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Abstract

Convolutional Neural Networks (CNNs) have achieved overwhelming success in learning-related 

problems for 2D/3D images in the Euclidean space. However, unlike in the Euclidean space, the 

shapes of many structures in medical imaging have an inherent spherical topology in a manifold 

space, e.g., the convoluted brain cortical surfaces represented by triangular meshes. There is no 

Corresponding author: Gang Li, gang_li@med.unc.edu. 

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 02.

Published in final edited form as:
IEEE Trans Med Imaging. 2021 April ; 40(4): 1217–1228. doi:10.1109/TMI.2021.3050072.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consistent neighborhood definition and thus no straightforward convolution/pooling operations for 

such cortical surface data. In this paper, leveraging the regular and hierarchical geometric structure 

of the resampled spherical cortical surfaces, we create the 1-ring filter on spherical cortical 

triangular meshes and accordingly develop convolution/pooling operations for constructing 

Spherical U-Net for cortical surface data. However, the regular nature of the 1-ring filter makes it 

inherently limited to model fixed geometric transformations. To further enhance the 

transformation modeling capability of Spherical U-Net, we introduce the deformable convolution 

and deformable pooling to cortical surface data and accordingly propose the Spherical Deformable 

U-Net (SDU-Net). Specifically, spherical offsets are learned to freely deform the 1-ring filter on 

the sphere to adaptively localize cortical structures with different sizes and shapes. We then apply 

the SDU-Net to two challenging and scientifically important tasks in neuroimaging: cortical 

surface parcellation and cortical attribute map prediction. Both applications validate the 

competitive performance of our approach in accuracy and computational efficiency in comparison 

with state-of-the-art methods.

Index Terms—

Convolutional Neural Network; deformable networks; U-Net; parcellation; cortical surface; 
triangular mesh

I. Introduction

CONVOLUTIONAL Neural Networks (CNNs) based deep learning methods have been 

providing state-of-the-art performance for a variety of tasks in computer vision in the last 

few years, e.g., image classification [1], segmentation [2], detection and tracking [3], 

benefiting from their powerful abilities in feature learning. In biomedical image analysis, U-

Net [4] and its variants have become one of the most popular and powerful network 

architectures for medical image segmentation [5], synthesis [6], reconstruction [7], and 

registration [8]. One of the reasons for the tremendous success of U-Net and its variants is 

the hierarchical architecture and skip connection, where features from low, middle, and high 

levels are integrated and thus both contextual and localization information can be captured 

jointly. Notably, for the regular grid format of image, feature maps can be easily pooled and 

upsampled, which allows CNNs, e.g., U-Net, to learn and enrich features hierarchically 

using different receptive fields at different resolution levels. Therefore, it is the consistent 

neighboring relationship in the Euclidean space providing the bases for these popular CNN 

architectures.

However, such relationships generally do not exist in many other data representations. For 

example, the shapes of many structures in medical imaging have an inherent spherical 

topology in manifold space represented by triangular meshes. As shown in Fig. 1, the 

constructed brain cortical surface represented by triangular meshes [9] typically has large 

inter-subject and intra-subject variations in shapes, i.e., different vertex number and 

inconsistent local connectivity. Leveraging the spherical topology nature of the cerebral 

cortex, a standard method for analyzing the complex cortex is to inflate and map the cortical 

surface onto a standard sphere [10] and further resample it using the icosahedron discretized 
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sphere [11]. Since the resampled spherical surface has a consistent structure and uniform-

sampled vertices, and thus can establish a consistent coordinate system for different subjects, 

it is widely used in neuroimaging analyses [12], [13]. However, there is still no consistent 

straightforward neighborhood definition across different vertices on the spherical surface 

and thus no convolution/transposed convolution and pooling operations are defined. 

Therefore, despite many advantages of CNNs in 2D/3D images, the conventional CNNs 

cannot be directly applicable to cortical surface data. To address these issues, in this paper, 

we capitalize on the consistent structure of the resampled spherical cortical surface. The 

motivation is that the standard spherical representation of a cortical surface is typically a 

uniform icosahedron discretized sphere that is generated starting from an icosahedron by 

hierarchically adding new vertices to the center of each edge in each triangle [11]. 

Therefore, based on the consistent and regular structure across subjects, we design a novel 

intuitive convolution filter on the sphere, termed 1-ring filter. With this new convolution 

filter, we then develop surface convolution, pooling, and transposed convolution in spherical 

space by considering the analogy between the standard filter on the 2D image grid and the 1-

ring filter on the spherical surface. Accordingly, we extend the popular U-Net architecture 

from image domain to spherical surface domain and construct the Spherical U-Net 

architecture.

