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Abstract

Motivation: The binding of T-cell receptors (TCRs) to their target peptide MHC (pMHC) ligands initializes the cell-
mediated immune response. In autoimmune diseases such as multiple sclerosis, the TCR erroneously recognizes
self-peptides as foreign and activates an immune response against healthy cells. Such responses can be triggered
by cross-recognition of the autoreactive TCR with foreign peptides. Hence, it would be desirable to identify such
foreign-antigen triggers to provide a mechanistic understanding of autoimmune diseases. However, the large se-
quence space of foreign antigens presents an obstacle in the identification of cross-reactive peptides.

Results: Here, we present an in silico modeling and scoring method which exploits the structural properties of TCR-
pMHC complexes to predict the binding of cross-reactive peptides. We analyzed three mouse TCRs and one human
TCR isolated from a patient with multiple sclerosis. Cross-reactive peptides for these TCRs were previously identified
via yeast display coupled with deep sequencing, providing a robust dataset for evaluating our method. Modeling
query peptides in their associated TCR-pMHC crystal structures, our method accurately selected the top binding pep-
tides from sets containing more than a hundred thousand unique peptides.

Availability and implementation: Analyses were performed using custom Python and R scripts available at https://
github.com/weng-lab/antigen-predict.

Contact: zhiping.weng@umassmed.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As a surveillance mechanism against pathogens and cancer, T cells
of the host immune system use their ab T-cell receptors (TCRs) to
inspect other cells. Targets recognized by TCRs are peptides bound
and presented by the host major histocompatibility complex (MHC)
proteins on the outer surface of the cellular membrane, and the pep-
tide epitope may derive for instance from a viral protein. TCR rec-
ognition triggers complex signaling pathways that lead to a variety
of outcomes, such as the destruction of infected or diseased cells, T-
cell proliferation and release of proinflammatory cytokines.

Determining peptide epitopes that can be recognized by TCRs is
of considerable interest, impacting fields ranging from virology to
cancer immunotherapy. Peptide immunogenicity involves three
steps, each of which have been addressed via various predictive algo-
rithms: peptide processing (Bhasin and Raghava, 2004; Nielsen

et al., 2005), peptide binding to an MHC (Andreatta and Nielsen,
2016; Jurtz et al., 2017; O’Donnell et al., 2018) and TCR recogni-
tion of the peptide-MHC (pMHC) complex (Lanzarotti et al., 2019;
Ogishi and Yotsuyanagi, 2019; Pierce and Weng, 2013; Riley et al.,
2019; Schneidman-Duhovny et al., 2018; Tung et al., 2011). While
progress has been made in predicting the outcome of each step, the
fixed size of the TCR repertoire relative to the much larger number
of possible peptide epitopes that T cells may encounter presents a
particularly significant challenge.

Even with a TCR repertoire estimated to lie in the tens of mil-
lions, estimates are that any particular TCR would need to recognize
at least one million different pMHC complexes in order to provide
sufficient immune coverage (Mason, 1998; Sewell, 2012). This high
level of cross-reactivity has been verified using combinatorial pep-
tide libraries (Maynard et al., 2005; Wooldridge et al., 2012). Thus,
although specificity is considered a hallmark of immunity, TCRs
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display significant cross-reactivity. Even if such cross-reactivity can
be rationalized at a high level from structural and biophysical princi-
ples (Singh et al., 2017), determining the range of peptides recog-
nized by a specific TCR remains a major goal in immunology.
Demonstrating the biological significance of the problem, TCR
cross-recognition of self-peptides is believed to underlie various
autoimmune disorders (Gravano and Hoyer, 2013), and patient
deaths have occurred due to unanticipated ‘off-target’ recognition of
TCRs used in clinical trials for cancer immunotherapy (Linette
et al., 2013; Morgan et al., 2013).

Given the availability of TCR-pMHC structural information, to-
gether with advances in protein design and prediction methodolo-
gies, in principle, the peptide specificity profile of a TCR should be
predictable using in silico methods. One challenge, however, is the
availability of detailed experimental datasets against which such
prediction methods could be benchmarked. In addition to combina-
torial peptide libraries, Garcia and colleagues have used yeast dis-
play of pMHC libraries coupled with TCR staining and deep
sequencing to assess the specificity profiles of TCRs (Adams et al.,
2016; Birnbaum et al., 2014; Gee et al., 2018). With each yeast cell
expressing a unique random peptide, these libraries allow for
affinity-based interrogation of over one hundred million peptides
against a query TCR. Affinity based selection proceeds through mul-
tiple rounds where yeast libraries are enriched for yeast that bind
bead-multimerized TCR. Subsequent deep sequencing of yeast DNA
from final selection rounds produces enrichment counts for peptides
selected by the query TCR. Thereby peptides with the highest read
counts in the last round of selection are indicative of cross-reactive
peptides capable of binding the TCR. Such experiments provide rich
datasets for developing and benchmarking in silico approaches to
evaluate TCR specificity.

