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Abstract

Motivation: Integrative genomic analysis is a powerful tool used to study the biological mechanisms underlying a
complex disease or trait across multiplatform high-dimensional data, such as DNA methylation, copy number vari-
ation and gene expression. It is common to perform large-scale genome-wide association analysis of an outcome
for each data type separately and combine the results ad hoc, leading to loss of statistical power and uncontrolled
overall false discovery rate (FDR).

Results: We propose a multivariate mixture model (IMIX) framework that integrates multiple types of genomic data
and allows modeling of inter-data-type correlations. We investigated the across-data-type FDR control in IMIX and
demonstrated lower misclassification rates at controlled overall FDR than established individual data type analysis
strategies, such as the Benjamini–Hochberg FDR control, the q-value and the local FDR control by extensive simula-
tions. IMIX features statistically principled model selection, FDR control and computational efficiency. Applications
to The Cancer Genome Atlas data provided novel multi-omics insights into the genes and mechanisms associated
with the luminal and basal subtypes of bladder cancer and the prognosis of pancreatic cancer.

Availabilityand implementation: We have implemented our method in R package ‘IMIX’ available at https://github.
com/ziqiaow/IMIX, as well as CRAN soon.

Contact: pwei2@mdanderson.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Integrative genomic analysis has become a powerful tool in biomed-
ical research to study the biological mechanisms underlying a com-
plex disease or trait. The mechanisms for a particular disease
outcome, such as the prognosis or the molecular subtypes of cancer,
may involve alterations in multiple pathways and biological proc-
esses, including copy number variations (CNV), epigenetic changes
and transcriptomic changes. Therefore, it is appealing and impera-
tive to integrate all the omics data together to analyze a disease out-
come. A common strategy is to assess the associations between
genes and an outcome separately for each data type using the
family-wise error rate (FWER) or the false discovery rate (FDR) con-
trolling procedures to adjust for multiple hypothesis testing. For ex-
ample, Richard et al. (2017) conducted an epigenome-wide
association study to identify DNA methylation loci for blood pres-
sure regulation, where they used the Bonferroni correction to

control the FWER in the methylation data analysis. To further study
the functionally associated genes, they conducted a transcriptome-
wide differential expression analysis using the RNAseq data separ-
ately. The results of each data type were combined ad-hoc by the
simple intersection of significant genes, and additional correlation
testing was performed between the two data types. A similar ana-
lysis strategy was employed to study the association of body mass
index with DNA methylation and gene expression (Mendelson
et al., 2017). These commonly adopted association analysis strat-
egies assume that different data types are independent with each
other, even if there may be strong inter-data-type correlations. A
comprehensive study of data from The Cancer Genome Atlas
(TCGA) has found that omics data, such as gene expression, DNA
methylation and CNV, have several complex triangular dependence
structures (Sun et al., 2018). Furthermore, it remains unclear
whether the correlation structures between data types vary
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according to the associations between different genes and the out-
come of interest through those data types. Therefore, the heuristic
separate analysis strategy may lose statistical power by assuming
that the data sources are independent of each other, as shown later
in our simulation and real data applications. The integration of mul-
tiple types of omics data by identifying the unknown dependence
structures becomes essential to understand the intricacy of the gen-
omic mechanisms underlying complex diseases.

We propose a multivariate mixture model approach (IMIX) to
integratively analyze the associations between genes and an outcome
through multiple omics data types using summary statistics. The
summary statistics are z-scores transformed from P-values obtained
from association analysis between genes and an outcome. The P-val-
ues can be retrieved either from individual-level data or publicly
available summary-level data in a target data type. IMIX incorpo-
rates the correlations and biological coordinations between various
data sources to boost the statistical power for genomic discovery.
We use the expectation-maximization (EM) algorithm to estimate
the model parameters. IMIX can control the across-data-type FDR
through an adaptive FDR control procedure, and it also features
statistically principled model selection.

There has been some literature on integrative statistical methods that
analyze the associations between genes and an outcome. One class of
methods is the penalized regression analysis (Tibshirani, 1996; Zou and
Hastie, 2005) for feature selection and prediction. However, these meth-
ods can rarely conduct rigorous error-control procedures and require
individual-level data from the same sample set. Pineda et al. (2015) pro-
posed a permutation-based strategy that enables the penalized regression
models to assess statistical significance by using the permutation-based
MaxT method. However, it also requires individual-level data from the
same sample set and may increase the computation time. IMIX is versa-
tile in data applications because it does not require the use of a common
set of samples across data types. Recently, Gleason et al. (2020) proposed
a new integrative omics method called Primo for quantitative trait loci
(QTL) mapping based on genome-wide association study summary statis-
tics. Our method shares a similar concept which uses the mixture model
in data integration; however, there are several key differences. The main
difference is how we approach the parameter estimation. Primo estimates
the mixture model parameters by first assuming conditional independ-
ence between the data types given the latent state, estimating the marginal
distributions of the test statistics under the null and alternative for each
data type with a fixed proportion of non-null tests, and approximating
the inter-data-type correlation matrices under certain assumptions. In
contrast, IMIX directly estimates the multivariate mixture model parame-
ters, including means, covariance matrices and mixing proportions, using
the EM algorithm, which allows examining and relaxing the conditional
independence assumption given the latent state. Furthermore, IMIX
accommodates simultaneous model selection for both the number of mix-
ture components and the correlation structure, a feature that is not
included in Primo.