However, the Spherical U-Net constructed using the 1-ring filter are inherently limited to 

model large, fixed transformations [14]. As cortical folds vary greatly in shape and size, 

another challenge is how to accommodate and model various geometric transformations of 

cortical folding. This limitation comes from the fixed design of the 1-ring filter and the 

accordingly developed spherical convolution/pooling operations, where the 1-ring filter 

samples the input feature map at fixed locations for each operation. In this way, the receptive 

fields of all vertices in the same layer are the same, which is undesirable for high level layers 

that encode the semantics over spatial locations, because different locations may correspond 

to cortical structures with different shapes and sizes. Therefore, the adaptive determination 

of sampling locations and scales is crucial for cortical surface tasks. Inspired by the idea of 

deformable convolutional networks (DCN) [14] in Euclidean space that learns to augment 

the spatial sampling locations in convolution and pooling layers for different tasks, we 

propose to further develop the 1-ring filter as a deformable 1-ring filter for spherical 

convolution and pooling operations, namely spherical deformable convolution and spherical 
deformable pooling. They add spherical offsets to the regular 1-ring filter sampling 

locations, thus enabling free form deformation of the 1-ring filter for adaptively localizing 

cortical structures with different sizes and shapes. They are both lightweight and can readily 

replace their plain counterparts in Spherical U-Net, resulting in the novel Spherical 

Deformable U-Net (SDU-Net).

To validate our proposed methods, we focus on two challenging and important tasks in 

neuroimaging studies: cortical surface parcellation, which is a vertex-wise classification/

segmentation problem, and cortical attribute map development prediction, which is a vertex-

wise dense regression problem. Both applications validate the competitive performance of 

our approach in accuracy and computational efficiency in comparison with state-of-the-art 

methods.

Zhao et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. Related Work

A. Deep Learning for Cortical Surface Analysis

There have been few attempts to apply deep learning techniques to cortical surface data. Wu 

et al. [15] first applied deep CNN on cortical surface parcellation. They projected intrinsic 

spherical surface patches into tangent spaces to form 2D image patches, and then the 

conventional CNN was employed to classify each patch for predicting the center vertex 

label, and further derived the surface parcellation map. However, this type of patch-wise 

classification method for segmentation tasks treats each patch independently, thus leading to 

lots of redundancy due to patch overlapping. Seong et al. [16] designed several convolution 

filters on the tangent plane so that the network can learn high level features from the 

hierarchical CNN architecture. Although these tangent convolution filters are effective, it 

introduces heavy computational burden by repeatedly re-interpolating the spherical surface 

to the tangent plane. Another way is taking the original cortical surface as a graph and 

applying graph convolutional networks (GCN). For example, MoNet [17] was employed to 

predict missing infant cortical surfaces in longitudinal studies [18], which showed good 

performance. However, it is still a patch-based method, the high-level context information 

across patches is less explored. Gopinath et al. [19], [20] tried to combine spectral 

embedding features with spatial features in GCN, such as cortical thickness used in [20] for 

disease prediction and sulcal depth in [19] for cortical surface parcellation. However, as a 

global representation, spectral features used in GCN may lose subtle local information, 

which cannot be obtained from spectral embedding features.

B. CNN for Spherical Data

As a kind of spherical data, the cortical surface might also be studied by recent techniques 

developed for spherical data in computer vision. The spherical data, such as the so-called 

omnidirectional images, can be represented by various discretized spheres. The commonly 

used one is the equirectangular projection (ERP) method, which is also known as Mercator 

projection in the geographical map projection. With ERP method, the sphere can be 

parameterized by spherical coordinates α ∈ [0, 2π) and β ∈ [0, π], and the projected images 

can be represented by regular grids in a Euclidean-like space with consistent neighborhood 

definition, and then conventional CNNs can be directly applied [21]. However, ERP 

representations lead to severe shape distortion in projected images due to non-uniform points 

on the sphere, especially near the polar regions. To reduce the distortion in ERP images and 

be rotation invariant in the 3D object classification task, Esteve et al. [22] and Cohen et al. 

[23] performed convolutions on the 3D rotation group SO(3) using Fast Fourier Transform. 

However, although they worked effectively on classification or regression tasks, semantic 

segmentation tasks were not fully addressed, especially for the learnable upsampling 

methods. Su and Grauman [24] proposed to increase the kernel size towards the polar 

regions to resolve the distortion problem on ERP images. However, in this strategy, the 

weights can only be shared along the latitude, resulting in a significant increase in 

computational and storage costs. Further, Zhao et al. [25] used distortion-aware kernels that 

sampled points on the tangent plane of the omnidirectional image to reduce distortions, 

which was similar to [16] in spherical cortical surface analysis. It is worth noting that this 

projection strategy [16], [25] was more like Hammer projection in the geographical map 
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projection. However, as mentioned earlier, the kernel resampled on the tangent plane 

introduces an extra re-interpolation process, thus complicating the network and increasing 

the computational burden.