Here, we used structure-based in silico methods to predict the
specificity profiles for four TCRs assessed using yeast display and
deep sequencing: 2B4, 226, 5cc7 and Ob.1A12 (Birnbaum et al.,
2014). Three of these TCRs recognize a peptide derived from moth
cytochrome C presented by the murine class II MHC protein I-Ek

(Newell et al., 2011). The fourth (Ob.1A12) was isolated from a pa-
tient with relapsing-remitting multiple sclerosis and recognizes a
peptide derived from the myelin basic protein presented by the
human class II MHC protein HLA-DR2 (Wucherpfennig et al.,
1994). The deep sequencing data provided more than 100 000 pepti-
des for each TCR, including both binders and non-binders, ideal for
benchmarking structure-based in silico methods.

Using the crystal structures for the four TCR-pMHC complexes
(Birnbaum et al., 2014; Hahn et al., 2005; Newell et al., 2011), we
modeled all of the query peptides within the TCR-pMHC complexes
and scored the structural models to predict cross-reactive peptides
for each of the four TCRs. Our modeling and scoring approach was
capable of recovering cross-reactive peptides from large pools of pri-
marily non-binding peptides for each TCR tested. We compared our
method with an approach of selecting peptides with similar sequen-
ces to each TCR’s cognate peptide epitope (i.e. the target peptide
found in the crystallographic structure). Our structure-modeling ap-
proach out-performed the sequence-similarity approach for one of
the four TCRs investigated. Furthermore, combining the two
approaches yields the best performance for two other TCRs while
maintaining the performance for the last TCR, underscoring the
value of including structural information in epitope prediction.

2 Materials and methods

2.1 Peptide sequence extraction
Sequencing data were downloaded from the Sequence Read Archive
(SRA) under project accession SRP040021 and converted to FASTQ
files using the SRA Toolkit. Each sequenced read contains the nu-
cleotide sequence encoding one of the random peptides of the com-
binatorial yeast display library. Prior to sequencing, barcodes were
appended to distinguish the selection round and the TCR used for
selection in the pooled sequencing results (Birnbaum et al., 2014).
As a first step in processing, we split reads by barcode into their

individual selection rounds along with the TCR used for selection.
The randomized peptide in each read was generated by mutagenic
primers allowing all 20 amino acids via NNK codons, with the ex-
ception of some restricted positions for anchoring to the MHC
(Birnbaum et al., 2014). We identified the start of the nucleotide se-
quence encoding the peptide via its specific position given in the pri-
mer sequence and thereby extracted the nucleotide sequence
encoding the full 13-mer or 14-mer peptide recognized by the mouse
or human TCR, respectively. Next, the nucleotide sequences encod-
ing the peptides were translated into amino acid sequences and pep-
tide sequences containing stop codons or unknown amino acids
were discarded. The resulting read counts for each unique peptide
were recorded for each round of selection for each TCR.

To validate our procedure of extracting peptide sequences with
that of Birnbaum et al. (2014), we compared the read counts of the
top 25 most abundant peptides given in Birnbaum et al. in the fourth
round of selection for the 2B4 TCR with our extracted read counts
for the same peptides in the same round. The Spearman correlation
of our read counts versus read counts from Birnbaum et al. was
0.9998. Birnbaum et al. performed surface plasmon resonance
(SPR) experiments on two of these top recovered peptides and
reported binding of the 2B4 TCR for both, validating the use of
yeast display libraries in recovery of cross-reactive peptides. For fur-
ther experimental details regarding library creation, list of primers
used for randomization and for deep sequencing, we defer the reader
to the original publication from Birnbaum et al. (2014).

2.2 Peptide structure modeling
Template TCR-pMHC complex structures were downloaded from
the protein data bank (PDB) with the following PDB IDs: 3QIB
(2B4-MCC-I-Ek), 3QIU (226-MCC-I-Ek), 4P2R (5cc7-5c1-I-Ek) and
1YMM (Ob.1A12-MBP-HLA-DR2). To reduce computation time
the structures were truncated to contain only the binding interface
(up to residue 83 for the class II MHC a chain and residue 93 for the
b chain). Each TCR was truncated to just contain the variable
domains, excluding the constant domains that are distal from the
binding interface for pMHC. Water molecules were also removed to
simplify scoring and for consistency across TCR-pMHC structures
with different resolutions.

Prior to modeling peptides onto TCR-pMHC structure tem-
plates, we prepared structures using the refinement application,
relax, of the Rosetta suite of programs (Version 3.5) (Leaver-Fay
et al., 2011; Nivon et al., 2013). The goal of relaxing structures
prior to modeling and scoring is to resolve clashes and other errors
that may negatively impact performance of Rosetta energy func-
tions. We followed a relax protocol that was previously tested on a
benchmark set of 51 proteins which increased sequence recovery in
enzyme design while keeping the RMSD between relaxed and ori-
ginal input structures minimal (Nivon et al., 2013). An example of
the cleaned and relaxed 2B4-MCC-I-Ek complex is provided as a
PDB file in Supplementary Data (3QIB_relax.trunc.pdb). The fol-
lowing is an example Rosetta command used for relaxing our initial
TCR-pMHC complex templates prior to modeling:

rosetta_source/bin/relax.linuxgccrelease –data-
base rosetta_database/ -relax:constrain _relax_-
to_start_coords -relax:coord_constrain_sidechains
-relax:ramp_constraints false -s my_pdb.pdb -ex1 -
ex2 -use_input_sc -flip_HNQ -no_optH false

