Skip to main content
. 2021 Apr 1;10:e67895. doi: 10.7554/eLife.67895

Figure 1. Remodeling human cortical synapses with all-trans retinoic acid.

Figure 1.

Left: the synapse modulating effects of all-trans retinoic acid (atRA) first reported in rodent neurons are preserved in human cortical neurons in intact cortical circuits. Right: all-trans retinoic acid increases the strength (measured as the number of AMPA-type glutamate receptors; AMPARs, green) and size of excitatory synapses in layer 2/3 pyramidal neurons in human cortical slices. All-trans retinoic acid also increases the size of the spine apparatus, a synaptic organelle found in dendritic spines and previously linked to synapse remodeling (orange). To test whether the spine apparatus is important for the effects of all-trans retinoic acid on synapses, Lenz et al. compared wild-type (Synpo +, top), and synaptopodin-deficient (Synpo -, bottom) mice, which lack the spine apparatus. Synapses lacking the spine apparatus were smaller and failed to increase in strength after applying all-trans retinoic acid. However, applying the molecule still enlarged the spines without a spine apparatus, demonstrating that this organelle has a specific role in regulating changes in synaptic strength induced by all-trans retinoic acid.