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Abstract

Motivation: Accurately estimating protein model quality in the absence of experimental structure is not only import-
ant for model evaluation and selection but also useful for model refinement. Progress has been steadily made by
introducing new features and algorithms (especially deep neural networks), but the accuracy of quality assessment
(QA) is still not very satisfactory, especially local QA on hard protein targets.

Results: We propose a new single-model-based QA method ResNetQA for both local and global quality assessment.
Our method predicts model quality by integrating sequential and pairwise features using a deep neural network
composed of both 1D and 2D convolutional residual neural networks (ResNet). The 2D ResNet module extracts
useful information from pairwise features such as model-derived distance maps, co-evolution information, and pre-
dicted distance potential from sequences. The 1D ResNet is used to predict local (global) model quality from sequen-
tial features and pooled pairwise information generated by 2D ResNet. Tested on the CASP12 and CASP13 datasets,
our experimental results show that our method greatly outperforms existing state-of-the-art methods. Our ablation
studies indicate that the 2D ResNet module and pairwise features play an important role in improving model quality
assessment.

Availability and implementation: https://github.com/AndersJing/ResNetQA.

Contact: jinboxu@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Significant progress has been made in computational protein struc-

ture prediction, especially template-free modeling (Kryshtafovych

et al., 2019; Senior et al., 2020; Wang et al., 2017; Xu, 2019). To fa-

cilitate application of predicted 3D models, it is desirable to have an

estimation of their local and global quality in the absence of experi-

mental structures. Model quality assessment (QA) has also been

used to assist protein model refinement (Adiyaman et al., 2019; Heo

et al., 2019; Hiranuma et al., 2020; Park et al., 2019). Since CASP7

in 2006 (Cozzetto et al., 2007), many model QA methods have been

developed, but the accuracy of local QA is still not very satisfactory,

especially when all models under consideration are generated by an

individual tool.
There are two major categories of protein model QA methods:

consensus (or clustering) methods and single-model methods (Won
et al., 2019). Some methods are the combination of these two.
Consensus methods mainly rely on clustering or comparison of mod-
els of a protein target. They work well when one protein has many
models generated by different methods, e.g. in CASPs. In the case

there are very few models built by a single method for a protein
(which is often true in real-world application), single-model QA
methods are needed, which predicts quality of a model using only its
own information (Derevyanko et al., 2018; Hurtado et al., 2018;
Karasikov et al., 2019; Olechnovi�c et al., 2017; Uziela et al., 2017).
Most single-model QA methods extract some features from a decoy
model and then map the features to a quality score using statistical
or machine learning methods. A variety of features have been
studied such as physical features, statistical features, local structural
features (secondary structure and solvent accessibility), and se-
quence features (amino acid sequence and sequence profile). There
are also a few quasi single-model methods that estimate model qual-
ity by comparing it to a small number of reference models generated
by a small set of popular tools (Jing et al., 2016; Maghrabi et al.,
2017). The quality of a protein model can be measured at residue/
atom level (i.e. local quality) and at model level (i.e. global quality),
which are referred as local and global quality assessment, respective-
ly (Cheng et al., 2019; Won et al., 2019). Local quality is valuable
for evaluation of local structure error and model refinement, while
global quality is valuable for model ranking and selection.
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This article focuses on single-model-based local and global QA.
Although single-model QA is challenging, recently some progress
has been made by using new features and deep learning. For ex-
ample, ProQ3D uses a multi-layer perceptron to predict model qual-
ity from carefully curated features (Uziela et al., 2017). ProQ4
predicts global QA by employing 1D fully convolutional neural net-
work (CNN) and transfer learning (Hurtado et al., 2018). CNNQA
applies 1D CNN to predict local and global model quality from se-
quential features, Rosetta energy terms and knowledge-based poten-
tials (Hou et al., 2019). QDeep (Shuvo et al., 2020) uses an
ensemble of stacked 1D CNNs to predict quality from predicted dis-
tance information and some similar sequential features used by
CNNQA. These methods mainly use coarse-grained or residue-level
structure representation. In contrast, 3D convolutional neural net-
works (Derevyanko et al., 2018; Pagès et al., 2019) or graph convo-
lutional neural networks (Igashov et al., 2020; Sanyal et al., 2020)
may represent a protein structure model at atom level and thus, en-
code more information, but they may not fare very well on those
protein models with poor side-chain packing (Hurtado et al., 2018;
Olechnovi�c et al., 2017) while predicting the widely used Ca-based
quality metrics such as GDT-TS and TMscore. Although some
methods have used predicted contact (Cao et al., 2017) and distance
information (Shuvo et al., 2020), but they do not take full advantage
of the predicted inter-residue distance (probability or potential) ma-
trix which has greatly improved protein structure prediction recently
(Greener et al., 2019; Senior et al., 2020; Xu, 2019; Zhu et al.,
2018). For example, in order to use predicted distance information
in its 1D deep model for global QA, QDeep (Shuvo et al., 2020)
uses contact map similarity between the predicted and model-
derived distance maps, which may result in information loss. To
avoid this, we use 2D ResNet to directly extract information from
predicted distance information.