To model peptides onto the template TCR-pMHC structures, we
utilized the fixed backbone application, fixbb, of the Rosetta suite
of programs (Leaver-Fay et al., 2008, 2011), with parameters
‘extrachi_cutoff 1 –ex1 –ex2 –ex3’ to increase v angle rotamer sam-
pling for side-chain placement of peptide residues. All side chains of
the TCR-pMHC aside from those modeled on the peptide were left
in their original poses. An example resfile specifying amino acid
mutations to model the 2A peptide in the 2B4-MCC-I-Ek complex
as in W Figure 1B is given in Supplementary Data (resfile_2A.txt).
The following is an example Rosetta command used for peptide
structural modeling:

rosetta_source/bin/fixbb.linuxgccrelease –data-
base rosetta_database/ -s my_pdb.pdb -resfile
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my_resfile -suffix my_label -extrachi_cutoff 1 -ex1
-ex2 -ex3

2.3 Prediction of peptide-MHC/TCR binding free energy
We investigated three scoring approaches, GCOMPLEX, DGBIND and
DGBIND.2, where GCOMPLEX is the Rosetta score for the entire TCR-
pMHC complex, and the latter two scoring methods are defined
using the following formulas:

DGBIND ¼ GCOMPLEX � ðGTCR=MHC þ GPEPTIDEÞ (1)

DGBIND:2 ¼ GCOMPLEX � ðGTCR þ GpMHCÞ; (2)

such that GTCR/MHC is the Rosetta score for the TCR and MHC
chains bound without the peptide, GPEPTIDE is the score for the iso-
lated peptide in its bound conformation, GTCR is the score for the
isolated TCR in its bound conformation and GpMHC is the score for
the peptide and MHC chains bound without the TCR. To score
each component, we used Rosetta’s scoring application, score
(Leaver-Fay et al., 2011). This scoring function is a linear combin-
ation of 19 energy terms, including van der Waals, solvation, elec-
trostatics and hydrogen bonding interactions along with other
statistical potentials. The weights for the energy terms were left in
their default settings (those specified in the standard.wts file along
with the score12.wts_patch file found in Rosetta’s weights direc-
tory). The following is an example Rosetta command used for scor-
ing modeled TCR-pMHC structures (i.e. scoring commands for
GCOMPLEX, GTCR/MHC, GPEPTIDE, GTCR and GpMHC):

rosetta_source/bin/score.linuxgccrelease –data-
base rosetta_database/ -s my_pdb.pdb -out:file:s-
corefile outputfile.sc

2.4 Heatmaps of amino acid frequency
Heatmaps representing the cross-reactivity for individual TCRs
were generated using either the top 50 most enriched peptides in the
fourth round of TCR selection (top 50 experimentally selected) or
the top 50 peptides with the most favorable DGBIND (top 50 compu-
tationally selected) (Fig. 3A and B). Each cell of the heatmap repre-
sents the amino acid frequency in the top 50 peptides for the specific
peptide residue position, such that, for example, a value of 1 for Ala
at residue position -3 indicates all of the top 50 peptides carry an
Ala at this position of the peptide, while a value of 0 indicates none
of the top 50 peptides carry an Ala at this position. Hence, the sum
of each column in the heatmap is 1. Peptide residue positions are in
order from N- to C-terminus with residue labels (-3. . .13) used to be
consistent with the nomenclature in Birnbaum et al.

2.5 BLOSUM62 sequence similarity
To measure sequence similarity between query peptides in our posi-
tive and negative binding sets against the cognate peptide found in
the crystal structure of the TCR-pMHC complex, we used the
BLOSUM62 substitution matrix designed for sequence alignment of
proteins (Henikoff and Henikoff, 1992). The BLOSUM62 similarity
score between two peptides was then defined as the sum of the
BLOSUM62 log-odds ratios for each amino acid substitution be-
tween the two peptides.

Fig. 1. Prediction of TCR-pMHC binding free energies. (A) Crystal structure of

TCR-pMHC interface for the 2B4 TCR (red) interacting with the MCC peptide

(magenta) displayed by the I-Ek MHC (cyan). Bottom box: profile of the MCC pep-

tide. (B) Fixed backbone model structure of TCR-pMHC interface for the 2B4 TCR

(red) interacting with the 2A peptide (orange) displayed by the I-Ek MHC (cyan).