Concurrently, many researchers have found the advantages of icosahedron discretized 

spheres, which is like the Dymaxion map projection and has the smallest shape distortion 

and area irregularity among those map projections and the 5 Platonic solids [26]. Our 

preliminary work [27], to the best of our knowledge, was the first one to directly utilize the 

consistent and hierarchical structure of icosahedron discretized spheres for spherical CNNs 

development and apply it on cortical surface applications. Liu et al. [28] and Rao et al. [29] 

also used the 1-ring filter to develop convolution layers on icosahedron discretized spherical 

surfaces for 3D object classification and retrieval tasks. However, the opening and stretching 

surface implementation in [28] was more complex and computationally expensive. In [29], 

the 1-ring filter was only used in the pooling layer and not in the convolution layer, which 

obviously limits the 1-ring filter’s learning ability. Different from those methods [27]–[29] 

that take vertices as pixels, Lee et al. [26] had a very similar intuition that took the triangle 

faces as pixels and designed two kernels for two types of triangles for omnidirectional 

images classification and segmentation. Jiang et al. [30] used the 1-ring filter to estimate 

differential operators on icosahedron discretized spheres, which is then used as the 

convolution kernel for 3D object classification and cortical surface parcellation [31]. The 

main difference compared to our method is that the differential operators [30], [31] are 

designed to learn the global combination of the whole surface’s first and second order 

differentials, while our 1-ring filter learns patterns between local neighboring vertices and 

thus is more similar to classic convolution kernels in 2D/3D images and more suitable for 

extending other deep learning techniques to the cortical surface, e.g., the deformable 

convolution and pooling.

Another limitation of previous works [15], [16], [26], [28]–[31] is that they mainly focus on 

spherical convolution and pooling operations for constructing classification CNNs, resulting 

in a lack of effective upsampling methods in the community for omnidirectional image 

semantic segmentation and cortical surface parcellation tasks. There are only some simple 

upsampling methods that have been studied, e.g., padding the new vertices after upsampling 

with 0 [30], [31] or nearest vertex’s value [29]. To fill in this methodology gap, we proposed 

to extend several popular upsampling methods to icosahedron discretized sphere, such as 

linear interpolation, max-pooling indices [32] and transposed convolution. Among them, 

transposed convolution is an effective upsampling method and has been widely used for its 

learnable parameters in deep encoder-decoder CNN architectures, especially in image 

semantic segmentation [2], super resolution and registration [8]. Inspired by this, we extend 

the transposed convolution to the spherical surface based on the 1-ring filter and 

incorporating it in our SDU-Net generates superior performance, compared to other 

upsampling methods.

C. Deformable Convolutional Networks

Conventional CNNs are inherently ineffective in modeling geometric transformations. To 

address this issue, DCN proposed to augment the spatial sampling locations in convolution 
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and pooling with additional offsets and learning the offsets from target tasks [14]. Hence, it 

can adaptively learn to model various transformations. Some works partly shared the 

concept in modeling geometric transformations, but only for some specific transformations 

known as a priori, such as scale [33] and rotation [34]. Spatial transform networks [35] was 

the first to directly learn the transformations from data without priori. It aims to learn a 

global transformation, such as affine transformation, which is then used to warp the feature 

map, while DCN focuses more on local, deformable transformations and without a feature 

warping step and thus is easier to integrate into any CNN architectures. When the offsets in 

the deformable convolution are fixed at some specific sparse locations, the deformable 

convolution turns into atrous convolution [36] that keeps the original convolution kernel’s 

weights at fixed sparse locations, which is a special case of DCN. Therefore, DCN is a more 

general CNN model that can flexibly adjust receptive field size and greatly enhance the 

transformation modeling capability of CNNs. It is also lightweight and easy to train and is 

shown effective for complex vision tasks that require dense predictions [14].

Therefore, based on the developed 1-ring filter and its corresponding convolution and 

pooling operation, we further propose to extend the DCN model to the spherical surface for 

modeling the various and unknown transformations of cortical surface data. We design 

specific spherical offsets on the spherical surface for 1-ring filter. The spherical deformable 

convolution and pooling are then implemented by weighting the features in the deformed 1-

ring filter and then the SDU-Net can be constructed.

D. Contributions

In our previous work [27], which is the first of using the 1-ring filter on icosahedron 

discretized sphere for cortical surface applications, we designed the spherical convolution, 

pooling and accordingly the Spherical U-Net architecture for cortical surface parcellation 

and achieved promising performance. We further demonstrated its capability and 

effectiveness on cortical attribute map prediction [37] and harmonization [38]. This 1-ring 

filter and the corresponding spherical operations provide a new solution for cortical surface 

analysis by taking advantage of the powerful deep learning ability. However, again, it is still 

challenging to effectively model diverse cortical structures with different sizes and shapes. 

Therefore, in this paper, we extend the previously presented conference versions [27], [37] 

by introducing novel spherical deformable convolution/pooling operations and the SDU-Net 

to cortical surface applications, and also adding more technical details and expanded 

analyses. To summarize our contributions,

1. We demonstrate that deep learning techniques can be efficiently extended to 

spherical space based on the proposed 1-ring filter, including but not limited to 

convolution, pooling, transposed convolution, and skip connection, thus 

construing the Spherical U-Net.

2. We demonstrate further performance gain enabled by introducing novel spherical 

deformable convolution and pooling to construct the Spherical Deformable U-

Net, compared to the conference version thanks to its enhanced geometric 

transformation modeling capability.
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3. We perform comprehensive experiments on different datasets for cortical surface 

parcellation and attribute prediction and demonstrate consistently competitive 

performance and higher computational efficiency of our method compared to 

state-of-the-art methods.