We propose a new single-model QA method ResNetQA (a
ResNet-based QA method) that may greatly improve protein model
QA, by using a deep 2D dilated residual network (ResNet) to expli-
citly extract useful information from pairwise features such as
model-based distance matrices, predicted inter-residue distance
potentials and co-evolution information. These pairwise features
may encode main structural information without introducing noise
from side-chain or hydrogen atoms. Our method also uses a 1D
deep ResNet to map sequential features (and pooled pairwise infor-
mation derived from 2D ResNet) to local and global model quality.
Further, to reduce bias introduced by a small training dataset, we
train our deep model using a large set of decoy models of more than
14 000 proteins, in addition to CASP and CAMEO models. In par-
ticular, we built both template-based and template-free 3D models
for �14 000 proteins randomly selected from the CATH dataset
(Dawson et al., 2017) using our in-house structure prediction soft-
ware RaptorX. Our experimental results show that our method out-
performs latest single-model methods on both local and global QA
in terms of many performance metrics. When trained by an extra
ranking-based loss, our deep network can also rank decoys very
well.

2 Materials and methods

2.1 Overview
Figure 1 shows the overall architecture of our deep network, mainly
consisting of one 2D ResNet module and one 1D ResNet module.
The 2D ResNet module extracts information from pairwise features
of shape L*L*N2 (where L is the sequence length and N2 is the di-
mension of pairwise features), which are derived from multiple se-
quence alignment (MSA) of a protein and its 3D models. This
module outputs a high-level 2D feature map of shape L*L*C (C is
the channel size), which is then converted to two 1D feature maps of
shape L*C by mean pooling along row and column, respectively,
and fed into the 1D ResNet module together with the original se-
quential features. The output of the 1D ResNet module is used to
predict local and global model quality. To predict local quality, one
fully connected layer and one sigmoid layer are employed at each

residue. To predict global quality, the output of the 1D ResNet
module is converted to one vector of length 2 CþN1 (N1 is the di-
mension of sequential features) by mean pooling and fed into one

fully connected layer and one sigmoid layer.

2.2 Datasets
We train and test our method using protein models from three sour-
ces: CASP, CAMEO and CATH. The CASP models were down-

loaded from http://predictioncenter.org/download_area/. The
CAMEO (Haas et al., 2013) models are downloaded from https://
www.cameo3d.org/sp/ and released between January 13, 2018 and

September 14, 2019. Approximately 14 000 CATH domains (se-
quence identity <35%) are randomly selected from the CATH data-

base (Dawson et al., 2017), and on average 15 template-based and
template-free models are built for each domain using our in-house
software RaptorX. These models are split into three datasets (train-

ing, validation and test) so that all models of one specific protein be-
long to only one dataset. The detailed information of our data is

shown in the Supplementary Table S1.
The 3D models in CASP7-11 and CAMEO and the 3D models

built for the CATH domains are used as our training data. The 3D
models in CASP12 and CASP13 are used as the test data. We remove
the 3D models in our training data from CAMEO and CATH if

their corresponding proteins (i) share more than 25% sequence iden-
tity or have an BLAST E-value�0.001 (Altschul, 1997) with any
test targets and (ii) have HHblits E-value �0.1 with any test targets.