2A peptide was modeled onto the backbone of the MCC peptide in (A), TCR and

Fig. 1. Continued

MHC protein structures remain identical to (A). Bottom box: profile of the 2A pep-

tide. (C) Scatter plot of DGBIND from computational modeling and scoring versus

DG from experimental binding energies. Each point represents a peptide in

Supplementary Table S1, where experimental DG is determined by binding affinity

of pMHC with the indicated TCR (red, blue, green) via surface plasmon resonance

from Birnbaum et al., and computational DGBIND is determined from modeling and

scoring of peptide in TCR-pMHC complex. Pearson correlations are 0.67, 0.97 and

0.67 for TCRs 2B4, 226 and 5cc7, respectively. Correlation across the entire set of

peptides is 0.69. Peptides with unreliable KDs due to weak or non-binding interac-

tions were assigned a KD of 200 lM (DG ¼ -5.05 kcal/mol, gray dotted line). If we

assigned a DG of 0 kcal/mol for these weak/non-binding peptides the correlation

across the entire set of peptides was similar (r ¼ 0.74). (Color version of this figure

is available at Bioinformatics online.)
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2.6 Measuring prediction performance
To quantify the performance of our cross-reactive antigen prediction
methods, we first defined positive (binding) and negative (non-bind-
ing) peptide sets for each TCR based on the experimental deep-
sequencing results from Birnbaum et al. We defined positive pepti-
des as those peptides which were recovered after four rounds of
TCR selection in the yeast display experiment and had sequence
read counts in the 95th percentile. We defined negative peptides as
peptides found in the preselection library that were not found after
four rounds of selection. The deep sequencing results present only a
sample of the total unique peptides in each selection round. It is thus
important to note that, although the round-four peptides are a sub-
set of the full experimental pre-selection library with >108 peptides,
they are not a strict subset of the >105 unique peptides recovered
from sequencing the pre-selection library. As our positive and nega-
tive sets were highly unbalanced with a small number of positive
peptides (�102) and a much larger set of negative peptides (�105),
we assessed prediction performance by calculating the area under
the precision-recall curve (AUC), to assess directly the ability of our
methods in identifying true positives among the peptides that we
predict. Precision-recall curves and AUC values were generated
using the R package ROCR (Sing et al., 2005).

3 Results

3.1 High-throughput modeling reproduces experimen-

tally observed enrichment of binder peptides
Previously described experimental yeast display and deep sequencing
generated libraries that were enriched for peptides specifically recog-
nized by four TCRs (Birnbaum et al., 2014). Beginning with the
crystallographic structures of the 2B4, 226, 5cc7 and Ob.1A12
TCRs in complex with their cognate pMHC complexes, we relaxed
these template structures using the Rosetta suite of programs
(Leaver-Fay et al., 2011; Nivon et al., 2013) (see Section 2). We
then computationally modeled and scored the peptides with sequen-
ces in the preselection libraries and four sequential selection
rounds—347 210 peptides for the 2B4 TCR, 811 481 peptides for
the 226 TCR, 809 156 peptides for the 5cc7 TCR and 514 906 pep-
tides for the Ob.1A12 TCR. In total, we modeled and scored
2 482 753 peptides (Birnbaum et al., 2014).

To increase the computational throughput in modeling the struc-
tures of these approximately 2.5 million peptides, we performed a
restricted structural modeling procedure using Rosetta’s fixed back-
bone design application, fixbb, which optimizes side-chain confor-
mations on a fixed backbone using the Rosetta energy function
(Leaver-Fay et al., 2008) (see Section 2). We retained TCR and
MHC side chains in the conformations adopted in the crystallo-
graphic structures with their cognate pMHCs (Fig. 1A and B). The
mean runtime for a single peptide design by the fixbb application
was � 2.6 s.

Once each TCR-pMHC model was generated, we scored the full
complex (GCOMPLEX) and isolated components (GTCR/MHC,
GPEPTIDE) using Rosetta’s score application (see Section 2). These
scores were combined to produce a binding score, DGBIND, which
accounted for the peptide’s interaction energy with both the MHC
and the TCR. The mean runtime to calculate a DGBIND score from a
TCR-pMHC model was � 4.7 s.

To quantitatively assess our peptide modeling and scoring ap-
proach, we examined sets of peptides for which experimental bind-
ing free energies were available for the 2B4, 226 and 5cc7 TCRs
(Supplementary Table S1) (Birnbaum et al., 2014). Correlations be-
tween DGBIND and experimentally measured binding free energies
were greater than 0.66 for all TCRs, and 0.69 for the entire set to-
gether (Fig. 1C).

We next examined the distributions of DGBIND across the four
experimental selection rounds of the yeast display library where
each successive round was further enriched in cross-reactive peptides
via TCR selection. Indeed, DGBIND scoring of modeled complexes
revealed an increasing enrichment of favorable energy scores for
peptides in each subsequent selection round, in congruence with the

subsequent enrichment of cross-reactive peptides for each round
(Fig. 2). Thus, relying on a relatively simple structural modeling
method to enable computational throughput permits the recovery of
experimentally determined peptides bound by a TCR.