Through extensive simulation studies, we demonstrated that
IMIX yielded better statistical power and overall FDR control than
individual data type analysis strategies, such as the Benjamini–
Hochberg FDR (BH-FDR) (Benjamini and Hochberg, 1995), the
Bonferroni correction, the q-value (Storey, 2002; Storey et al.,
2020 ) and the local FDR control (Efron, 2007). We also observed
that IMIX is computationally efficient. We applied IMIX to study
the molecular subtypes of bladder cancer through DNA methyla-
tion, CNV and gene expression, as well as the prognosis of pancreat-
ic cancer through gene expression and CNV in the TCGA. Our
applications of IMIX to the two TCGA datasets showed that differ-
ent genomic data types could be correlated in both non-disease-
associated and disease-associated genes, challenging the commonly
adopted conditional independence assumption given the latent state
in integrative analysis of multiplatform genomic data.

2 Materials and methods

In this section, we introduce the integrative multivariate mixture
model approach to association analysis of multiple omics data
(Section 2.1) and further propose several variants in the IMIX

framework with different model assumptions (Section 2.2). Section
2.3 discusses model selection regarding the number of mixture com-
ponents and the best model among proposed variants of the multi-
variate mixture model. We discuss the adaptive procedure for
across-data-type FDR control in Section 2.4.

2.1 IMIX
We consider the problem of association analysis between gene i; i ¼
1; 2; . . . ;N and an outcome through data type h ¼ 1;2; . . . ;H. For
instance, we are interested in identifying which genes are associated
with a binary outcome, basal or luminal molecular subtype of blad-
der cancer in our motivating TCGA data example, and assessing the
associations through H¼3 genomic data types: DNA methylation,
gene expression and CNV. The null hypothesis for each data type
can be formulated as H

ðhÞ
0;i : gene i is not differentially methylated/

expressed/CNV changed in data type h.
The P-value pih for gene i in data type h is obtained from the hy-

pothesis testing problem, e.g. based on regression analysis of omics
data and the outcome. We further transform the P-values to z-scores
xih by xih ¼ U�1ð1� pihÞ, where U is the cumulative distribution
function of the standard normal distribution N(0, 1) (McLachlan
et al., 2006; Wei and Pan, 2008). Note that this transformation
ensures that smaller P-values are tranformed to larger z-scores,
which correspond to the alternative hypothesis, i.e. the distribution
of the z-scores under the alternative hypothesis (alternative distribu-
tion) has a larger mean than does the null distribution in data type h
(McLachlan et al., 2006).

Then we group the genes into K ¼ 2H latent states based on their
associations with the outcome through the H data types. We intro-
duce a vector of binary variables to denote each latent state k of
gene i: zik ¼ ðzik1; zik2; . . . ; zikHÞ. If zikh ¼ 1, gene i is associated with
the outcome through data type h in class k; if zikh ¼ 0, gene i is not
associated with the outcome through data type h in class k. Without
loss of generality, we assume H¼3. When k ¼ 1; 2; . . . ; 8, the po-
tential latent states/classes of gene i are: zi1 ¼ ð0; 0;0Þ; zi2 ¼
ð1;0; 0Þ; zi3 ¼ ð0;1;0Þ; zi4 ¼ ð0; 0;1Þ; zi5 ¼ ð1; 1;0Þ; zi6 ¼ ð1; 0; 1Þ;
zi7 ¼ ð0;1; 1Þ and zi8 ¼ ð1; 1; 1Þ. We fix the order of the latent state
vectors and define a ‘global null’ as component 1, where gene i is
not associated with the outcome through any of the H data types.
Depending on the latent state of gene i, i.e. whether it belongs to la-
tent state k or not, we have Tik ¼ 1 or Tik ¼ 0, respectively.

We assume that Xi ¼ ðxi1; xi2; xi3ÞT comes from a mixture distri-
bution with K¼8 mixture components:

f ðXiÞ ¼
XK

k¼1

pkfkðXiÞ;

where each component k follows an H-dimensional multivariate dis-
tribution fk, and the mixing proportions are pk;k ¼ 1; . . . ;8, subject
to
P8

k¼1

pk ¼ 1. To assess how likely gene i belongs to the latent state
k, we estimate the posterior probability of the latent label Tik:

PrðTik ¼ 1jXiÞ ¼
pkfkðXiÞ
PK

j¼1

pjfjðXiÞ
:

We further assume the kth component distribution fk to be multi-
variate normal. The normal mixture models are widely used to ap-
proximate different mixture distributions and account for
heterogeneity in real data applications (McLachlan and Peel, 2004;
Sun and Cai, 2007). The marginal mixture density f ðXiÞ can then be

written as f ðXi;WÞ¼
PK

k¼1

pkfkðXi;hkÞ; where fkðXi;hkÞ¼/ðXi;lk;RkÞ:

Here, the vector W¼ðp1;p2;...;pK�1;n
TÞT contains all the unknown

parameters in the mixture model. n is the vector containing all the
elements of the component means, l1;...;lK , and the elements of the
covariance matrices, R1;...;RK , known a priori to be distinct. We
use the EM algorithm (Dempster et al., 1977) to estimate W. We call
this generic multivariate Gaussian mixture model IMIX-Cor. In the
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following sections we will describe three variants based on this
model.

2.2 Variants of the IMIX
2.2.1 IMIX-Cor-Restrict: correlated mixture model with

restrictions on mean

To tackle the possible unidentifiability problem of W due to the
interchanging of component labels, we fix the order of the latent
states as described in Section 2.1 and impose the following con-
straints on lk:

l1 ¼ ðl10; l20;l30Þ; l2 ¼ ðl11; l20; l30Þ; l3 ¼ ðl10;l21;l30Þ;
l4 ¼ ðl10; l20;l31Þ; l5 ¼ ðl11; l21; l30Þ; l6 ¼ ðl11;l20;l31Þ;
l7 ¼ ðl10; l21;l31Þ; l8 ¼ ðl11; l21; l31Þ:

(1)

These constraints correspond to the biological rationale that for
each data type, we assume that the means of the test statistics from
the null and non-null groups are the same across the K classes. For
example, l10, the mean of the null distribution in data type 1, is the
same in l1; l3; l4 and l7. The multivariate Gaussian mixture model
with restrictions on the mean is denoted as IMIX-Cor-Restrict.
Details of the parameter estimation using the EM algorithm are
available in Supplementary Section S1.