III. Method

A. Icosahedron Discretized Spherical Surfaces

The icosahedron is one of the Platonic solids with most faces and least area irregularity and 

thus is most close to the sphere [26]. It has 12 vertices, 20 faces, and 30 edges (see Fig. 2, 

top left). From the data representation view, it is a graph with 12 vertices, and each vertex 

has 5 neighboring vertices. The icosahedron discretized spherical surfaces are the 

subdivisions of the icosahedron and can be obtained using the following expansion steps 

iteratively: 1) add new vertices to the center of each edge on the last level subdivision of 

icosahedron; 2) add new edges between every two new vertices that are in a triangle; 3) 

project the newly added vertices onto the sphere. Therefore, the number of vertices on the 

spherical surfaces are N1 = 12, Ni+1 = 4Ni − 6, i = 1, 2, 3, … where i represents the i-th 

subdivision of icosahedron. As introduced earlier, the icosahedron discretized spherical 

surfaces are widely used in neuroimaging studies to represent the resampled cortical surface 

data after spherical mapping [11]. Typically, 7th or 8th subdivision of icosahedron with 

40,962 or 163,842 vertices are employed to represent the subject-specific, vertex-wise 

cortical morphological attributes, such as sulcal depth, mean curvature, and cortical 

thickness, which can provide enough resolutions for the cortical surface study.

B. 1-ring Filter

We define the 1-ring filter using the center vertex and its 1-hop neighboring vertices, as 

shown in Fig. 3 (a). After the discretization of the sphere using subdivisions of the 

icosahedron, we can see that each spherical surface is consistently composed of two types of 

vertices: 1) the original 12 vertices on the icosahedron each with only 5 1-hop neighbors; 

and 2) the remaining vertices each with 6 1-hop neighbors in their 1-ring filter. To make the 

learned pattern with the 1-ring filter more consistent and effective on the sphere, we need to 

define a consistent order of neighboring vertices properly. Unlike 2D images in regular 

grids, spherical surfaces have no clear reference direction and thus neighborhood orders 

become ambiguous. To overcome this issue, we propose to utilize the prior posture 

information. In neuroimaging, the cortical surface is generally preprocessed using a rigid 

alignment [39] to make the surface’s posture corresponding to the normal brain orientation 

when standing at origin and facing to the negative y-axis in the coordinate system. 

Therefore, based on the spherical cortical surface coordinate, we want the 1-ring filter 

azimuthally rotation equivariant/invariant.

Specifically, we define the orders of neighboring vertices in the 1-ring filter as follows. As 

shown in Fig. 4, let v0 be the center vertex, vi be the neighboring vertices in the 1-ring filter, 

i = 1, 2, …, 5 (with 5 neighbors) or 1, 2, …, 6 (with 6 neighbors), and Tv0 be the tangent 

plane at v0. We define Γ v0 to be the tangent vector at v0 pointing along the great circle as 
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the x-axis in Tv0. Γ v0 can be obtained by n z × v 0, where n z is the unit normal vector of 

XOY plane, v 0 is the vector from the origin O to v0 (for the two vertices at poles, we define 

Γ v0 = (1, 0, 0)). Then we project vertices vi to the tangent plane Tv0, obtaining projected 

vertices vi′ ∈ Tv0. The angles θi between each neighboring vertex and the x-axis in tangent 

plane is then computed as:

θi = arccos
Γ v0 · vi′ − v 0

‖Γ v0‖‖vi′ − v 0‖
. (1)

By sorting θi, we assign indices 1–6 (1–5 for 12 original icosahedron vertices) to the 

neighboring vertices sequentially and index 0 to the center vertex; for the 12 vertices with 

only 5 neighbors, we additionally assign index 6 to the center vertex.

Note that discretized sphere with perfect uniformly distributed vertices does not exist [26]. 

We empirically show that the 1-ring filter with our neighboring vertices orders has the 

desired rotation equivariant/invariant property and the gauge variance among vertices (which 

means the 1-ring neighborhoods’ directions or positions are not the exactly same across all 

vertices) can be overcome by feature learning process [26], [28], [30], [37]. It is also worth 

noting that in implementation, we just computed the neighboring vertices orders only once 

using the aforementioned approach and then stored them in the memory for later use, which 

thus provides us high efficiency in computation by matrix indexing.

C. Standard Convolution on Spherical Surface

With the 1-ring filter definition, spherical convolution on icosahedron discretized spherical 

surface can be easily formulated as a filter weighting process. As shown in Fig. 5, the 1-ring 

filter is employed to convolve over the whole surface with each vertex to obtain new feature 

maps on the spherical surface, analogously to the conventional convolution operation in 

2D/3D images. The stride in 2D/3D convolution is not necessary here, because the 1-ring 

filter will always convolve with each vertex to obtain a new feature vector for each vertex. 

The padding is also not applicable here, because the convolution is on a closed sphere. The 

convolution layer on the spherical surface is then used to transform feature maps from one 

dimension to another dimension on the same level of icosahedron subdivision, and further to 

learn and extract high level representations by hierarchical architectures.