3.2 Computational prediction of cross-reactive peptides

by structural modeling
To examine the extent to which our modeling and scoring approach
selected the peptides recognized by the TCRs with the strongest
affinities, we compared the 50 peptides with the most favorable
DGBIND to the 50 peptides with the most reads recovered by deep
sequencing after the fourth round of selection for the 2B4, 226, 5cc7
and Ob.1A12 TCRs (Birnbaum et al., 2014). To assess predictive
performance of our method we defined binding (positive) and non-
binding (negative) peptide sets based on the deep sequencing selec-
tion results (see Section 2). Many of the recovered peptides from the
fourth round of selection were represented by a single read count,
and may not be a true binding peptide. To be conservative in defin-
ing positive and negative sets, we assigned only peptides from the
fourth round of selection with read counts in the top 95th percentile
as binding peptides. Non-binding peptides were then defined as pep-
tides in the preselection library which were not identified in the
fourth round of selection. We asked the computational method to
identify top-scoring peptides from the pool of our small set of bind-
ing peptides (�102) and large set of non-binding peptides (�105).
For a successful computational method, we would expect peptides
with the most favorable DGBIND to be members of the positive set or
to share amino acid preferences with these binding peptides. Among
the 50 peptides that had the most favorable DGBIND according to
our modeling and scoring method, 28, 27, 25 and 28 of these pepti-
des were in the positive set of peptides for the 2B4, 226, 5cc7 and
Ob.1A12 TCRs, respectively. Therefore, our scoring method was
capable of identifying true binders within a large pool consisting pri-
marily of non-binding peptides.

The amino acid preference generated using the 50 top experi-
mentally selected peptides (50 peptides with the most abundant
reads counts in round four) illustrated binding motifs distinct for
each TCR (Birnbaum et al., 2014) (Fig. 3A). To further examine
how the best scoring peptides compared to those identified experi-
mentally after TCR selection, we compared heatmaps of amino acid
preferences for the 50 top experimentally selected peptides and the
top 50 computationally selected peptides (50 peptides with the most
favorable DGBIND from the pool of positive and negative peptide
sets) for each TCR (Fig. 3A and B). Many sequence features were
shared between the top-scoring peptides and the peptides with the
most abundant read counts. To quantify similarity between heat-
maps, we flattened the heatmap matrices into vectors and calculated
the Pearson correlation between them. Excluding those anchor posi-
tions restricted in the libraries for MHC binding, correlations be-
tween the heatmaps representing experimentally selected and
computationally selected peptides were 0.91, 0.86, 0.84 and 0.53
for TCRs 2B4, 226, 5cc7 and Ob.1A12, respectively.

Given that our positive and negative sets are highly unbalanced
(fewer binding than non-binding peptides), we utilized the area under
the precision-recall curve (AUC) to quantitatively compare the per-
formance of three structure-based scoring approaches: DGBIND,
GCOMPLEX and DGBIND.2 (see Section 2) (Supplementary Fig. S1).
While DGBIND represents interactions between the peptide and TCR
and also the peptide and MHC, GCOMPLEX additionally accounts for
deformations of the peptide itself. In contrast, DGBIND.2 removes
interaction energies between peptide and MHC and only incorporates
interaction energies between TCR and pMHC. DGBIND achieved
highest AUC values for three out of four TCRs, while GCOMPLEX was
slightly better in the case of the 5cc7 TCR (GCOMPLEX AUC ¼ 0.23,
DGBIND AUC ¼ 0.21). The AUC values were especially different for
Ob.1A12 TCR (GCOMPLEX AUC ¼ 0.01, DGBIND AUC ¼ 0.13),
where binding peptides are one residue longer and contain fewer
restricted anchor residues in the combinatorial libraries. Thus, we
conclude that the inclusion of intra-peptide energies in GCOMPLEX is
more detrimental than beneficial. DGBIND.2 showed the lowest overall
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performance, indicating that the inclusion of interaction energies be-
tween peptide and MHC as in DGBIND was critical to the success of
cross-reactivity predictions. A possible reason is that some of the pep-
tides in the preselection library may not bind stably to the MHC.
Because a stable peptide-MHC interaction is a prerequisite for TCR
binding, the incorporation of interaction energies between peptide
and MHC improved prediction performance.

We note that in the case of the Ob.1A12 TCR, DGBIND was suc-
cessful in assigning favorable scores to peptides carrying the ‘HF’
motif as was found experimentally (Birnbaum et al., 2014). It is evi-
dent from the experimental heatmap that Ob.1A12 is tolerant of
amino acid substitutions outside the anchor residues and the central
HF motif. This feature of Ob.1A12 is also captured by our modeling
and scoring method, with the exceptions of a strong preference for
Ala at position -4, Arg at -2, Lys at -1, and a few other less frequent
substitutions in the experimental heatmap that DGBIND could not
reproduce.

The 2B4, 226 and 5cc7 TCRs all recognize the MCC peptide
(ADLIAYLKQATKG), which is presented in the TCR-pMHC crys-
tal structures of 2B4 and 226, but the crystal structure for 5cc7 has
a different peptide (5c1, ANGVAFFLTPFKA). Both the experimen-
tally selected peptides and the top-scoring peptides by our modeling
method revealed peptide motifs similar to these cognate peptides
(their residues are in black boxes in Fig. 3A and B).