2.2.2 IMIX-Ind: independent mixture model with restrictions on

mean and variance

If we assume there is no correlation between any two data types
given the latent state, i.e. conditional independence, then the covari-
ance matrix in IMIX-Cor-Restrict, Rk, becomes diagonal. The model
is reduced to

f ðXi;WÞ¼
XK

k¼1

pkfkðXi;hkÞ¼
XK

k¼1

pkfk1ðxi1;hk1Þfk2ðxi2;hk2Þfk3ðxi3;hk3Þ;

where fkhðxih;hkhÞ¼/ðxih;lkh;rkhÞ is a normal probability density
function with mean lkh and variance r2

kh; k¼1; . . . ;8;h¼1;2;3.
Besides the constraints on the mean given in Equation (1), we im-
pose the same constraints on the variance r2

kh on the basis of the null
and non-null genes for each data type. We call this model IMIX-Ind.

2.2.3 IMIX-Cor-Twostep: correlated mixture model with fixed

mean

To reduce the model’s complexity, i.e. to create a more parsimoni-
ous model and ease the computation time, we propose a third modi-
fication based on the previous models, the correlated mixture model
with fixed mean. This model is similar to the previous model with
constraints on the means; however, with the replacement of the
means estimated from the independent model IMIX-Ind, we ease the
complexity of estimating the mean and the covariance matrices at
the same time in the EM algorithm. In our simulation study to be
detailed later on, IMIX-Ind performed well in estimating the means;
thus, to facilitate the correlation estimation between data types, we
introduce the correlated mixture model with fixed means, where we
only estimate the covariance matrix for each component with a pre-
specified mean vector. We will show later in the simulation study
that this model achieves the best computational efficiency and nu-
merical stability among IMIX models that consider the correlation
structures. We call this model IMIX-Cor-Twostep.

2.3 Model selection
In real data applications, one or a few classes out of K may be ab-
sent. For example, if there is no gene associated with the outcome
across all three data types, then component 8 is absent in the true
mixture distribution underlying the data. Using an eight-
component mixture model to estimate a true seven-component
mixture distribution will increase the number of unnecessary
parameters to be estimated. In turn, this will negatively impact
the parameter estimation and add more computation time or even

makes it difficult to converge. Model selection improves the model
fitting and parameter estimation; this idea is similar to ‘variable
selection’ in machine learning, where we need to remove the un-
necessary and redundant features. Model selection will also help
provide a better understanding of the underlying biological proc-
esses between the genes and the outcome across multiple data
types. This is closely related to the question of how many compo-
nents K to include in the mixture distribution to prevent overfit-
ting. As pointed out by previous works (Leroux, 1992;
McLachlan and Peel, 2004), the penalized log-likelihood func-
tions, including Akaike information criterion (AIC) and Bayesian
information criterion (BIC), are adequate for selecting the number
of components under a finite mixture distribution; in particular,
under mild conditions, AIC and BIC do not underestimate the
true number of components asymptotically. Specifically, AIC and
BIC select the model that, respectively, minimizes AIC ¼
�2� loglikþ 2d and BIC ¼ �2� loglikþ d log N, where d is the
number of unknown parameters (i.e. degrees of freedom), N is the
number of genes and loglik is the maximized full log-likelihood.

Along with model selection for the number of components K,
we also select the best model for a fixed K among the different
methods introduced in Section 2.2 regarding mean and covariance
structures. We introduce the IMIX framework, where the data are
fitted for all four IMIX methods (IMIX-Ind, IMIX-Cor, IMIX-
Cor-Twostep and IMIX-Cor-Restrict). Then AIC or BIC is used to
select the best model among the candidate models, called IMIX-
AIC or IMIX-BIC.

2.4 Adaptive procedure for across-data-type FDR

control
We propose an across-data-type FDR control procedure in the IMIX
framework based on an adaptive procedure introduced by Sun and
Cai (2007). For each component k (k 6¼ 1), we construct the follow-
ing hypotheses:

• Hk
0;i: Gene i does not belong to component k;

• Hk
1;i: Gene i belongs to component k.

Note that component 1 (the global null) is not considered as a
‘discovery’ and only components 2–8 are considered ‘discovery’ for
which FDR is applicable. The across-data-type FDR for component
k is defined as FDRk¼EðFk=RkjRk > 0ÞPrðRk > 0Þ;k ¼ 2; . . . ;K.
Here Fk is the number of false discoveries in component k and Rk is
the total number of hypotheses claimed significant in component k.
When no hypothesis is claimed significant, FDRk is 0. The estimated
posterior probability that gene i belongs to component k is defined

as p̂i;k ¼ P̂rðTik ¼ 1jXiÞ. The estimated local FDR for gene i is

defined as q̂i;k ¼ 1� p̂i;k ¼ P̂rðTik ¼ 0jXiÞ; k ¼ 2; . . . ;K. The adap-

tive step-up procedure is described here: Let mk ¼ maxfi :