In the implementation, for each vertex v on a spherical surface with N vertices and D 
features map channels, we firstly extract the local patch Iv(7 × D) from the 1-ring 

neighborhood and reshape it into a row vector Iv′ (1 × 7D) for this vertex. Then, iterating over 

all N vertices, we stack the first dimension to obtain the full-node filter matrix I(N × 7D) 

(refer to “im2col” function in MATLAB or other deep learning toolboxes). Afterward, with 

the desired output feature channel number F, by multiplying I with the convolution layer’s 

filter weight W(7D × F), the output surface feature maps O(N × F) can be obtained.
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D. Standard Pooling on Spherical Surface

The pooling operation on the spherical surface has the same function as in 2D/3D images. It 

is used to increase the receptive field and reduce the spatial size of the representation to 

reduce the number of parameters and computation in the network. It is performed in reverse 

order of the icosahedron expansion process, which we can call the icosahedron contraction 

process. On an i-th icosahedron subdivision, the contraction process will first choose the 

center vertices that are also on the (i-1)-th subdivision and thus will still be remained after 

this contraction process. Then, the 1-ring filter is applied to the chosen vertices as the 

pooling kernel. Lastly, the edges on the (i-1)-th subdivision are re-connected. As a 

consequence, a pooled surface with a smaller number of vertices and fine fused features is 

obtained. See Fig. 6 for a better understanding.

Similarly in implementation, we will extract the feature data I(N ×7D) for all center vertices 

aggregated from their 1-ring neighborhood. Then we reshape it into I′(N × D × 7). By 

averaging (mean pooling) or maximizing (max pooling) the 3rd dimension of I′, we can 

obtain the refined feature map O(N × D). Meanwhile, the number of vertices is decreased 

from 4N − 6 on original surfaces to N on the pooled surface.

E. Spherical Deformable Convolution and Pooling

Based on the standard spherical convolution and pooling operations, we develop the 

spherical deformable convolution and pooling as illustrated in Fig. 7 and Fig. 8. The 

spherical offsets are firstly obtained by applying a standard spherical convolution layer over 

the same input feature map for spherical deformable convolution or the pooled map for 

spherical deformable pooling. The output offset field is represented by the tangent vectors 

with size N × 14. Note that the tangent plane for each vertex is defined at that vertex, which 

means each vertex has a different tangent plane. The channel dimension 14 corresponds to 7 

tangent vectors un, i i = 1
7

 for each vertex vn, i i = 1
7  in the 1-ring filter at vertex vn (i 

represents i-th neighborhood). Then En, iun, i maps the tangent vector from the tangent space 

to 3D space, where En, i = en, i1 , en, i2  is a 3 × 2 orthonormal basis on the tangent space at vn,i. 

The deformed sampling locations vn, i′ i = 1
7  is then defined as:

vn, i′ = vn, i + En, iun, i
‖vn, i + En, iun, i‖

(2)

on a unit sphere. In this way, the regular 1-ring filter is deformed and augmented with 

additional spherical offsets un, i, thus enabling adaptive learning of receptive field at different 

locations. Then, the cortical feature values at the deformed 1-ring filter’s sampling locations 

are weighted with the 1-ring filter for spherical deformable convolution, or pooled for 

spherical deformable pooling operation. Of note, the range that the deformed sampling 

locations extend to is not restricted on the tangent plane but is restricted on the sphere within 

the range (−π/2, +π/2) since it is finally normalized to the sphere as described in equation 

(2). Despite that, we find that the deformation size in practice is still within a small range, 

which is a reasonable deformation size even for large ROIs on cortical parcellation maps. In 
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such a case, the deformed points on the tangent plane and sphere are very close. The simple 

and approximately equal relationship (equation (2)) between them can be easily learned by 

the network to find the actual optimal deformed sampling locations on the sphere. As un, i is 

typically fractional, the feature value at vn, i′  is computed via barycentric interpolation [40]. 

Finally, since all the operations are differentiable, the gradients in the network can be 

efficiently backpropagated to train the convolution filters for generating the output features 

and the offsets simultaneously.

F. Upsampling on Spherical Surface

Upsampling on the spherical surface is used to recover the original high resolution surface 

from the pooled low resolution surface feature maps. Therefore, it is crucial to the 

construction of the decoder network in the encoder-decoder style architecture [32] for 

vertex-wise classification and prediction tasks. We propose to extend several popular 

upsampling methods to icosahedron discretized spherical surface here.

1) Linear Interpolation: Linear Interpolation on the spherical surface follows the rule of 

icosahedron expansion, which is the opposite of mean-pooling operation. For each new 

vertex generated from the edge’s center, its feature is linearly interpolated by the two parent 

vertices of this edge (Fig. 9A).

2) Max-pooling Indices: Max-pooling Indices, introduced by SegNet [32], uses the 

stored pooling indices computed in the max-pooling layer of the encoder to perform 

nonlinear upsampling in the corresponding decoder. We have adapted this method to the 

spherical surface as shown in Fig. 9B. For example, vertices a, b, and c are first pooled from 

their 1-ring neighborhood using max-pooling indices 1, 2, and 5, respectively, in the encoder 

part. Then at the corresponding upsampling layer, the 1st neighbor of a, 2nd neighbor of b, 

and 5th neighbor of c are restored with a, b, and c’s value, respectively, and other vertices 

are set as 0. For better understanding and comparison, we also drew the upsampling method 

with Fixed Indices used in [30] as shown in Fig. 9C.