Because our modeling method started with the ternary complex
structure containing cognate peptides, our method may simply favor
peptides with similar sequences. Nevertheless, our scoring method
does reproduce many amino acid substitutions seen in the top ex-
perimentally selected peptides (marked with amino acid frequency

in Fig. 3A and B). We defined a substitution to be shared between
the experimental and computed peptide sets if the frequency of the
mutant amino acid at its peptide position was 2 fold higher than
what would be expected by chance in both heatmaps (based on the
NNK codon library used to design the yeast-display libraries). The
following substitutions are shared between the two heatmaps for
2B4: L-1H, L-1Q, Y3F, Q6A and T8S. For 226, the shared substitu-
tions are L-1W, A2G, Y3F, Q6A and Q6S. For 5cc7, the shared sub-
stitutions are F3Y, P7A and F8Y. For Ob.1A12, the shared
substitutions are N-3H, P-2Q, N6A, I7Q, V8I, T9G, T9C and
P10R. Ob.1A12 has an atypical docking mode with the TCR shifted
toward the N-terminus of the peptide. It is surprising that in the
wild-type crystal structure no peptide residues past residue 5 interact
with the TCR, yet we see strong shared amino acid substitutions be-
tween the top 50 experimentally selected peptides and our top 50
computationally selected peptides for residues 6–10 at and near the
C-terminus (Fig. 3A and B). We assume since we do not allow for
changes in TCR binding conformation, these shared substitutions
are likely favored due to interactions between peptide and MHC. In
summary, although our modeling method may be biased toward the
cognate peptide, our modeling and scoring method is still capable of
identifying target peptides with beneficial or permissible mutations.

3.3 Comparison with an approach based on sequence

similarity
Conscious that sequence motifs of top experimentally selected pepti-
des closely matched that of the cognate peptide in the crystal struc-
ture, we asked whether scoring peptides solely on sequence

Fig. 2. Distributions of DGBIND for peptides recovered from different selection rounds. We generated structural models of TCR-pMHC complexes using peptide sequences

from all experimental selection libraries. For each unique peptide recovered in each selection round, we modeled its structure bound to MHC and TCR and computed DGBIND

for the TCR-pMHC complex. The probability densities for DGBIND are plotted for each round of selection for the four TCRs analyzed in this study, 2B4, 226, 5cc7 and

Ob.1A12. The probability density is defined such that the histogram has a total area of one. (n ¼ total number of unique peptides in the given round; < 200: percent of peptides

in the round with DGBIND less than 200)
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Fig. 3. Amino acid frequencies for top peptides selected by yeast display or by computation for mouse and human TCRs. (A) Heatmaps represent the amino acid frequencies at

peptide positions for the 50 peptides with the most abundant reads in the fourth round of selection for four TCRs (2B4, 226, 5cc7 and Ob.1A12). (B) Amino acid frequencies

at peptide positions for the 50 peptides with the most favorable DGBIND. The peptide pool for DGBIND computation was the union of positive and negative binding sets (>105

peptides). The peptide residues from the template TCR-pMHC structures used for modeling, MCC (for the 2B4 and 226 TCRs), 5c1 (for the 5cc7 TCR) and MBP (for the

Ob.1A12 TCR) are outlined in black. Peptide positions restricted in the yeast display libraries to maintain MHC binding are marked in red beneath the heatmap. Shared amino

acid substitutions between experimental and computational heatmaps with frequencies two-fold higher than expected are marked by displaying the amino acid frequency at

the substitution position. Correlations of frequencies between the experimental and computational heatmap for 2B4, 226, 5cc7 and Ob.1A12 TCRs are 0.91, 0.86, 0.84 and

0.53, respectively (excluding restricted positions). (C) Precision-recall curves assessing binding prediction performance of three methods: (1) computational DGBIND, (2)

BLOSUM62 sequence similarity to cognate peptide and (3) the average rank of the two methods. Values for the area under the curve (AUC) are displayed in the upper right

corner. (Color version of this figure is available at Bioinformatics online.)
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similarity to cognate peptide would also perform well in identifying
binding peptides. To provide a quantitative assessment of how our
structural-based approach compared with an approach based on se-
quence similarity to the cognate peptide, we computed a
BLOSUM62 similarity score (Henikoff and Henikoff, 1992) be-
tween the cognate peptide sequence and the sequence of each pep-
tide in the pool of positive and negative peptides. We find that
BLOSUM62 similarity outperforms DGBIND in classification of
binding peptides for the three mouse TCRs, but DGBIND is higher
performing in the case of the human Ob.1A12 TCR (Fig. 3C). This
result is further illustrated by examining the amino acid frequencies
in Figure 3A and B. For the mouse TCRs, the preferred amino acid
for the majority of residues in the top experimentally selected pepti-
des is that of the cognate peptide. However, for the Ob.1A12 TCR,
only a three residue motif preference in the center of the peptide
(HFF) is shared with the cognate peptide. Hence, while BLOSUM62
similarity performed well in prediction of peptide binding for TCRs
with limited cross-reactivity, DGBIND showed stronger performance
in prediction of peptides for a more degenerate TCR, capable of tol-
erating a range of amino acids near the N- and C-terminus of the
peptide.