HHblits (Steinegger et al., 2019) is a popular tool that searches evo-
lutionarily related proteins by matching profile hidden Markov

models built from MSAs. After this filtering procedure, there are
14645 proteins in our training sets, among which �5% are random-
ly selected to form the validation set. Finally, there are 13916 pro-

teins with 335468 decoys in the training set and 729 proteins with
18437 decoys in the validation set.

Only those CASP12 and CASP13 targets with publicly available
experimental structures are used to test our method. Overall, there

are 64 CASP12 targets with 9423 decoy models and 76 CASP13 tar-
gets with 11371 models in our test set. The 3D models in the CASP
QA category are released in two stages. Since the decoy models in

stage 1 are only used to check whether a method is a single-model
method or a consensus method by comparing their predictions with
those of stage 2 (Won et al., 2019), we mainly evaluate our method

using the decoy models released at stage 2.

2.3 Feature extraction
From each protein sequence, we run HHblits (Remmert et al., 2012)
to build its MSA by searching the uniclust30 database dated in

October 2017, and then derive three types of features: sequential
features, coevolution information and predicted distance potentials.
Sequential features include: one-hot encoding of primary sequence

(i.e. each residue is encoded as a binary vector of 21 entries indicat-
ing its amino acid type), rPosition (the relative position of a residue

in a sequence calculated as i/L where i is the residue index), PSSM
(position-specific scoring matrix derived from MSA), SS3 [3-state
secondary structure predicted by RaptorX-Property (Wang et al.,
2016)], and ACC [solvent accessibility predicted by RaptorX-
Property (Wang et al., 2016)]. Coevolution information includes the

output generated by CCMPred (Seemayer et al., 2014) and raw and
APC-corrected mutual information (MI). Distance potentials are
derived from distance distribution predicted by RaptorX-Contact

(Xu, 2019) from MSA. Only Cb-Cb distance potential is used, and
distance is discretized into 14 bins: <4, 4-5, 5-6, . . ., 14-15, 15-16,

>16. From each protein model, we derive the following structural
features: (i) secondary structure (SS3) and relative solvent accessibil-
ity (RSA) calculated by DSSP (Kabsch et al., 1983) from a 3D

model; and (ii) distance maps of three atom pairs (CaCa, CbCb and
NO) calculated from a 3D model. Supplementary Table S2 summa-
rizes all these features.
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2.4 Deep neural network architecture and training
As shown in Figure 1, our deep model mainly consists of 1D and 2D
dilated residual neural networks (ResNet) (He et al., 2016). A gate
block is used to connect pairwise input features to the 2D ResNet. It
is composed of one 2D convolutional layer, one instance norm layer
(Ulyanov et al., 2017) and one ELU (exponential linear unit) activa-
tion layer. As shown in Figure 2, one ResNet block consists of two
instance norm layer, two convolutional layer, two ELU activation
layer and one dropout layer. In a ResNet block, there is a shortcut
connecting its input to the output of the second convolutional layer.
In order to capture a broader context, a dilation ratio of two is used
in a 2D convolutional layer. The 2D dilated ResNet can directly
model the higher-order correlation between predicted and structure-
derived pairwise features by convolution. In summary, our deep
model contains one gate block, 10 2D ResNet blocks with 64 filters
of size 5*5, 8 1D ResNet blocks with 180 filters of size 5. That is, in
total our deep model consists of 21 2D convolutional layers and 16
1D convolutional layers and has about 2 million trainable parame-
ters. We have also tested more ResNet blocks, but not observed sig-
nificant improvement.