3) Transposed Convolution: Transposed convolution is also known as fractionally-

strided convolution, deconvolution or up-convolution in U-Net [4]. From the perspective of 

image transformation, transposed convolution first restores pixels around every pixel by 

sliding-window filtering over all original pixels, and then sums where restored pixels overlap 

(controlled by stride). Inspired by this perspective, for a spherical surface with the original 

feature map I (Ni × D, where Ni denotes the number of vertices on i-th icosahedron 

subdivision and D denotes the number of features) and the pooled feature map O (Ni−1 × F), 

we can restore I by first using the 1-ring filter to do transposed convolution with every vertex 

on the pooled surface O and then summing overlap vertices, as illustrated in Fig. 9D.

G. Spherical U-Net Architecture

With our defined operations for spherical surface convolution, pooling, and transposed 

convolution, it is straightforward to construct the Spherical U-Net architecture for different 

cortical surface applications. Once again, to enhance the transformation capability of 

Spherical U-Net and model various cortical structures with different sizes and shapes 
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adaptively, we further integrate the spherical deformable convolution and pooling into it. 

Since both deformable operations have the same input and output as their plain versions, 

they can readily replace their counterparts in Spherical U-Net and therefore construct the 

Spherical Deformable U-Net (SDU-Net) architecture. As shown in Fig. 10, it has an encoder 

path and a decoder path, each with four resolution steps, indexed by i, i = 1, 2, 3, 4. The 

encoder is composed of 8 spherical convolution and 3 spherical pooling layers. Spherical 

deformable operations are applied to the first 4 convolution and all pooling layers. We 

experimented with different numbers of such layers and found this configuration as a good 

trade-off for different tasks, as reported in Table I. Then the decoder composed of repetitive 

spherical transposed convolution and convolution generates the results from the extracted 

feature maps in the encoder. In addition to the standard U-Net, before each convolution 

layer’s rectified linear units (ReLU) activation function, a batch normalization (BN) layer is 

added. At the final layer, vertex-wise filter weighting is used to map C1-component feature 

vector to the desired Cout at the last layer. Note that we do not need any tiling strategy in the 

original U-Net [4] to allow a seamless output map, because all the data flow in our network 

is on a closed spherical surface. We simply double the number of feature channels after each 

surface pooling layer and halve the number of feature channels at each transposed 

convolution layer. That makes Ci+1 = Ci × 2, and Ni+1 = 4Ni − 6.

IV. Experiments

To validate the proposed SDU-Net on cortical surfaces, we quantify the performance on two 

neuroscientifically and clinically important tasks, cortical surface parcellation, and cortical 

attribute map development prediction during infancy. Both tasks are suffering from 

designing of hand-crafted features and heavy computational burden. We show that our task-

agnostic and feature-agnostic SDU-Net is still effective for these different tasks. Our 

PyTorch implementation for all experiments is freely available.

A. Cortical Surface Parcellation

1) Experimental Setup: Automatic and accurate parcellation of cortical surfaces into 

anatomically and functionally meaningful regions is of fundamental importance in human 

brain mapping [41]. It is essential for region localization and inter-subject comparison in 

region-based or network-based brain studies. Conventional registration-based methods [40]–

[42] require designing of specific hand-crafted features to map the cortical shape to 

parcellation labels, which is time-consuming, expertise-dependent, and error-prone. Here we 

propose to address these issues as a semantic labeling problem using our deep learning-

based SDU-Net for parcellating the entire cortical surface, where each vertex is assigned a 

label.

We used the NAMIC dataset [41] with 39 adult brain MR images and an infant brain MRI 

dataset containing 90 subjects. All the cortical surfaces in the NAMIC dataset were 

reconstructed using FreeSurfer [11]. The infant cortical surfaces were obtained using an 

infant-dedicated pipeline [43], [44]. We only focused on the left hemisphere of the brain as 

the right hemisphere is similar. Each vertex on the left cortical surface was coded with 3 

shape attributes, i.e., the mean curvature (curv), average convexity (sulc), and sulcal depth. 
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Basically, the mean curvature measures the cortical folding in a fine view; the average 

convexity measures the cortical folding in a coarse view; and the sulcal depth measures the 

cortical folding by combining both the coarse and fine views. These shape descriptors reflect 

local geometric attributes of the cortical surface, which are useful for cortical surface 

parcellation [45]. Each cortical surface was manually labeled into 35 gyrus-based regions by 

a neuroanatomist, based on the FreeSurfer parcellation protocols [45]. All surfaces were first 

rigidly aligned and mapped onto the spherical space and then resampled to have the same 

tessellation on the 7th subdivision of icosahedron with 40,962 vertices.

