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Leukotriene B4 (LTB4) is a lipid mediator of inflammation that 
is generated from arachidonic acid via the 5-lipoxygenase path-
way. Previous studies have reported that the receptors of LTB4, 
BLT1, and BLT2 play mediatory roles in the allergic airway 
inflammation induced by ovalbumin (OVA). However, considering 
that house dust mites (HDMs) are the most prevalent allergen 
and well-known risk factor for asthmatic allergies, we are inte-
rested in elucidating the contributory roles of BLT1/2 in HDM- 
induced allergic airway inflammation. Our aim in this study 
was to investigate whether BLT1/2 play any roles in HDM-induced 
allergic airway inflammation. In this study, we observed that 
the levels of ligands for BLT1/2 [LTB4 and 12(S)-HETE (12(S)- 
hydroxyeicosatetraenoic acid)] were significantly increased in 
bronchoalveolar lavage fluid (BALF) after HDM challenge. Block-
ade of BLT1 or BLT2 as well as of 5-lipoxygenase (5-LO) or 
12-lipoxygenase (12-LO) markedly suppressed the production 
of TH2 cytokines (IL-4, IL-5, and IL-13) and alleviated lung 
inflammation and mucus secretion in an HDM-induced eosino-
philic airway-inflammation mouse model. Together, these results 
indicate that the 5-/12-LO-BLT1/2 cascade plays a role in HDM- 
induced airway inflammation by mediating the production of 
TH2 cytokines. Our findings suggest that BLT1/2 may be a 
potential therapeutic target for patients with HDM-induced 
allergic asthma. [BMB Reports 2021; 54(3): 182-187]

INTRODUCTION

Asthma is a chronic airway inflammatory disease which shows 
infiltration of immune cells into the airways, airway obstruction, 
airway hyperresponsiveness (AHR), and mucus hypersecretion 

(1, 2). A risk factor for developing asthma is exposure to sub-
stances that provoke allergic responses, including environmental 
allergens such as pollen and house dust mites (HDMs) (2, 3). 
HDMs are the most prevalent allergen and a risk factor for 
asthmatic allergies (4, 5). In total, 45-85% of asthma patients 
are allergic to HDMs, with geographical differences (2, 6). 
Previous studies using mouse models reported that chronic 
exposure to HDMs induces eosinophilic airway inflammation 
and elevation of TH2-associated cytokines in the bronchoalveolar 
lavage fluid (BALF) (3, 4, 7).

Leukotriene B4 (LTB4) is a major lipid mediator of inflamma-
tory processes and immune responses. LTB4 is derived via the 
arachidonic-acid pathway and works as a chemoattractant 
molecule for leukocytes, such as granulocytes, monocytes, 
and T lymphocytes, to sites of acute inflammation (8-13). This 
proinflammatory molecule has two receptors, BLT1 and BLT2 
(14). These receptors are members of the G protein-coupled 
receptor (GPCR) protein and are expressed on cell surface 
(14-16). BLT1, a high-affinity receptor of LTB4, is exclusively 
expressed on the surface of leukocytes. On the other hand, 
BLT2 shows a low-affinity for LTB4, and it is expressed in 
various tissues, including the spleen, lung, and liver (14, 17). 
BLT2 was shown to interact with various arachidonic acid- 
derived metabolites, such as 12(S)-hydroxyeicosatetraenoic acid 
(12(S)-HETE) and 12-hydroxyheptadecatreinoic acid (12-HHT), 
in addition to LTB4 (14). Our previous research showed that 
the LTB4 receptors BLT1 and BLT2 play critical mediatory roles 
in the development of allergic asthma (8, 18-21). Although 
LTB4 receptors were suggested to play roles in OVA-induced 
asthmatic airway inflammation, their roles in HDM-induced 
asthmatic mouse models have not been previously studied.