A protein may not fit into the limited memory of a graphics proc-
essing unit (GPU). To deal with this, a sequence segment of length
350 (and its corresponding sequential and pairwise features) is ran-
domly sampled when a protein has more than 350 residues. We im-
plement our method with PyTorch (Paszke et al., 2019) and train it
using the Adam optimizer with parameters: b1¼0.9 and
b2¼0.999. We set the initial learning rate to 0.0001 and divide it
by 2 every 3 epochs. One minibatch has 16 3D models. When we
train our deep network by the ranking-based loss (described in the
next paragraph), one minibatch has 8 pairs of 3D models and each
pair has two models of the same target. We train our deep network
20 epochs and select the model with minimum loss on the validation
data as our final model. The training and validation losses
of ResNetQA and ResNetQA-R are shown in Supplementary
Figure S1.

For local QA, our deep model predicts a residue-wise S-score
defined by S dð Þ ¼ 1

1þðd=d0Þ2
where d is the distance deviation of one

Ca atom from its position in the experimental structure calculated
by LGA (Zemla, 2003). Here we set d0 to 3.8A˚ instead of 5.0A˚ to
yield accurate prediction for small d. We convert predicted S-score
to predicted distance error (or deviation) by the inverse function of
S(d). For global QA, our deep model predicts GDT_TS (Global
Distance Test Total Score). The loss of our deep model is the MSE
(Mean Square Error) between predicted local (or global) quality and
its ground truth. In order to generate deep models with better rank-
ing performance, we have also trained our deep models (referred as
ResNetQA-R) on the global margin ranking loss defined by Loss ¼
maxð0; � y�ðx1 � x2ÞÞ where x1 and x2 are the predicted GDT_TS
of two 3D models of the same target, and y ¼ 1 if the first 3D
model has a better quality and -1 otherwise. Our deep network is
trained to simultaneously predict local and global quality with equal
weight. We have implemented our method so that it is very easy to
train the network by other quality metrics, such as lDDT and CAD-
score.

2.5 Evaluation metrics
We employ several widely used metrics (Won et al., 2019) to evalu-
ate the performance of our method. To evaluate local QA, we use
PCC, ASE and AUC. All models of a specific protein are pooled to-
gether when calculating PCC and AUC of local QA.

• PCC is the Pearson correlation coefficient between predicted

local quality score S-score and its ground truth.
• ASE: ASE is the average residue-wise S-score similarity defined as

ASE ¼ 1� 1
N

PN

i¼1

S eið Þ � S dið Þ, where N is the number of residues,

S eið Þ is the S-score derived from predicted distance deviation and

S dið Þ is the S-score derived from the true distance deviation pro-

duced by LGA (Zemla, 2003). Following CASP, here the S-score

is defined by S dð Þ ¼ 1
1þðd=d0Þ2

where d0 ¼ 5.0A˚.

Fig. 1. The overall architecture of our deep network for protein model local and global quality assessment. Meanwhile, L is the sequence length, C the channel size of the final

2D ResNet layer, N1 the dimension of sequential features and N2 the dimension of pairwise features

Protein model quality assessment using deep ResNet 5363

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1037#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1037#supplementary-data


• AUC: The AUC (Area Under Curve) assesses how well the pre-

dicted score may distinguish accurate residues from inaccurate

ones, where an accurate residue is the one with Ca atom deviates

from its experimental position by no more than 3.8A˚. AUC is

the area under the ROC curve, which plots the TP (true positive

rate) against the FP (false positive rate) in the prediction of accur-

ate/inaccurate residues by varying the cut-off score for distin-

guishing accurate/inaccurate residues.

For global QA, we use PCC, Diff and Loss as metrics. Global
metrics are calculated and averaged at the protein level.