1=i
Pi

j¼1

q̂ðjÞ;k � ag; then we reject all H0;ðiÞ; i ¼ 1; . . . ;mk, where q̂ð1Þ;k;

q̂ð2Þ;k; . . . ; q̂ðnÞ;k are ranked in component k. The adaptive procedure

controls the marginal FDR (mFDR) for each component at level a
asymptotically. Here mFDRk is defined as EðFkÞ=EðRkÞ. The esti-

mated mFDR becomes ^mFDRk ¼
Pmk

j¼1

q̂ðjÞ;k=mk. Genovese and

Wasserman (2002) showed that under weak conditions, there exists
an asymptotic relationship between mFDR and the across-data-type

FDR of one component, in which mFDRk ¼ FDRk þ OðN�1=2Þ,
where N is the number of hypotheses in component k and it is the
same across all components. This adaptive procedure can be further
used for a combination of components. For example, if we are inter-
ested in all the genes that are associated with the outcome through
both DNA methylation and gene expression in a three-data type in-
tegration problem of DNA methylation (M), gene expression (E)
and CNV, the procedure can be applied to the combination of com-
ponents 5 and 8, i.e. (Mþ,Eþ,CNV-) and (Mþ,Eþ,CNVþ).
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3 Results

3.1 Simulation studies
We performed two sets of simulation studies. Simulation study 1
assessed the performance of IMIX in terms of across-data-type FDR
control, misclassification rate and model calibration; simulation
study 2 evaluated the information criteria we proposed for model se-
lection. We consider the following multivariate normal mixture
model for three data types:

Xi �
X8

k¼1

pk/ðlk;RkÞ; (2)

where lk ¼ ðlk1; lk2; lk3Þ with lkh corresponding to the mean of
data type h in component k, and Rk is a 3�3 matrix that contains
the variance r2

kh and the covariance rkhh0 between data type h and h0

in component k.

3.1.1 Across-data-type FDR control and misclassification rate

To illustrate the lower misclassification rate while controlling for the
across-data-type FDR of IMIX compared with the commonly used
methods, we generated 1 000 simulated datasets of N � p ¼
20 000� 3 z-scores xih following (2) in six scenarios. Scenario 1
assumed all three data types were independent with Rk ¼ diag(1,1,1);
the mean under the null was 0 and under the alternative was 3 for
data type h; the proportion of each component was balanced as
pk ¼ 0:125. Scenarios 2–5 assumed the z-scores were correlated
under the alternative hypothesis by adding covariances (they were
also the correlations given the variances were 1) rk12 ¼ rk13 ¼ rk23

in Rk. Here we only set the covariances to be non-zero when at least
two data types were both non-null in component k ¼ 5; 6;7; and 8.
Each simulation scenario corresponded to a covariance of 0.1, 0.3,
0.5 and 0.8, respectively. The rest of the parameters in scenario 2–5
followed those of scenario 1. Scenario 6 mimicked the real data in
Section 3.2.1, where we analyzed the luminal and basal molecular
subtypes through DNA methylation, gene expression and CNV of the
bladder cancer data in TCGA. We set the mean and covariance matri-
ces in (2) equal to the empirical values estimated from z-scores classi-
fied by separate analysis of each data type using the BH-FDR method
and an unbalanced proportion equal to the estimated p̂ using IMIX-
Cor-Twostep (Supplementary Section S2.1). This simulation scenario
thus did not favor either the separate analysis or the IMIX method.

We analyzed the simulated data by applying our proposed meth-
ods, including IMIX-Ind, IMIX-Cor-Restrict, IMIX-Cor, IMIX-
Cor-Twostep, IMIX-AIC and IMIX-BIC. To compare the model’s
performance with commonly used separate analysis methods, we
applied the BH-FDR, the Bonferroni correction, the q-value and the
local FDR procedure. We set a ¼ 0:2 as the nominal error control
level across all methods for comparisons. Note that we suggest an a
value threshold between 0.05 and 0.2 for IMIX to discover interest-
ing non-null genes while controlling the proportion of null genes
(false positives) in the significant gene list.

The simulation results are presented in Figure 1a for the average of
1 000 simulations of the across-data-type FDR, which was the average of
components 2–8 excluding the global null component 1; and in
Figure 1b for the misclassification rate, which was the average of all com-
ponents. Our proposed methods were able to robustly control the across-
data-type FDR at the prespecified a ¼ 0:2 level. The separate analysis q-
value failed to control the FDR. The Bonferroni correction was designed
to control the family-wise error rate. Still, we included it here to compare
the misclassification rate with other methods, as it is a popular error con-
trol procedure among researchers in biomedical sciences. The local FDR
procedure deflated the FDR in Scenarios 3–5, which behaved similarly to
the IMIX-Ind. Both methods were based on independent mixture distri-
butions, and the reason IMIX-Ind controlled the FDR slightly better than
the local FDR procedure was that IMIX-Ind assumed a more flexible
combination of mixing proportions while the local FDR procedure only
considered the mixing proportions for one data type at a time. For ex-
ample, the mixing proportion p1 of component 1 in the IMIX-Ind is only
subject to the constraint

P8

k¼1

pk ¼ 1, while p1 in the local FDR procedure
is subject to p1 ¼ p10p20p30, where ph0 is the null mixing proportion for

the separate analysis of data type h ¼ 1; 2; and 3. This was further illus-
trated in Scenario 6, where the underlying correlation structures and the
generating model were more complicated: the local FDR procedure failed
the across-data-type FDR control while IMIX-Ind controlled it robustly.
The BH-FDR returned slightly inflated FDR in Scenarios 1–5, and the
realized FDR increased as the correlations increased among the three
data types. In Scenario 6, it failed to control the across-data-type FDR.
IMIX steadily achieved a lower misclassification rate (Fig. 1b) in all scen-
arios than the commonly used methods. Our proposed methods can ro-
bustly control the across-data-type FDR and achieve a good operating
characteristic under various scenarios.