In this study, we examined the mediatory role of the BLT1/2- 
linked cascade in HDM-driven airway inflammation. Inhibition 
of BLT1/2 markedly reduced the production of TH2 cytokines, 
IL-4, IL-5, and IL-13, in the BALF of HDM-induced model mice. 
We also observed that BLT1/2 inhibition reduced lung inflam-
mation and mucus secretion. In addition, the production of TH2 
cytokines, lung inflammation, and mucus secretion are inhibited 
by the blockade of 5-/12-LO, which are enzymes that catalyze 
the production of ligands for BLT1/2. Collectively, these results 
suggest that the 5-/12-LO-BLT1/2-linked cascade contributes to 
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Fig. 1. HDM-induced TH2 cytokine synthesis is dependent on BLT1 
and BLT2. (A-C) We randomly divided mice into four groups, gave 
them HDM sensitization and challenge, and sacrificed them 24 h 
after the last challenge. We collected BALF for ELISA. (A) Schematic 
of the HDM-induced eosinophilic airway inflammation model. We 
induced airway inflammation by sensitization with HDM (25 g) and 
challenge with HDM (6.25 g). We administered inhibitors via i.p. 
injection 1 h before every challenge. (B) We analyzed the levels of 
LTB4 and 12(S)-HETE in BALF using ELISA. Data are shown as the 
mean ± SD (n = 5-7 per group). ***P ＜ 0.001 versus the control 
group. (C) We analyzed the levels of IL-4, IL-5, and IL-13 in BALF 
using ELISA. Data are shown as the mean ± SD (n = 7-12 per group). 
***P ＜ 0.001 versus the negative (NC) or positive (DMSO) control group.

the development of HDM-induced eosinophilic airway inflam-
mation via TH2 cytokine production. Thus, we propose that 
BLT1/2 may be a potential therapeutic target for HDM-sensi-
tive asthmatic patients.

RESULTS

HDM-induced TH2 cytokine synthesis is dependent on BLT1/2
We established HDM-induced eosinophilic airway inflammation 
as previously described (3) with some modifications. Mice were 
intranasally sensitized with 25 g of HDMs on days 0, 1 and 2 
and then challenged with 6.25 g HDMs on days 14, 15, 18, 
and 19. Mice were sacrificed on day 20. Inhibitors were 
intraperitoneally injected 1 h before every challenge (Fig. 1A). 
To study the roles of BLT1/2 signaling in HDM-induced airway 
inflammation, we measured the levels of their ligands (LTB4 
and 12(S)-HETE) in BALF. As shown in Fig. 1B, the levels of 
LTB4 and 12(S)-HETE in BALF were markedly elevated after 
HDM challenge. The levels of the TH2 cytokines, IL-4, IL-5 and 
IL-13 were also increased in BALF as a result of HDM challenge 
(Fig. 1C). These increased cytokine levels were significantly 
abolished by pretreatment with U75302 or LY255283, an inhi-
bitor of BLT1 or BLT2 (Fig. 1C). Together, these results indicate 
that BLT1 and BLT2 contribute to TH2 cytokine synthesis in 
HDM-induced airway inflammation.

BLT1/2 contributes to HDM-induced eosinophilic airway 
inflammation
To examine whether BLT1/2 have roles in HDM-induced eosino-
philic airway inflammation, we investigated lung histology and 
cell populations. Histopathological analysis and quantitative 
analysis of inflammation scores with H&E staining showed that 
lung inflammation induced by HDM administration was markedly 
attenuated by BLT1 antagonist U75302 or BLT2 antagonist 
LY255283 (Fig. 2A). In addition, increased mucus secretion 
induced by HDMs was also attenuated by U75302 and 
LY255283 (Fig. 2A). HDM administration markedly increased 
the influx of total cells in BALF. The increased total cell influx 
in BALF by HDM administration was markedly abolished by 
pretreatment with U75302 or LY255283 (Fig. 2B). However, 
the numbers of neutrophils, macrophages, and lymphocytes 
were not affected by HDMs (Fig. 2B). Taken together, these 
results suggest that BLT1 and BLT2 contribute to HDM-induced 
eosinophilic airway inflammation.