To better show the generalization ability, we used 60% data for training, 15% for validation, 

and 25% for testing (there was a 5-fold cross-validation between the 15% validation set and 

60% training set). The results are then reported based on the hold-out test set using the 

model re-trained with the best hyper-parameters from the cross-validation on all training and 

validation data for each architecture. In training, we used Adam optimization algorithm with 

cross-entropy loss and a self-adaption strategy for updating learning rate, which reduces the 

learning rate by a factor of 5 once training Dice stagnates for 2 epochs. We performed data 

augmentation by randomly azimuthally rotating spherical surfaces 50 times. For quantitative 

evaluation, we measured the Dice score as in [40] averaged over all testing surfaces.

2) Baseline models: For the cortical surface parcellation task, we used the SDU-Net 

architecture as shown in Fig. 10. We set Cin as 3 for 3 shape attributes, Cout as 35 for the 35 

labels of parcellation, k as 7 (Nk = 40, 962) for the input icosahedron subdivision and C1 as 

32. To study the effect of the size of network parameters and overfitting, we also call the 

baseline model Spherical U-Net18 because of the 18 convolution layers in it and construct 

Spherical U-Net23 by adding one more resolution steps with 5 more convolution layers and 

doubling all the feature channels.

To better validate the effectiveness of the spherical deformable operations, we also integrate 

spherical deformable operations with other state-of-the-art CNN architectures. We note that 

these architectures generally consist of two stages, an encoder generating feature maps over 

the whole input and a task-specific decoder generating results from the encoded feature 

maps. Therefore, we use the same encoder as in the SDU-Net, and adopt other two state-of-

the-art decoder architectures, SegNet [32] and FCN [2]. SegNet is a state-of-the-art method 

for semantic segmentation. Spherical SegNet is different from SDU-Net in two aspects: 1) 

There is no copy and concatenation path in Spherical SegNet; 2) For upsampling, Spherical 

SegNet uses Linear-Interpolation. FCN is another popular segmentation network. We 

construct Spherical FCN architecture based on the conventional FCN-8s [2], which is the 

best FCN variant that can combine high layer information with low layer information. The 

Spherical FCN-8s fuses the feature maps at different resolution levels after each pooling 

layer. Then, the fused feature maps are mapped to the desired output channels using a 

transposed convolution layer.

3) Ablation Study:

Spherical Deformable Convolution.: Table I evaluates the effect of spherical deformable 

convolution on different usages of deformable operations in different architectures. Dice 
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ratio steadily improves when more deformable convolution layers are used. The 

improvement saturates when using 6 deformable convolution layers in the first 6 convolution 

layers for Spherical FCN-8s and 4 for others. In the remaining experiments, we will use 4 in 

the feature extraction networks. To better understand the mechanism of spherical deformable 

convolution, we draw the sampling locations of the 1-ring filter and deformed 1-ring filter 

after 3 successive convolution layers in Fig. 11. We empirically observed that the learned 

offsets in the successive deformable convolution layers are highly adaptive to different 

cortical structures.

Spherical Deformable Pooling.: As shown in Table I, using spherical deformable pooing 

alone already consistently improve the Dice compared to baseline models. When both 

spherical deformable convolution and pooling are used, significant improvements are 

obtained and result in the best model for all architectures.

Model Complexity and Runtime.: Table II reports the model complexity and runtime of 

the spherical deformable networks and their plain versions on an NVIDIA Geforce 

GTX2080 Ti GPU. We can see that spherical deformable operations only add a small 

overhead over model parameters and computation. This indicates that the performance 

improvement is from the capability of modeling geometric transformations, other than 

increasing model parameters. On the contrary, Spherical U-Net23 only achieves slightly 

better results while adding much more parameters and inference time. Therefore, taking the 

speed and usability into consideration, we take Spherical Deformable U-Net18 as our default 

SDU-Net model and will use it the following comparisons with other approaches.

Upsampling Methods.: Besides the deformable convolution and pooling in the encoder 

part, we also studied different upsampling methods in the decoder part for SDU-Net, such as 

Fixed Indices used in [30], [31] and report the results in Table III. The results validate the 

superiority of spherical transposed convolution for its learnable filters and thereby 

effectively address the upsampling issue on spherical surfaces. We note that the advantage of 

the transposed convolution over other upsampling methods is not much better. This may be 

because, for other 3 upsampling methods, we add a regular 1-ring convolution after them for 

matching the number of channels, which may also improve their learning ability greatly.

Comparison with Other Spherical CNNs.: As mentioned in Introduction, methods [21]–

[23] that discretize sphere using ERP method are obviously not suitable for cortical surface 

applications. Therefore we only compare currently popular spherical CNNs that perform 

convolution directly on icosahedron discretized surfaces and present the results in Table IV. 