Given the different performance between the BLOSUM62 simi-
larity score and DGBIND, we hypothesized that the two methods
might complement one another. To test this, we examined the
precision-recall curve of a score that combines BLOSUM62 similar-
ity and DGBIND by averaging the rank for each prediction between
the two methods. Indeed, the average rank method led to AUC of
0.57 and 0.41 for the 2B4 and 226 TCRs, respectively, showing
large improvements in binding prediction performance over the bet-
ter method for these TCRs (AUC ¼ 0.31 and 0.33 for BLOSUM62;
Fig. 3C). For the 5cc7 TCR, the average rank method performed as
well as the BLOSUM62 and better than DGBIND, while for the
Ob.1A12 TCR, the average rank method performed slightly worse
than DGBIND but better than BLOSUM62 (Fig. 3C). The overall im-
provement in prediction performance using the average rank and the
higher performance of DGBIND compared with BLOSUM62 in the
case of the Ob.1A12 TCR highlight the value of incorporating struc-
tural information in next-generation peptide prediction algorithms.

4 Discussion

Numerous methods exist for the prediction of peptide binding to ei-
ther class I or class II MHC molecules and have achieved high accur-
acy dependent upon the training and testing data utilized (Zhao and
Sher, 2018). However, far fewer tools are available for prediction of
TCR binding to pMHC and the accuracy of existing tools show
room for improvement (Lanzarotti et al., 2018; Ogishi and
Yotsuyanagi, 2019; Pierce and Weng, 2013; Schneidman-Duhovny
et al., 2018; Tung et al., 2011). Utilizing structural information
from four TCR-pMHC complexes, we present a high-throughput
modeling and scoring approach capable of successfully selecting
cross-reactive peptides from large pools of primarily non-binding
peptides.

Several other groups incorporated structural information of the
TCR-pMHC interface to aid in binding prediction. In a recent study,
optimized FoldX and Rosetta energy terms were used to predict pep-
tide binding given the sequences of MHC, TCR and a query peptide
(Lanzarotti et al., 2018). We noted that the availability of a high-se-
quence-identity TCR structure template and successful prediction of
peptide binding to MHC were vital to the success of their TCR-
pMHC binding prediction. Similarly, the method ITCell utilizes
atomic statistical potentials to predict a TCR’s peptide epitope from
all possible peptides in the full-length parent protein when given
sequences of class II MHC, the TCR variable region and the parent
protein antigen as input (Schneidman-Duhovny et al., 2018). In the
majority of test cases, ITCell ranked the correct peptide epitope
among the top 20 peptides among all peptides that could result from
the parent antigen.

Benchmarking sets for the aforementioned methods were gener-
ated by using overlapping peptides from the parent protein sequence
of the cognate peptide as negatives (excluding the cognate), based

on the assumption that parent protein sequence would harbor only a
single peptide epitope for a given TCR, which resulted in �102–103

query peptides per TCR-pMHC test case (Lanzarotti et al., 2018;
Schneidman-Duhovny et al., 2018). A more exact set of non-binding
peptides would require experimental evidence for failed binding.
Here, we present deep-sequencing results from yeast display as a ro-
bust and larger benchmarking tool for TCR epitope prediction. In
particular, each preselection library provided >105 peptides, which
were not selected by the TCR of interest and are likely negative non-
binding peptides. Although 105 peptides is still a small subset of the
theoretical diversity for the 13-mer (�8.1 � 1016) and 14-mer (�1.6
� 1018) peptides, they represent a larger challenge than previous
benchmarks for predicting TCR epitopes.

Like our study, the success of both of the aforementioned meth-
ods relied on accurate template-based modeling of the TCR-pMHC
complex (Lanzarotti et al., 2018; Schneidman-Duhovny et al.,
2018). In our work, modeling of the TCR-pMHC was simplified as
crystal structures of TCR-pMHC complexes existed for all four
TCRs investigated and only structural changes resulting from the
different peptide sequences needed to be accounted for. We note the
success of our method requires template crystal structures and do
not expect success with modeled structures unless they are structur-
ally accurate. Future work examining TCR-pMHC modeling from
the sequence in the context of our prediction method could broaden
the applicability of our method.

Previous studies showed the TCR’s complementarity determin-
ing region (CDR) loops can be flexible and change their conforma-
tions upon ligand binding (Gagnon et al., 2006; Pierce and Weng,
2013; Reiser et al., 2002, 2003; Scott et al., 2011). Furthermore, it
has been shown CDR flexibility can contribute to cross-reactivity
(Hawse et al., 2014; Reiser et al., 2003). It may be surprising how
well our modeling and scoring method performed without making
any structural adjustments to the TCR molecules. It is unlikely our
modeling method could predict antigens that require large backbone
movements, or altered binding orientation, of the TCR for recogni-
tion. However, while our modeling method is conservative in terms
of modeling any structural changes of the TCR’s CDR loops, it
appears to perform well in providing poor scores for unfavorable
peptides.