5-/12-lipoxygeneases play roles in HDM-induced TH2 
cytokine synthesis
To further elucidate the contributory roles of BLT1 and BLT2 in 
the HDM-induced eosinophilic airway inflammation model, 
we investigated whether 5-LO and 12-LO, the enzymes catalyzing 
the synthesis of BLT1/2 ligands, are also involved. The levels 
of LTB4 and 12(S)-HETE in BALF were highly elevated by 
HDM-induced inflammation and were markedly reduced by 
MK886 or baicalein, an inhibitor of 5-LO or 12-LO (Fig. 3A). 
The increased TH2 cytokine secretion in HDM-induced airway 
inflammation was also attenuated by pretreatment with MK886 
or baicalein (Fig. 3B). Thus, these results suggest that HDM- 
induced TH2 cytokine production is dependent on 5-/12-LO, 
the enzymes catalyzing the synthesis of BLT1/2 ligands.

HDM-induced eosinophilic airway inflammation is 
suppressed by 5-/12-lipoxygenase inhibition
Finally, we investigated the effect of 5-/12-LO inhibition on 
HDM-induced eosinophilic airway inflammation. MK886 or 
baicalein treatment clearly attenuated alveolar hemorrhage 
and the influx of immune cells into the airway (Fig. 4A). Addi-
tionally, the administration of MK886 or baicalein significantly 
reduced mucus secretion (Fig. 4A). The numbers of total cells 
and eosinophils were also decreased by treatment with these 
inhibitors (Fig. 4B). Together, these results suggest that the 5-/ 
12-LO-BLT1/2 cascade contributes to HDM-induced eosinophilic 
airway inflammation.

DISCUSSION

In this study, we found that the levels of LTB4 and 12(S)-HETE, 
the ligands of BLT1/2, are highly elevated in BALF. In addition, 
we found that BLT1/2 contributes to the production of the TH2 
cytokines, IL-4, IL-5 and IL-13, in HDM-induced airway inflam-
mation. Furthermore, BLT1/2 inhibition suppressed airway in-
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Fig. 2. BLT1 and BLT2 contribute to HDM-induced eosinophilic airway inflammation. (A, B) Mice were intraperitoneally injected with U75302 
or LY255283 1 h before every challenge. We harvested lung tissue 24 h after the last challenge, fixed them in formalin and embedded 
them in paraffin for section staining. (A) Lung tissue sections were stained with H&E (upper panel) or PAS (lower panel). We measured and 
scored peribronchial and perivascular lung inflammation or mucus secretion . Data are shown as the mean ± SD (n = 4-5 per group). 
*P ＜ 0.05, ***P ＜ 0.001 versus each control group. Scale bar, 100 m. (B) Total immune cells, eosinophils, neutrophils, monocytes 
and lymphocytes in BALF were obtained using cytospin and stained with Diff-quik. Data are shown as the mean ± SD (n = 4-5 per 
group). ***P ＜ 0.001 versus each control group. Scale bar, 50 m.

Fig. 3. 5-/12-lipoxygeneases play roles in HDM-induced TH2 cytokine 
synthesis. (A, B) Mice were intraperitoneally injected with MK886 
or baicalein 1 h before every challenge. We collected BALF for 
ELISAs. (A) We analyzed the levels of LTB4 and 12(S)-HETE in BALF 
using ELISA. Data are shown as the mean ± SD (n = 5-7 per group). 
*P ＜ 0.05, ***P ＜ 0.001 versus the control group. (B) We analyzed 
the levels of IL-4, IL-5 and IL-13 in BALF using ELISA. Data are 
shown as the mean ± SD (n = 7-12 per group). ***P ＜ 0.001 
versus the negative (NC) or positive (DMSO) control group.

Fig. 4. HDM-induced eosinophilic airway inflammation is suppressed 
by 5-/12-lipoxygenase blockade. (A, B) Mice were intraperitoneally 
injected with MK886 or baicalein 1 h before every challenge. 
We harvested lung and liver tissues 24 h after the last challenge, 
fixed them in formalin and embedded them in paraffin for section 
staining. (A) Lung tissue sections were stained with H&E (upper panel) 
or PAS (lower panel). We measured and scored peribronchial and 
perivascular lung inflammation or mucus secretion. Data are shown 
as the mean ± SD (n = 4-5 per group). *P ＜ 0.05, ***P ＜ 0.001 
versus each control group. Scale bar, 100 m. (B) We obtained total 
immune cells, eosinophils, neutrophils, monocytes, and lymphocytes 
in BALF using cytospin and stained them with Diff-quik. Data are 
shown as the mean ± SD (= 4-5 per group). ***P ＜ 0.001 versus 
each control group. Scale bar, 50 m.