• PCC: The Pearson correlation coefficient between predicted glo-

bal quality scores and ground truth.
• Spearman: The Spearman rank correlation coefficient between

predicted global quality scores and the ground truth.
• Kendall: The Kendall’s Tau rank correlation coefficient between

predicted global quality scores and the ground truth.
• Diff: the mean absolute difference between predicted global qual-

ity and ground truth.
• Loss: The absolute quality difference between the best model pre-

dicted by a QA method and the real best model.

3 Results and discussion

3.1 Performance on CASP12 and CASP13 datasets
We compare our method with some single-model methods ranked
well in CASP12 and CASP13 (Kryshtafovych et al., 2018; Won
et al., 2019), e.g. ProQ3, Wang4, ProQ2, ZHOU-SPARKS-X and
VoroMQA in CASP12 and ProQ4, VoroMQA-A, VoroMQA-B,
ProQ3D and ProQ3 in CASP13. Their local and global quality esti-
mations are downloaded from the CASP official website.

Table 1 lists the performances on the CASP12 and CASP13 stage
2 datasets. We also report the target-averaged Z-scores in
Supplementary Table S3 based on the results of all groups who sub-
mitted quality estimations in CASP12 and CASP13. As shown in the

table, our method significantly outperforms others on both datasets
in terms of most evaluation metrics. On the CASP12 dataset, ProQ3
is slightly better than the other four methods on both local and glo-

bal QA, while our method greatly outperforms ProQ3. When local
QA is evaluated, our method ResNetQA is �29% better than

ProQ3 in terms of PCC (0.5857 versus 0.4542), �15% better in
terms of ASE (0.8527 versus 0.7408) and �7% better in terms of
AUC (0.8077 versus 0.7518). When global QA is evaluated, our

method is >16% better than ProQ3 in terms of PCC (0.8015 versus
0.6552), Spearman rank correlation (0.7053 versus 0.6036) and

Kendall rank correlation (0.5430 versus 0.4407).
On the CASP13 dataset, our method has similar advantage over

the others. When local QA is evaluated, ResNetQA is �28% better
than ProQ3D in terms of PCC (0.5409 versus 0.4225) and �14%
better in terms of ASE (0.8350 versus 0.7314). When global QA is

evaluated, our method is >18% better than ProQ3D in terms of
PCC (0.8051 versus 0.6544), Spearman (0.7295 versus 0.6155) and

Kendall (0.5647 versus 0.4542). For the Loss metric, which evalu-
ates the best ranked models but may be not very robust (Cheng
et al., 2019), ResNetQA is not better than other leading methods.

However, ResNetQA performs the best in terms of the Spearman
and Kendall rank correlation coefficient. When trained by an extra
ranking-based loss, our method (i.e. ResNetQA-R) achieves the best

or second-best performances on the Loss metric, which shows the
great potential of our method on different QA tasks.

To evaluate the performance of our method on superposition-
free metrics, we compare our method with the others in terms of glo-

bal lDDT, as shown in Supplementary Table S4. In addition, we
trained two extra deep models of the same configuration to predict
lDDT. Our results (in Supplementary Table S5) show that these

deep models outperform ProQ4 in terms of both local and global
lDDT.

3.2 Performance on CASP12 and CASP13 FM targets
Here, we examine the performance of our method on template-free

modeling (FM) targets. Their predicted 3D models may have very
different quality (Kinch et al., 2019), which makes QA challenging.

One target is FM if it contains at least one FM evaluation unit by

Fig. 2. The detailed architecture of different blocks. (a) The gate block and 2D dilated ResNet block; (b) the 1D dilated ResNet block
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the CASP official definition (Abriata et al., 2018; Kinch et al.,
2019).

As shown in Table 2 and Supplementary Table S6 (for Z-scores),
all methods have worse performance than what is shown in Table 1.
However, our method shows a larger advantage over the other
methods. When local QA on the CASP12 FM targets is evaluated,
our method is better than the 2nd best method ProQ3 by �59% in
terms of PCC (0.4494 versus 0.2830), by �28% in terms of ASE
(0.8921 versus 0.6951) and by �12% in terms of AUC (0.7518 ver-
sus 0.6698). When global QA is evaluated, our method is >34%
better than the 2nd best method in terms of PCC (0.7210 versus
0.5381), Spearman rank correlation coefficient (0.7152 versus
0.5266) and Kendall’s Tau rank correlation coefficient (0.5455 ver-
sus 0.3761).

