotypes (with possible
error) and our approach uses the robust conditional genotype distri-
bution computed by the FBAT haplotype algorithm. Importantly,
ACAT achieves similar power as the most powerful underlying
FBAT statistic in each scenario. Our results demonstrate the advan-
tages of non-burden tests in scenarios with sparse effects and alter-
nating effect directions, as well as the advantage of using a
combined statistic as ACAT.

Simulation Study II: Large genetic regions with phased data. In
Supplementary Table S2, we observe that all test statistics control
the Type I error appropriately, whereas the gTDT-DOM is conser-
vative. Since all P-values are evaluated empirically based on the con-
ditional haplotype distribution by simulation, this is expected.

Power results are reported in Supplementary Table S2 and Figure 2.
Again, we consider the four individual FBAT statistics first and then
consider the combined ACAT. In the first power scenario 1, the
MAX test statistic achieves the highest power as we simulated a
sparse and rare, but strong signal in the genetic region, consisting of
two rare variants. The HC test statistic also achieves substantial
power, whereas all other tests show almost no power in this scen-
ario. In the second scenario, where the MAF of the two causal var-
iants is much higher, the MAX test statistics still outperforms the
other tests, but also the SKAT and the HC test statistics show good
performances. In scenario 3, where many exceedingly rare causal
variants have a relatively small effect size, the HC is the most power-
ful test. This is in line with the results in Mukherjee et al. (2015)
that describe a lower detection boundary in the mild sparse regime
compared to the MAX test statistics. However, the RV-TDT BRV
and MAX test statistic also achieve substantial power in this
scenario.

The power behavior differs more in the last scenario 4, where
the effects are pointing in different directions. Here, the MAX and
HC statistics have a significantly increased power compared to the
other tests, while the HC test statistic is the most powerful one.
Again, the combined statistic ACAT controls the Type 1 error rate
and achieves similar power as the top underlying FBAT statistic in
each scenario. We note that the FBAT burden and the gTDT-AD
test are close to the nominal level in scenarios 1, 2 and 4. Both tests
are equivalent since the test statistics are the same in the phased
haplotype scenario. Our results in this set of simulations demon-
strate the advantage of non-standard test statistics such as HC or
MAX in scenarios with very sparse signals, and their incorporation
into the combined test ACAT.

3.2 Application to WGS study of childhood asthma

We analyzed a whole-genome sequencing dataset consisting of 897
Costa Rican asthmatic trios. Details regarding the study population
and design were described previously (Hunninghake et al., 2007,
2008). This dataset is part of the TOPMed freeze 7 WGS data.
Further details are described in Supplementary Appendix SF. After
standard quality control, including removal of variants with mul-
tiple Mendelian errors, we excluded all variants with a MAF above
5%. The resulting 27 345 734 non-monomorphic variants were par-
titioned into approximately 547 000 consecutive windows of 50
rare variants. Other partitioning approaches could be considered

Fig. 1. Simulation Study I: Power results for six different scenarios for genetic

regions consisting of 30 variants at a significance level of a¼ 0.05. All results based

on 1000 replicates

Fig. 2. Simulation Study II: Power results for four different scenarios for genetic

regions consisting of 1000 variants at a significance level of a¼0.05. All results

based on 1000 replicates. Scenario 1 and 2 are based on 1000 trios, scenario 3 and 4

are based on 10 000 trios

Fig. 3. Quantile-quantile plot. Quantile-quantile plot for Burden, SKAT, MAX, HC,

and ACAT test statistics based on approximately 547 000 windows of 50 consecu-

tive rare variants in the analysis of 897 asthmatic trios from Costa Rica
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(Fier et al., 2017; He et al., 2019), but, as the focus of this data ana-
lysis was to demonstrate the feasibility of our approach, we did not
explore different window-strategies here. For each window, we
computed the four FBAT statistics Burden, SKAT, MAX, and HC,
as well as ACAT (based on the corresponding four P-values). We
also applied the three gTDT test statistics (AD, DOM, and CH) to
the same genetic windows. For Burden, SKAT, MAX, and HC, we
applied a standard adaptive simulation procedure, similar as imple-
mented in VEGAS2 (Mishra et al., 2015) or PLINK (Chang et al.,
2015), where the maximum number of simulations was truncated at
109. We could not apply the RV-GDT since parental phenotypes are
missing. In Figure 3 and Supplementary Figure S2, we plotted the
corresponding quantile-quantile-plots. We discuss the FBAT results
in Figure 3 first.