flammation and mucus secretion in the lung tissues of mice 
with HDM-induced allergic asthma, thus together suggesting 
that BLT1/2 contributes to eosinophilic airway inflammation in 
HDM-induced asthma by producing TH2 cytokines. Blockade 
of 5-LO or 12-LO, the synthesizing enzymes for LTB4 or 12(S)- 
HETE, also reduced cytokine secretion, airway inflammation, 
and mucus secretion. Our findings indicate the mediatory role 
of the 5-/12-LO-BLT1/2 cascade in HDM-induced eosinophilic 
airway inflammation.

Previous studies reported that repeated exposure to HDMs 
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induces eosinophilic airway inflammation with greater TH2-asso-
ciated humoral immune responses and airway remodeling (4, 
7). The critical roles of TH2 cytokines in the HDM-induced 
allergic asthma mouse model are already known (2, 7, 22-24). 
These cytokines have been reported to induce eosinophil influx, 
airway smooth muscle hyperplasia, and mucus secretion (25). 
Recent studies also revealed that HDM treatment induces the 
release of lipoxygenase-derived lipid mediators in BALF (26). 
In addition, HDM-induced airway inflammation showed increased 
levels of cysteinyl leukotrienes and 12/15-LO metabolites (27). 
However, the role of BLT1/2, receptors for LTB4 or 12(S)-HETE, 
in HDM-induced airway inflammation has not yet been studied. 
Our results clearly demonstrate that BLT1/2 play mediatory 
roles in HDM-induced eosinophilic airway inflammation (Fig. 
2). In addition, we conducted ELISA with serum to identify any 
changes in cytokine levels. Similar to the levels in the BALF, 
the levels of TH2-related cytokines (especially IL-5 and IL-13) in 
the serum were also upregulated by HDM administration and 
reduced by the treatment of BLT1/2 antagonists (Supplementary 
Fig. 1). Although intranasal HDM administration induces local 
airway inflammation, we think that the effect involved the 
complex systemic responses as well (such as the adaptive 
immune response and elevated TH2 cells). In support of the 
contributory roles of BLT1/2, we also demonstrate that 5-LO 
and 12-LO, the enzymes catalyzing the synthesis of BLT1/2 
ligands, are necessary for the development of HDM-induced 
airway inflammation (Figs. 3 and 4). The detailed mechanism 
by which BLT2 cascade mediates HDM-driven eosinophilic 
airway inflammation is not elucidated yet. However, our pre-
vious studies have shown that BLT2 significantly contributes to 
reactive oxygen species (ROS) generation via NADPH oxidase 
(NOX) stimulation (28, 29). We also demonstrated that the 
BLT2 cascade activates redox-sensitive NF-B in mouse macro-
phages (30). BLT2 was also shown to stimulate NF-B signaling 
in allergen-stimulated mast cells, thus mediating TH2 cytokine 
production (19, 21). Taken these results together, we propose 
that BLT2 mediates NOX-ROS-NF-B signaling to contribute to 
the synthesis of TH2-related cytokines and other inflammatory 
mediators in the airway.

Eosinophilia is one characteristic of HDM-induced allergic 
airway inflammation (Fig. 2). Nonetheless, we cannot rule out 
the contribution of other types of immune cells including 
macrophages, mast cells, and T lymphocytes (31). For example, 
the mediatory role of mast cells in the exacerbation of asthma 
has been well reported (32-36), and we previously demonstrated 
the role of BLT2 in the mast-cell activation and secretion of 
TH2 cytokines in vitro, as well as in an OVA-induced mouse 
model (18, 19, 21, 37). Thus, we speculate that BLT2 may act 
on mast cells to contribute to HDM-induced airway inflamma-
tion; clearly, further studies are necessary to elucidate the role 
of immune cells in the BLT1/2-linked cascade induced by 
HDM challenge.

In summary, our results suggest that the 5-/12-LO-BLT1/2 
cascade clearly contributes to the development of HDM-induced 

eosinophilic airway inflammation via TH2 cytokine production. 
This is the first report on the role of BLT1/2 in an HDM- 
induced asthmatic mouse model, and our results may provide 
a potential therapeutic target for HDM allergic asthma.