On the CASP13 FM targets, when local QA is evaluated, our
method is better than ProQ3D by �56% on PCC, �24% on ASE
and �7% on AUC. When global QA is evaluated, our method is bet-
ter than ProQ3D by �40% on PCC, �38% on Spearman rank cor-
relation and �48% on Kendall rank correlation. Moreover,
ResNetQA-R (i.e. ResNetQA trained by an extra ranking-based
loss) not only performs the best on Loss metric but also achieves bet-
ter performance on most metrics over ResNetQA. In terms of lDDT
our method has a larger advantage on the FM targets than other
methods (Supplementary Tables S7 and S8).

3.3 Comparison with other deep learning methods
We compare our method with three leading single-model QA meth-
ods: ProQ4 (Hurtado et al., 2018), CNNQA (Hou et al., 2019) and
QDeep (Shuvo et al., 2020). Meanwhile, ProQ4 performed very
well in CASP13 and QDeep predicts only global quality. All these
methods are built upon 1D CNN and thus, cannot make a very
good use of pairwise features. Both ProQ4 and CNNQA use only se-
quential features. Although QDeep indeed uses predicted inter-
residue distance information, its simple way of converting predicted
distance information to sequential features is not as effective as the
2D ResNet used by our method. CNNQA and QDeep use energy
potentials as features, but our method does not.

We evaluate our method on the same set of 40 CASP12 targets
as QDeep and CNNQA were evaluated. We run ProQ4 locally with
default parameters and convert its prediction to distance error by
the S-function with d0¼5.0. As shown in Table 3, our method out-
performs these three methods in terms of almost all metrics except
the ‘Loss’ metric.

3.4 Contribution of different input features
We have trained three extra deep models by excluding (i) mutual in-
formation and coevolution information produced by CCMPred; (ii)
predicted and model-derived secondary structures and solvent

Table 1. Performances of single-model methods on local (S-score) and global (GDT_TS) QA

Dataset Method Local Global

PCC" ASE" AUC" PCC" Spearman" Kendall" Diff# Loss#

CASP12

Stage 2

ResNetQAa 0.5857 0.8527 0.8077 0.8015 0.7053 0.5430 7.04 7.19

ResNetQA-Rb 0.5855 0.8449 0.8063 0.8241 0.7245 0.5597 9.67 6.41

ProQ3 0.4542 0.7408 0.7518 0.6553 0.6036 0.4407 11.04 6.15

ProQ2 0.4363 0.6927 0.7434 0.6109 0.5702 0.4119 13.38 7.07

Wang4 0.4126 0.7458 0.723 0.621 0.5605 0.4103 12.82 11.62

VoroMQA 0.4098 0.7121 0.7254 0.607 0.5539 0.4014 16.68 8.44

SPARKS-X 0.3873 0.7654 0.71 0.6759 0.6253 0.4637 13.69 7.79

CASP13

Stage 2

ResNetQA 0.5409 0.8350 0.7842 0.8051 0.7295 0.5647 7.82 10.17

ResNetQA-R 0.5483 0.8233 0.7916 0.8220 0.7540 0.5890 11.04 8.07

ProQ3D 0.4225 0.7314 0.7385 0.6544 0.6155 0.4542 10.60 8.52

ProQ3 0.4122 0.7208 0.7455 0.5937 0.5647 0.4138 11.98 8.98

ProQ4 0.3870 0.6100 0.7235 0.7197 0.6712 0.5184 13.71 8.71

VoroMQA-A 0.3865 0.6708 0.7239 0.6450 0.5972 0.4396 15.48 10.95

VoroMQA-B 0.3826 0.6709 0.7215 0.6205 0.5834 0.4280 15.68 9.95

aThe model trained using local and global MSE loss.
bThe model trained using local and global MSE loss plus global margin ranking loss.The bold content indicates the best performance in each category.