In addition, we compared the computation time needed for the
four IMIX models (Supplementary Section S2.4: Supplementary
Table S4) using the simulation Scenario 3, assuming three data types
with correlation 0.3 based on 1 000 simulations. IMIX-Ind con-
verged the fastest with only 4.50 s and 67 iterations on average.
Moreover, IMIX-Cor-Twostep achieved great computational
advantages with an average of 217.379 s with only 42 iterations
over IMIX-Cor and IMIX-Cor-Restrict, with 970.901 and
417.531 s convergence time, and 161 and 71 iterations, respectively.
This was processed on Intel(R) Xeon(R) CPU E5502 @ 1.87 GHz
with max CPU 1866 MHz and min CPU 1600 MHz.

3.1.2 Model calibration and FDR control

Newton et al. (2004) showed that the performance of the estimated

FDR based on equation FDRestimatedðtÞ¼
PN

i¼1

qiIðqi � tÞ=
PN

i¼1

Iðqi � tÞ,

relies on how well the model fitting is. Thus, we need to assess the
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Fig. 1. Comparison of IMIX-Ind, IMIX-Cor, IMIX-Cor-Restrict, IMIX-Cor-

Twostep, IMIX-AIC, IMIX-BIC, Benjamini–Hochberg false discovery rate (BH-

FDR), the Bonferroni correction, the q-value and the local FDR procedure at

a ¼ 0:2. (a) The realized across-data-type false discovery rate in the average of

1 000 simulations, the results in each scenario are of the average of components 2–

8, excluding the global null component 1. (b) Misclassification rate in the average of

1 000 simulations, the results in each scenario are the average of all components
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model calibration to ensure that the IMIX framework is able to reli-
ably control the realized FDR by the adaptive FDR procedures. We
pursued this by comparing the realized and estimated FDRs on the
results fitted using IMIX from the six scenarios in simulation study
1. We compared the estimated and realized FDRs averaged across
the 1000 simulated datasets for each non-null component 2–8, and
the sum-up of non-nulls compared to the global null component 1.
Supplementary Figures S1–S4 present the results of IMIX-Ind,
IMIX-Cor-Restrict, IMIX-Cor and IMIX-Cor-Twostep in the six
simulation scenarios. IMIX-Ind showed good model calibration in
Scenarios 1 and 2, but as the correlation gradually increased from
Scenario 3 to Scenario 5, the discrepancy between estimated FDR
and realized FDR increased. In Scenario 6 where we mimicked the
real data, IMIX-Ind was slightly conservative as the realized FDR
was slightly smaller than the estimated FDR. IMIX-Cor and IMIX-
Cor-Restrict performed similarly where the estimated and realized
FDRs were coincident in scenarios 1–5. In scenario 6, component 4
and component 6 showed slightly inflated realized FDR. This was
because the proportion of these two components got as small as

6:9�10�3 and 8:9�10�3. IMIX-Cor-Twostep also performed well
in all scenarios except for a slight shift in Scenario 5, where the cor-
relations between data types were as high as 0.8. Since this model
utilizes the estimated mean parameters from IMIX-Ind, it may have
slightly affected the model calibration. However, the computation
time gain was much better and can be shown in real-data-based
simulation Scenario 6.

In summary, the IMIX framework is rigorous and versatile with
good model calibration under various data scenarios, leading to a re-
liable and accurate FDR estimation, and thus a robust adaptive FDR
control procedure.

3.1.3 Model selection

We conducted simulation study 2 to evaluate how well AIC and BIC
selected the number of components in the IMIX framework. We first
generated 1 000 datasets following (2) for 16 scenarios that con-
sisted of a combination of balanced and unbalanced mixing propor-
tions of seven and eight components (Supplementary Table S1). The
unbalanced mixing proportions were based on the proportions of
genes in the real-data example; we used the estimated p̂k of the
TCGA bladder cancer dataset fitted by IMIX-Cor as the unbalanced
proportions for the eight-component mixture model. The seven-
component mixture model simulation simply eliminated the eighth
component from the eight-component mixture model, i.e. genes
associated with the outcome through all three data types. For each
mixing proportion and number of components combination, we
generated four scenarios with the mean and covariance parameters
equal to the simulated parameters in simulation study 1 Scenarios
2–5. We fitted the IMIX framework without adding any constraint
on the mean, assuming models of one to eight components. Here,
we were only interested in the final number of components of the
selected model rather than the component each gene belongs to, for
the purpose of model selection.

Supplementary Figures S5 and S6 show the number of compo-
nents selected by AIC/BIC after averaging 1 000 simulation replica-
tions for the unbalanced seven- and eight component simulated
models. AIC selected the correct number of components in both bal-
anced and unbalanced settings (Supplementary Fig. S6a–d). BIC per-
formed similarly (Supplementary Fig. S5a, b and d), but it selected a
more conservative number, i.e. a more parsimonious model, under
the extremely unbalanced eight-component scenario in
Supplementary Figure S5c. We consider this unbalanced eight-
component setting challenging for BIC or any model selection criter-
ion because the smallest mixing proportion was only 4%. To further
evaluate AIC and BIC’s ability to select the correct number of com-
ponents when the mixing proportions were unbalanced, we con-
ducted more simulation studies for an eight-component multivariate
Gaussian mixture model with varying levels of unbalanced settings
as shown in Supplementary Section S2.3. Both AIC and BIC per-
formed well in identifying the correct number of components
(Supplementary Fig. S7).