MATERIALS AND METHODS

Reagents
We obtained:
•Dimethyl sulfoxide (DMSO) from Sigma-Aldrich (St. Louis, 

MO). 
•MK886 from Calbiochem (La Jolla, CA, USA). 
•U75302 and baicalein from Enzo Life Sciences (Farmingdale, 

NY, USA). 
• LY255283 was obtained from Cayman Chemical (Ann Arbor, 

MI).

HDM-induced eosinophilic airway inflammation mouse 
model
We obtained female C57BL/6 mice (8-9 weeks old) from Young- 
Bio (Seongnam, Korea). HDM extract (Greer Laboratories, Lenoir, 
NC), derived from Dermatophagoides pteronyssinus (Der p), 
was resuspended in saline and used to induce airway inflam-
mation, as previously described with some modifications (Fig. 
1A) (3). Briefly, we anesthetized mice with isoflurane intranasally 
sensitized with 25 g of HDMs in 20 l of saline on days 0, 1 
and 2. We did challenges with 6.25 g of HDMs in 20 l of 
saline on days 14, 15, 18, and 19. Negative controls received 
20 l of saline intranasally on each injection. The mice were 
sacrificed on day 20. For the inhibition experiments, we 
administered LY255283 (10 mg/kg), U75302 (0.5 mg/kg), MK886 
(0.5 mg/kg), baicalein (20 mg/kg) or a vehicle control (DMSO) 
intraperitoneally (i.p.) 1 h before every challenge. The doses of 
the inhibitors used in this study were within the concentration 
ranges used in a previous study (38). Mice were maintained in 
a temperature-controlled facility under a 12-h light-dark cycle 
with free access to water and food. We treated all experimental 
animals used in this study according to guidelines approved by 
the Institutional Animal Care and Use Committee of Korea 
University (KU-IACUC), and the experimental protocols were 
approved by KU-IACUC (Approval no. KU-IACUC-2019-0056).

Measurement of IL-4, IL-5, IL-13, LTB4 and 12(S)-HETE
We quantified the levels of IL-4, IL-5, IL-13, LTB4 and 12(S)- 
HETE in the supernatants of the BALF using an ELISA kit (R&D 
Systems for IL-4, IL-5 and IL-13; Enzo Life Sciences for LTB4 
and 12(S)-HETE) according to the manufacturer’s instructions. 
We obtained BALF from mice by tracheal cannulation using 
0.65 ml of PBS; we centrifuged the collected BALF at 1000 × g 
for 3 min (20). Then, we collected the supernatant for ELISA.

Analysis of BAL cells and lung histology
Inflammatory cells collected from BALF by centrifugation (1,000 
× g for 3 min) were washed with PBS. Next, cytocentrifuge 
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slides of BAL cells were fixed and stained with Diff-Quik. We 
harvested lung tissues, fixed them in 10% formaldehyde for 3 
weeks, and embedded them in paraffin. We mounted Lung 
sections (4.5 m thickness) onto SuperfrostTM Plus glass slides 
(Fisher Scientific, Pittsburgh, PA, USA) and deparaffinized and 
stained them with H&E and periodic acid-schiff (PAS). We did 
a quantitative histological analysis by five blinded investigators. 
We evaluated the degree of peribronchial and perivascular 
lung inflammation on a subjective scale from 0 to 3, as 
previously described (8). For the quantification of goblet cells 
in the airway, we used a five-point grading system: 0 ＜ 0.5% 
PAS positive cells; 1 ＜ 25%; 2, 25-50%; 3, 50-75%; and 4 ＞ 
75% (39). All images were acquired using a BX51 microscope 
(Olympus, Tokyo, Japan) equipped with a DP71 digital camera 
(Olympus).

Statistical analysis
We did all statistical analyses with one way analysis of 
variance, followed by Tukey’s post hoc test. We used SPSS 
software (IBM SPSS Statistics for Windows, version 21.0; IBM 
Corp., Armonk, NY, USA) for statistical analysis. The results 
are presented as the mean ± SD; P ＜ 0.05 indicated statistical 
significance.
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