Table 2. Performances of single-model methods on CASP12&13 FM targets

Dataset Method Local Global

PCC" ASE" AUC" PCC" Spearman" Kendall" Diff# Loss#

CASP12

Stage 2

ResNetQA 0.4494 0.8921 0.7518 0.7010 0.7152 0.5455 5.36 5.76

ResNetQA-R 0.4550 0.8803 0.7526 0.7402 0.7401 0.5684 9.61 5.54

ProQ3 0.2830 0.6951 0.6698 0.5381 0.5266 0.3761 9.78 5.68

ProQ2 0.2840 0.6193 0.6694 0.5147 0.5091 0.3621 14.93 8.06

Wang4 0.2757 0.7281 0.6570 0.5503 0.5610 0.4077 7.42 8.73

VoroMQA 0.2718 0.6605 0.6597 0.4887 0.4583 0.3231 9.07 9.28

SPARKS-X 0.2532 0.7942 0.6457 0.5724 0.5911 0.4293 7.89 7.95

CASP13

Stage 2

ResNetQA 0.3931 0.8660 0.7231 0.7825 0.7615 0.5896 5.73 9.05

ResNetQA-R 0.4021 0.8498 0.7392 0.8144 0.8045 0.6325 11.66 7.85

ProQ3D 0.2521 0.6977 0.6751 0.5606 0.5501 0.3996 8.23 10.60

ProQ3 0.2493 0.6816 0.6852 0.4887 0.4802 0.3452 10.89 10.69

ProQ4 0.2380 0.4873 0.6661 0.6345 0.6287 0.4744 12.75 8.54

VoroMQA-A 0.2295 0.5888 0.6624 0.5226 0.5303 0.3771 10.13 10.35

VoroMQA-B 0.2266 0.5903 0.6602 0.5038 0.5126 0.3647 10.33 9.95
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accessibilities; or (iii) predicted distance potentials. As a control, we
trained a 1D deep model of eight 1D ResNet blocks without using
any 2D ResNet blocks to predict model quality mainly from sequen-
tial features. To feed predicted distance potential to this 1D deep
model, we apply mean pooling to distance potential at each residue.
That is, we calculate the average of all pairwise potentials involving
a specific residue and use the average (called marginalized distance
potential) as an extra feature of this residue. By this way, our 1D
deep model can also make use of pairwise information, although not
very effectively. We also trained another 1D deep model of the same
architecture with only sequential features but not the marginalized
distance potential.

Figure 3 shows the PCC of these deep models on local QA. Their
detailed performances are available in Supplementary Tables S9 and
S10. It is not surprising that the 2D deep model built with all fea-
tures performs the best. The 1D deep models with and without
marginalized distance potential both perform very badly, which
implies that the 2D ResNet module is very important. Compared to
the deep model built with all features, the 2D deep model using co-
evolution information but not predicted distance potential is about
9% worse on the CASP12 dataset and �11% worse on the CASP13
dataset. The 2D deep model without predicted and model-derived
secondary structure and solvent accessibilities is about �4% worse
on the CASP12 dataset and �2% worse on the CASP13 dataset.
The 2D deep model using predicted distance but not co-evolution in-
formation is slightly worse than the deep model built with all fea-
tures, because predicted distance potential already encodes most co-
evolution information. Since the predicted distance are important
for our method, we further examined the correlation between the
predicted distance quality and the QA performance improvement.
Our results (in Supplementary Figs S2 and S3) show that for most
test proteins, predicted distance information indeed is helpful and

the improvement is more pronounced for harder targets, which usu-
ally do not have very high quality of predicted distance. This makes

sense since for easier targets, high-accuracy QA may also be
obtained without predicted distance information. We have also

trained our deep model by replacing the distance potential with the
predicted distance probability on a small dataset (without the large
CATH dataset due to lack of computing power). Our results (in

Supplementary Table S11) show that there is only minor difference
between these two types of information, and it is hard to tell which
one performs better.