AIC and BIC were both reliable model selection criteria under
relatively balanced mixing proportions. AIC could select up to eight
components in extremely unbalanced situations; however, previous
works (McLachlan and Peel, 2004; Steele and Raftery, 2009)
showed that AIC is prone to overestimating the number of compo-
nents. Fraley and Raftery (2002) showed that BIC performed well in
choosing the number of components in a range of applications. The
same group has implemented an R package ‘mclust’ that, by default,
uses BIC for model selection (Scrucca et al., 2016). We consider BIC
to be more stable as it takes into account the number of genes in the
penalty term, which can be as large as tens of thousands under the
whole-genome setting.

3.2 Real data applications
To demonstrate the proposed IMIX framework’s versatility and effi-
ciency in different disease outcomes, we applied our method to a
binary outcome, the luminal and basal molecular subtypes of
muscle-invasive bladder cancer, as well as a survival outcome for the
prognosis of pancreatic cancer in the TCGA dataset.

3.2.1 Molecular subtypes of bladder cancer in the TCGA

Previous studies in bladder cancer identified molecular signatures associ-
ated with the pathological and clinical outcomes (Choi et al., 2014; Guo
et al., 2019); in particular, those molecular subtypes have important
implications for prognostication and treatment. Twenty-three gene ex-
pression markers have been reported to play a major role in these mo-
lecular subtypes. We applied IMIX to analyze the TCGA bladder cancer
patient cohort, which was profiled by three genomic platforms: DNA
methylation, mRNA gene expression and CNV. We investigated: (i)
whether those gene expression markers also demonstrated difference at
the DNA methylation and CNV levels, and (ii) whether there were other
genes associated with the molecular subtyping through any of the three
data types. After quality control (Supplementary Section S3.1), we separ-
ately analyzed 373 DNA methylation samples, 391 RNA-Seq samples
and 387 CNV samples with N¼15 672 genes with respect to the molecu-
lar subtypes adjusting for the clinical covariates, including age, sex, race,
smoking status and pathological stage. We applied IMIX, the Bonferroni
correction and the BH-FDR to the final P-values obtained from the asso-
ciation tests of individual-level data. The nominal error control level of
the Bonferroni correction and the BH-FDR for separate analysis was set
at a ¼ 0:05, and that of IMIX for integrative analysis was at a ¼ 0:2.
We used IMIX-BIC to perform model selection, with the optimal model
selected as IMIX-Cor-Twostep and the best number of components as
eight based on BIC values. Table 1 shows the point estimates and 95%
bootstrap-based confidence intervals (B ¼ 1 000) (McLachlan and Peel,
2004) for the parameters in the correlation matrices between DNA
methylation, gene expression and CNV. DNA methylation and gene ex-
pression showed moderate correlations that involved non-null genes
across both data types in component 5 (Mþ,Eþ,CNV–) and component
8 (Mþ,Eþ,CNVþ). Another interesting finding was that DNA methyla-
tion and gene expression were correlated when genes were associated
with the outcome through only one data type, as reflected in component
2 (Mþ and E–) and component 3 (M– and Eþ). This also held for the
correlations between methylation and CNV when genes were not associ-
ated with the outcome through either data type in component 1 (M–
,CNV–) and component 3 (M–,CNV–), as well as gene expression and
CNV in component 3 (Eþ,CNV–). These results further supported the
IMIX model assumptions that the data types could be correlated, both
under the alternative and the null hypothesis, thus reinforcing that the
IMIX method was effective by assuming multivariate distributions in all
components instead of the commonly adopted conditional independence,
e.g. in the Primo method (Gleason et al., 2020).

We compared the number of genes discovered in component 8
using the BH-FDR, the Bonferroni correction and our method
(Supplementary Fig. S8a). The genes that were detected by the
Bonferroni correction were identified by both our method and the
BH-FDR. The genes detected by IMIX had an overlap of 146 genes
with the BH-FDR and included 116 new genes not discovered by ei-
ther the BH-FDR or the Bonferroni correction. The estimated

^mFDR8 of IMIX was 0.1995, close to the prespecified across-data-
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type FDR control level alpha¼0.2. Through simulation studies in
Section 3.1.1, our method was more effective in controlling the
across-data-type FDR than other methods. We also showed the lev-
els of DNA methylation, gene expression and CNV for the

significant genes in component 8, i.e. genes that were associated
with all three data types in Figure 2a; for the purpose of illustration,
we only included the 61 significant genes after adaptive FDR control
at a ¼ 0:01. We conducted Ingenuity Pathway Analysis [IPA,

Table 1. Estimated correlations between the transformed z-scores (from P-value) across the data types with 95% bootstrap-based confi-

dence intervals (B¼1000) for TCGA bladder cancer data and TCGA pancreatic cancer data integration analysis by IMIX-BIC

TCGA bladder cancer TCGA pancreatic cancer

Component M & E M & CNV E & CNV Component E & CNV

1 (M-,E-,CNV-) 0.015 (-0.039, 0.072) 0.091 (0.037, 0.14) �0.016 (-0.070, 0.043) 1 (E-,CNV-) 0.040 (-0.047, 0.13)

2 (Mþ,E-,CNV-) 0.070 (0.014, 0.12) �0.012 (-0.060, 0.031) 0.0049 (-0.064, 0.075) 2 (Eþ,CNV-) 0.11 (-0.012, 0.21)

3 (M-,Eþ,CNV-) 0.14 (0.051, 0.23) 0.090 (0.016, 0.17) �0.10 (-0.19, -0.022) 3 (E-,CNVþ) 0.016 (-0.019, 0.049)

4 (M-,E-,CNVþ) �0.099 (-0.59, 0.40) 0.35 (-0.085, 0.73) �0.059 (-0.53, 0.36) 4 (Eþ,CNVþ) 0.12 (0.071, 0.18)

5 (Mþ,Eþ,CNV-) 0.25 (0.20, 0.31) �0.037 (-0.082, 0.013) 0.038 (-0.023, 0.097)

6 (Mþ,E-,CNVþ) 0.038 (-0.22, 0.25) �0.037 (-0.27, 0.22) �0.088 (-0.40, 0.26)

7 (M-,Eþ,CNVþ) 0.21 (-0.16, 0.56) 0.13 (-0.27, 0.49) 0.12 (-0.29, 0.50)

8 (Mþ,Eþ,CNVþ) 0.19 (0.021, 0.38) 0.10 (-0.049, 0.26) 0.080 (-0.13, 0.28)

Note: Confidence intervals not covering 0 are in boldface.