Considering the four FBAT statistics Burden, SKAT, HC, and
MAX jointly, based on the P-values for approximately 4*547 000
tests and a False Discovery Rate (FDR) at a ¼ 0:05 (Benjamini
et al., 1995), our approach identified three single significant regions
on Chromosome 1, 12 and 21, as well as multiple consecutive sig-
nificant regions on Chromosome 10. The significance of the three
regions on Chromosomes 1, 12 and 21 was declared by the Burden
test, whereas the single variant FBAT P-values within the regions
were not in the classical range of genome-wide significance, e.g.
5�10�8. The other regions on Chromosome 10 were identified by
the MAX, HC, and SKAT tests. The lowest P-value of 10�9 was
reached by the SKAT test. For these regions, the Burden test did not
reach the magnitude of genome-wide significance. In Supplementary
Figure S3 (Supplementary Appendix SE), we plotted the SKAT P-
values against the Burden P-valued to demonstrate that the test sta-
tistics capture different aspects. Considering only the ACAT statistic
and applying an FDR rate at a ¼ 0:05, this approach identifies all
regions described above, except the Chromosome 21 region that is
mainly driven by the Burden statistic. As visualized in
Supplementary Figure S4 (Supplementary Appendix SE), the results
of Burden and gTDT-AD are very similar. This is expected since the
test statistics are equal, the difference lies in the specification of the
underlying haplotype distribution. Our approach accounts for the
phase uncertainty. We note that all gTDT statistics can be incorpo-
rated into our framework as well. Based on an FDR rate at
a ¼ 0:05, the gTDT test statistics jointly identify the region on
Chromosome 21 only.

4 Discussion
In this article, we propose a general framework for region-based as-
sociation analysis in studies with family-based designs. The key ad-
vantage of the approach is that it combines robustness against
population stratification/admixture with the possibility to evaluate
significance of arbitrary rare variant test statistics without the need
for asymptotic approximations. The framework incorporates bur-
den tests, SKATs, maximum single variant, and higher criticism
approaches. Furthermore, we described the implementation of
FBAT ACAT, an application of the aggregated Cauchy association
test (Liu et al., 2019) that combines the strengths of these underlying
statistics. Given the flexibility of the framework, any future ap-
proach can straightforwardly be implemented. The basis of our ap-
proach is the conditional offspring genotype distribution obtained
by the haplotype algorithm for FBATs (Hecker et al., 2017b;
Horvath et al., 2004).

Our simulation results confirm that the optimal test for the
region-based analysis depends on the specific genetic architecture of
the disease, and any WGS analysis relying on just one single test stat-
istic may not detect all associations contained in the data. While
dense signals with consistent effect directions can be captured by
burden tests, different effect directions and less dense signals can be
identified by SKAT approaches. If the signal becomes more sepa-
rated and sparser, the MAX and HC approaches can be the most
powerful tests. This relationship between the architecture of the sig-
nal and the power of certain statistics is the same as in studies of un-
related samples. The ACAT statistic controls the Type 1 error and
achieves similar power as the corresponding most powerful statistic

in each of our simulation scenarios, while reducing the multiple test-
ing burden.

The proposed implementation of the simulation-based P-values
requires the user to pre-select the number of simulations that FBAT
performs for each test. The computational burden can be decreased
by adaptive strategies (Hecker et al., 2017a). A subject of future re-
search will be to integrate the existing FBAT approaches to multi-
variate phenotypes, longitudinal data, age at onset (Ding et al.,
2009; Lange, 2003; Lange et al., 2004), gene-environmental interac-
tions, and testing strategies into the proposed framework (Ionita-
Laza et al., 2007; Steen et al., 2005; Won et al., 2009).

As a limitation, we emphasize that, although our approach is ro-
bust against population stratification and admixture, the FBAT ap-
proach requires stringent quality control and the described approach
relies on the absence of genotype errors. For details about variant
quality control for sequencing data, we refer to (Taliun et al., 2019)
and Supplementary Appendix SF. For imputed data, we recommend
the application of a lower minor allele frequency cutoff to reduce
genotype errors.

Finally, we note that another popular approach to association
testing is the utilization of mixed models (Kang et al., 2010; Lippert
et al., 2011; Loh et al., 2015; Yang et al., 2011; Zhou et al., 2012).
Recent improvements enabled the analysis of dichotomous pheno-
types, the incorporation of related samples and the extension from
single variants to region-based analysis (Chen et al., 2016; Hayeck
et al., 2017; Weissbrod et al., 2015; Zhou et al., 2018; 2019).
However, pure family-based study designs often collect phenotype
data for offspring only and select pedigrees based on the offspring
phenotype, leading to substantial ascertainment bias. Whereas
transmission-based approaches are valid in this scenario, standard
mixed models cannot utilize genetic information of samples without
phenotype data and can show skewed association P-values in these
extreme-sampling scenarios (Hecker et al., 2019).
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