3.5 Contribution of the CATH dataset
Many QA methods are trained by the 3D models of only hundreds
of proteins in CASP and CAMEO, which have limited coverage of
the whole protein universe (Bateman et al., 2017). In contrast, pro-

tein structural property prediction models (Wang et al., 2016) and
contact/distance prediction models (Senior et al., 2020; Xu, 2019)

usually are trained by thousands and even tens of thousands pro-
teins. To reduce bias incurred by a small number of training proteins
and improve generalization capability, we built both template-based

and template-free models for about 14 000 proteins randomly
selected from the CATH dataset (Dawson et al., 2017) using our in-
house structure prediction software RaptorX and use these models

as training data. Here we compare the performance of two deep
models with exactly the same architecture and the same input fea-

tures, but trained by different data. One is trained using all models
built on the CASP, CAMEO and CATH datasets and the other is
trained using only the CASP and CAMEO models.

Figure 4 shows a head-to-head comparison of these two deep
models in terms of PCC on local QA. Their detailed performance is

available in Supplementary Table S11. It is clear that the deep model
trained by all 3D models works much better. On the CASP12 data-

set, the deep model trained using all 3D models outperforms that
trained without the CATH data by about 7.6% (0.5866 versus
0.5450). On the CASP13 data, the advantage is about 5.0% (0.5539

versus 0.5276). The result suggests that the decoy models built for
CATH data is valuable for improving protein model quality

assessment.

Table 3. Performances of deep learning QA methods on 40 CASP12 targets

Method Local Global

PCC" ASE" AUC" PCC" Spearman" Kendall" Diff# Loss#

ResNetQA 0.5738 0.8545 0.8028 0.7910 0.6733 0.5154 6.79 7.73

ResNetQA-R 0.5709 0.8452 0.7987 0.8095 0.6812 0.5201 9.12 6.94

ProQ4 0.3884 0.7581 0.7085 0.6617 0.5851 0.4369 14.19 6.70

CNNQA – 0.7814 – 0.6270 – – – 8.54

QDeep – – – 0.7400 0.6570 0.4920 10.53 5.10

Note: The 40 CASP12 targets include target T0865 which was canceled later by CASP12. Here we still use it to be consistent with CNNQA and QDeep.

Fig. 3. Performance (measured by PCC on local QA) of deep models built with dif-

ferent features. All Features: using all features. NoCov: excluding the mutual infor-

mation and coevolution information produced by CCMPred. NoSS&RSA:

excluding the predicted and model-derived secondary structures and solvent accessi-

bilities. NoDistPot: excluding the predicted distance potentials. 1D-DistPot: using

sequential features plus the marginalized predicted distance potentials. 1D: only

using sequential features

Fig. 4. Head-to-head performance (measured by PCC on local QA) comparison of

the two deep models trained with and without the CATH data. (a) CASP 12 Stage

2; (b) CASP 13 Stage 2
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4 Conclusion

In this article, we have presented a new single-model QA method
ResNetQA for both local and global protein model quality estima-
tion. Our method predicts model quality by integrating a variety of
sequential and pairwise features using a deep network composed of
both 1D and 2D ResNet blocks. The 2D ResNet blocks extract use-
ful information from pairwise features and the 1D ResNet blocks
predict quality from sequential features and pairwise information
produced by the 2D ResNet module. Our method differs from exist-
ing ones mainly by the 2D ResNet module and a larger training set.
Our test results on the CASP12 and CASP13 datasets show that our
method significantly outperforms existing state-of-the-art methods,
especially on hard targets. In addition, our deep network can yield
better ranking performance when trained by an extra ranking-based
loss. Our ablation studies confirm that the 2D ResNet module and
pairwise features are very important for the superior performance of
our method.
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