M, methylation; E, gene expression; CNV, copy number variation.
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Fig. 2. Heatmaps of genes in IMIX analysis for bladder cancer molecular subtypes in TCGA. (a) Methylation, gene expression and copy number variation (CNV) patterns of

top significant genes associated with the three data types (Mþ,GEþ,CNVþ) identified by IMIX in molecular subtypes of TCGA muscle-invasive bladder cancer patients, with

adaptive FDR control at a ¼ 0:01, estimated marginal FDR ( ^mFDR8) ¼ 0.0098. (b) Expression patterns of luminal and basal markers of TCGA bladder cancer cohort
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Ingenuity Systems (www.ingenuity.com)] on the 61 significant genes
in component 8 at a ¼ 0:01. The results showed strong peroxisome
proliferator activator receptor (PPAR) pathway activation
(Supplementary Fig. S9) in luminal samples. This pathway was pre-
viously reported by Choi et al. (2014), who first proposed the mo-
lecular subtypes of muscle-invasive bladder cancer and showed that
PPARa and PPARc activation played essential roles in regulating
gene expression signature for the luminal subtype. Specifically, they
exposed the PPARc-selective agonist rosiglitazone in two bladder
cancer cell lines and further confirmed that rosiglitazone activated
the PPAR pathway and enriched gene signatures in primary luminal
samples. Furthermore, we estimated the causal relationships be-
tween DNA methylation, gene expression and CNV of the 61 genes
in component 8 by applying Bayesian networks (Scutari, 2017) with
the target nominal type I error rate at 0.01. Of those 61 genes, 51
showed significant dependent structures between the three data
types. The directed acyclic graphs (DAGs) based on conditional in-
dependence tests with a restriction of causal direction from CNV to
E showed six different causal structures (Supplementary Section
S3.2).

We present the levels of the luminal and basal markers for
DNA methylation, gene expression and CNV in Figure 2b.
Among the 23 markers, we found that six, 15 and one gene
belonged to component 3 (M-,Eþ,CNV-), component 5
(Mþ,Eþ,CNV-) and component 8 (Mþ,Eþ,CNVþ), respectively.
In particular, PPARG belonged to component 8, i.e. associated
with the subtypes via all three molecular mechanisms. Bayesian
networks further confirmed that PPARG had a full model with de-
pendence structures of CNV ! E, E–M, M–CNV [Supplementary
Fig. S10(1)]. This gene was reported to be one of the driver genes
for basal and luminal differentiation. As expected, the luminal
samples showed a higher PPARG gene expression level than did
the basal samples; furthermore, we discovered a concordant sig-
nificant differential pattern in the methylation and CNV levels
that has not been previously reported.

In summary, our analysis revealed that the luminal and basal
markers demonstrated substantial differences in at least two data
types (Fig. 2b). By applying the IMIX framework, we successfully
discovered novel genes that were associated with the molecular sub-
types across all three data types (Fig. 2a) and confirmed the PPAR/
RXR activation canonical pathway that was previously reported to
play a central role in luminal and basal differentiation (Choi et al.,
2014).

3.2.2 Prognosis of pancreatic cancer in the TCGA

We further applied IMIX to a survival outcome to investigate the
relationships between the prognosis of pancreatic cancer patients
and two genomic datasets, gene expression and CNV in the TCGA.
After quality control (Supplementary Section S3.1), we first applied
the Cox proportional hazards model to each of the 15 472 genes re-
spectively on 157 RNA-Seq samples and 161 CNV samples, adjust-
ing for age, gender and smoking status. Next, we fitted IMIX, the
BH-FDR and the Bonferroni correction on the summary statistics.
After model selection based on BIC, IMIX-Cor-Twostep fitted the
best. Table 1 shows the point estimates and 95% bootstrap-based
confidence intervals (B ¼ 1 000) of the parameters in the correlation
matrices between gene expression and CNV. In component 4
(Eþ,CNVþ), where the detected genes were significantly associated
with survival outcomes through both gene expression and CNV, the
correlation between gene expression and CNV was q̂ ¼ 0:120 with
95% confidence interval ð0:071; 0:18Þ.

To assess the effect of the detected 104 genes in component 4 at
a ¼ 0:05, we used iCluster (Shen et al., 2009) to group the patients
based on gene expression and CNV data into two classes; here, we
only applied the 104 genes detected by IMIX with no feature selec-
tion in the clustering process. Figure 3 shows the gene expression
and CNV levels of the identified 104 genes associated with the pan-
creatic cancer prognosis. The gene expression and CNV were posi-
tively correlated, as shown in the heatmap. Supplementary Figure
S11 shows the Kaplan–Meier curve of the overall survival of pancre-
atic cancer patients. The log-rank test resulted in P¼0.016, and the

Cox model adjusted for patient pathological stages resulted in
P¼0.04. Furthermore, when we clustered the patients using the 991
genes discovered at adaptive FDR a ¼ 0:2, all patients but one were
grouped into the same clusters as using the 104 genes at a ¼ 0:05;
the Kaplan–Meier curve returned the same results. This indicates
that IMIX captured the most important features and a controlled
number of false discovered genes at a ¼ 0:05. This result warrants
further validation in an independent cohort.