Large conformational changes of the peptide can also occur
upon TCR binding. For example, the DMF5 TCR that recognizes
the MART-1 melanoma antigen presented by the class I MHC pro-
tein HLA-A2 was shown to cross-react with the DRG class of pepti-
des that are chemically distinct from MART-1 (Gee et al., 2018).
DMF5 TCR binding to an HLA-A2-presented DRG-class peptide
led to a ‘register shift’ in the peptide, causing a C-terminal peptide
extension from the MHC binding groove (Riley et al., 2018).
Identification of cross-reactive peptides with such large structural
adjustments relative to cognate peptide would be missed by our
fixed-backbone peptide-modeling approach, as would instances in
which MHC deformations are required (Borbulevych et al., 2009,
2011). However, peptides of class II pMHC complexes (i.e. those
studied here) typically do not bulge from the groove and class II
pMHC complexes are thus less prone to backbone rearrangements
(Ayres et al., 2017; Tynan et al., 2005). Hence, the success seen here
with class II complexes may not fully translate when predicting
cross-reactivity in class I systems, although we should anticipate suc-
cess with conformationally simpler modes of cross-reactivity that in-
volve more commonly observed molecular mimicry mechanisms
(Borbulevych et al., 2011; Macdonald et al., 2009).

Even when accounting for simple molecular mimicry mecha-
nisms in cross-reactivity, peptide side-chain modeling must also be
precise as a single erroneous side-chain conformation could lead to
false positive or false negative predictions. While we do not have an
estimate for the accuracy of side-chain modeling for our modeled
peptides here, our previous work showed Rosetta’s side-chain opti-
mization methods performed well, albeit on a limited set of TCR-
pMHC point mutations (Borrman et al., 2017). Examining v1 angle
distributions for peptide residues in our models of the top binding
peptides revealed limited v1 angle variance at residues with strong
amino acid preferences. Future mutational and structural assays
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could examine whether rotamer conservation for preferred amino
acids at the TCR-pMHC interface is critical to binding. As advance-
ments in technology allow for faster and more accurate modeling of
larger conformational changes, future studies may focus on allowing
for flexibility in CDR loops, MHC and peptide backbone to poten-
tially identify cross-reactive peptides with distinct structural and
chemical signatures.

To score the modeled TCR-pMHC structures, we accounted for
the interactions made by the peptide with the TCR and the MHC
using Rosetta’s scoring application with default weights for energy
terms. Future work could potentially improve upon our results by
optimizing energy term weights using machine learning approaches
and taking advantage of structural and chemical trends in known
TCR-pMHC complexes. For example, there is evidence that im-
munogenic peptides are enriched in hydrophobic amino acids at
peptide centers (Calis et al., 2013), and structural modeling com-
bined with neural-network optimized scoring has been used to pre-
dict neoantigen immunogenicity (Riley et al., 2019). Here, we
employed time-saving modeling and scoring methods to efficiently
interrogate large pools of peptides for binding. Future studies opti-
mizing score functions and weights for predicting TCR cross-
reactivity might take into account the consequences of the weak
affinities TCRs have for their ligands, which can stem from the ‘im-
perfect’ interfaces that TCRs form, contributing to the difficulty in
discriminating between potential ligands using default functions.

One potential application of our method is in cancer immuno-
therapy. Accurate identification and targeting of neoantigens (pepti-
des derived from mutated tumor proteins) could lead to successful
development of immuno-therapeutics. Recent work highlighted the
importance of incorporating MHC binding strength, self-similarity
to reference antigen and peptide-centric features to accurately pre-
dict neoantigen immunogenicity (Bjerregaard et al., 2017; Smith
et al., 2019). Building on this and other work, structural modeling
and scoring of peptide neoantigens in the context of the full TCR-
pMHC complex rather than the MHC alone may provide additional
insights beneficial to immunogenic prediction (Riley et al., 2019).

Many efforts have been made to enhance TCR affinity for tumor
and viral antigens (Chervin et al., 2008; Holler et al., 2000; Li et al.,
2005). However, enhanced affinity may lead to increased cross-
reactivity (Hellman et al., 2019; Linette et al., 2013; Riley and
Baker, 2018). To check for unwanted cross-reactivity of engineered
TCRs, one may perform alanine scanning of the antigen to identify
motifs essential for binding and then searching for possible self-
antigens in a protein sequence database (Obenaus et al., 2015). The
alanine scanning can be expedited using DNA barcode-labeled
MHC multimers (Bentzen et al., 2016, 2018). A more direct ap-
proach is to interrogate all human peptides for cross-reactivity, like
the recent T-Scan method which utilized the lentiviral delivery of an
antigen library spanning the entire human proteome into antigen-
presenting cells. Selected peptides confirmed the cognate MAGE-A3
epitope along with several novel cross-reactive endogenous self-
peptides (Kula et al., 2019). Our modeling and scoring method
could represent an in silico approach with a similarly broad cover-
age. We could scan all peptides of the entire human proteome com-
putationally for possible binding to an engineered TCR granted a
template TCR-pMHC crystal structure is available. The thus identi-
fied cross-reactive antigens could be further tested experimentally
using binding assays or assays measuring immunogenic response.
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