We compared the results of IMIX, the Bonferonni correction
and the BH-FDR for component 4, i.e. genes associated with the sur-
vival outcomes through both gene expression and CNV. The
Bonferroni correction was not able to discover any significant genes
at the nominal level, a ¼ 0:05. IMIX detected 104 genes at a ¼ 0:05
with an estimated ^mFDR4 ¼ 0:0498. The BH-FDR detected 271
genes at a ¼ 0:05. IMIX identified fewer genes, but it captured the
important features as evidenced by the Kaplan–Meier analysis/log-
rank test with a controlled across-data-type FDR compared with the
BH-FDR. We showed in Section 3.1.1 that the BH-FDR failed to
control for FDR under the data integration settings. In addition,
IMIX detected 991 genes at a ¼ 0:2 with an estimated

^mFDR4 ¼ 0:2; and the 271 genes detected by the BH-FDR
(a ¼ 0:05) were all included in the genes discovered by our method
as shown in the Venn diagram (Supplementary Fig. S8b).

4 Discussion

We have developed IMIX, a multivariate mixture model frame-
work based on summary statistics for integrative genomic associ-
ation analysis. Our model incorporates the correlation structures
between different genomic datasets by assuming multivariate
Gaussian mixture distribution of the z-scores (transformed from
P-values) from association analysis of individual-level data. The
IMIX framework includes four models: IMIX-Cor, IMIX-Ind,
IMIX-Cor-Restrict and IMIX-Cor-Twostep, each of which best
captures a specific type of mean and correlation structure arising
from various data analysis problems. IMIX selects the optimal
model based on AIC/BIC values among the four models. In add-
ition, IMIX features simultaneous model selection for the number
of underlying latent states/components of the optimal mixture
model with a specific correlation structure. We use the EM algo-
rithm in parameter estimation, and the mixture model naturally
produces the local FDR for each gene, which is easily derived
from the posterior probability. Our model features an adaptive
procedure to control the across-data-type FDR, where we take
into account both the multiple testing of the gene and the multiple
data types under an integrative analysis setting. This error-control
property for an integrative genomic model is the first of its kind,
to our knowledge.

Our applications to the two TCGA datasets demonstrate that
different genomic data types, such as DNA methylation, mRNA
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gene expression and CNVs, can be correlated in both null and non-
null genes, as shown in the bootstrap-based confidence intervals
(Table 1). Therefore, it is necessary to consider the inter-source cor-
relations of multiple datasets in integrative analysis. Based on simu-
lation studies under various settings of correlation structures,
including the one based on the TCGA bladder cancer dataset, IMIX
controlled the FDR precisely and yielded better statistical power
than the independent separate analysis models, including the BH-
FDR, the Bonferroni correction, the q-value and the local FDR
procedure.

An important key feature of our proposed method using sum-
mary statistics is that the z-scores are based on the inverse standard
normal transformation of P-values. For a given data type, the null
distribution of the z-scores is the standard normal, referred to as the
theoretical null (McLachlan et al., 2006). We relaxed this condition
and used an empirical null with unspecified mean and variance to
allow calibration differences. Larger z-scores (smaller P-values) cor-
respond to the alternative hypothesis, i.e. the alternative distribution
has a larger mean than the null distribution in each data type
(McLachlan et al., 2006). An additional key feature of IMIX is its
constraints on the mixture component means, which is not only
more biologically plausible than unconstrained means, but together
with the properties of z-scores have ensured model identifiability, a
common challenge in mixture models. Another unique feature of
IMIX is model selection: we let the data decide the number of mix-
ture components and the correlation structure based on AIC or BIC.

In addition, IMIX is able to model summary statistics from inde-
pendent or partially overlapping sample cohorts, as illustrated in the
TCGA data examples (Section 3.2), which relaxes the conditions of
previously published methods for the integration of multiple omics
data requiring the same set of samples (Richardson et al., 2016).
The robust results are shown in a sensitivity analysis
(Supplementary Section S3.3) comparing the genes detected in each
component using the same set of samples and non-overlapping sam-
ples. The implementation of IMIX employs the EM algorithm,
which in general converges fast, leading to great computational
efficiency.

IMIX can study various types of outcomes, including continu-
ous, binary and time-to-event outcomes in integrative genomic ana-
lysis. We have applied IMIX to two kinds of problems, the
prognosis of pancreatic cancer and the luminal and basal molecular
subtypes of bladder cancer; both applications provided novel bio-
logical insights. The IMIX framework is not only applicable to can-
cer genomics but also to other complex diseases and traits as
afforded by ongoing large-scale multiple-omics projects, such as the
NIH Trans-Omics for Precision Medicine (TOPMed) project (Brody
et al., 2017), consisting of more than 100 000 deeply phenotyped
and sequenced individuals with multiple types of omics data, such as
transcriptomic, epigenomic, metabolic, proteomic and whole-
genome sequencing data. Therefore, this work has a wide range of
potential applications to provide novel biological insights into dis-
ease mechanisms. We have implemented the integration model for
two and three genomics data types in the simulation studies and
data applications, which could be further generalized to four and
more data types in the multivariate mixture model framework. We
leave the details of this potential extension for future research.
While we have relaxed the conditional independence assumptions
for the data types in IMIX, we could further extend our method by
assessing the correlations between genes within each data type,
which is another important direction for future work.

We have implemented the proposed method in an R package
‘IMIX’, which is available at https://github.com/ziqiaow/IMIX and
will be posted to R/CRAN.
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