As can be seen, our SDU-Net outperforms the patch-style classification method [15] and 

global differential filters [30]. This indicates that our approach successfully learns the high-

level representation from their neighborhood in the hierarchical architectures, which is 

lacking in [15], [30]. Again, note that SDU-Net outperforms our previous Spherical U-Net 

architecture in conference version [37]. Finally, it is also worth noting that although the 2-

ring filter and rectangular patch filter in the tangent plane, as shown in Fig. 3, are also 

effective in feature learning, our 1-ring filter is much smaller in terms of memory storage, 

and lighter in terms of model size.
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Comparison with State-of-the-art Parcellation Methods.: As previous methods [40], 

[41], [45] all train the classifier after registration, we further co-registered all surfaces in the 

NAMIC dataset using Spherical Demons [40] and resampled the surfaces before and after 

the registration, respectively. In order to directly compare with the results in their papers and 

meanwhile guarantee a hold-out set for testing, we adopted a different 4-fold cross-

validation strategy that splits the data into 60% for training, 15% for validation, and 25% for 

testing in each fold. The final results are obtained by averaging the Dice over all testing 

surfaces. As shown in Table V, our SDU-Net outperforms other classifiers under the same 

experimental conditions and achieves better performance than the state-of-the-art Random 

Forest + Graph Cuts [41] method. Of note, in terms of computational complexity, our model 

is end-to-end and only needs about 13.2ms (Table II) for parcellating one cortical surface, 

while the non-DNN based methods typically need registration and additional feature 

extraction. Either of these two steps would need much more time. It is also worth noting that 

the augmentation did improve the network’s generalization ability and on the other hand 

validate that the required rotation invariance along the z-axis is fulfilled.

B. Cortical Property Development Prediction

We have also applied our SDU-Net to the prediction of cortical surface attribute maps of 1-

year-old brains from the corresponding neonatal (0-year-old) brains using 370 infants. Each 

of the involved subjects has longitudinal 0-year-old and 1-year-old brain MRI data. All 

infant MR images were processed using an infant-specific computational pipeline [43]. All 

cortical surfaces were mapped onto the spherical space, nonlinearly aligned, and further 

resampled using the 7th icosahedron subdivision with 40,962 vertices. Following the 

experimental configuration in [47], we used the sulcal depth and cortical thickness maps at 

birth to predict the cortical thickness map at 1 year of age. The reason to choose the cortical 

thickness map as the prediction target for validating our method is that cortical thickness has 

dynamic, region-specific, and subject-specific development and is highly related to future 

cognitive outcomes [48]. To have a robust prediction for the cortical thickness, we also 

introduced the sulcal depth as an additional channel for leveraging the relationship between 

sulcal depth and cortical thickness maps [49]. The validation strategy is the same as in Sec. 

IV-A.1 cortical surface parcellation. The evaluation metrics we adopted for the prediction 

performance are mean absolute error (MAE) and mean relative error (MRE).

1) Implementation Details: Here we still consider the basic, simple architecture and 

training strategy to validate the effectiveness of our SDU-Net. We set Cin = 2 (representing 

sulcal depth and cortical thickness at birth), Cout=1 (representing cortical thickness at 1 year 

of age). We trained the SDU-Net using Adam and L1 loss. The reason we used L1 loss 

rather than L2 as L1 encourages less blurring [50]. The whole training process had 50 

epochs on an NVIDIA Geforce GTX2080 Ti GPU.

2) Comparison with Feature-based Approaches: For the feature-based 

approaches, we extracted 102 features for each vertex on the 0-year-old cortical surface. 

Same as in [47], the 1st and 2nd features are sulcal depth and cortical thickness, respectively, 

providing local information at each vertex. The 3rd to 102nd features are contextual features, 

providing rich neighboring information for each vertex, which are composed of 50 Haar-like 
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features of sulcal depth and 50 Haar-like features of cortical thickness. The Haar-like 

features were extracted using the method and hyper-parameters in [47].

We then trained the following machine learning algorithms on the 102 features in a vertex-

wise manner: Linear Regression, Polynomial Regression, Random Forest, and a plain 4-

layer Neural Network. Linear Regression assumes that the development of cortical thickness 

at each vertex is linearly increased, and Polynomial Regression assumes that it has a two-

order polynomial relationship with age. Random Forest is a stable and effective non-linear 

regression method for high dimensional data analysis, which has been proved to be the state-

of-the-art method for cortical thickness prediction [47]. The 4-layer Neural Network, also 

called a Multi-layer Perceptron with two hidden layers, has 102, 200, 200, and 1 neurons in 

each layer, which is a plain and more conventional neural network without any fancy 

designs. Herein, each above algorithm would generate 40,962 models, each for predicting 

the thickness of a vertex at 1-year-old, while our Spherical U-Net just generates one model 

for all vertices. All the machine learning algorithms were firstly applied on randomly 

selected 1000 vertices using grid search (20 portions in the range from 1e-4 to 1e4 for each 

parameter) to find the best hyper-parameters. The parameter tuning and training process all 

lasted an extremely long time (1–3 days).

3) Results: Table VI presents the results of the comparison between SDU-Net and 

conventional machine learning algorithms for cortical thickness map prediction. Our SDU-

Net outperforms all other machine learning algorithms and our previous Spherical U-Net 

both in terms of MAE and MRE. While the main competitor, Random Forest is involved 

with complex hand-crafted features extraction step and heavy vertex-wise computational 

burden. Our task-agnostic and feature-agnostic SDU-Net still achieves better results, 

demonstrating higher effectiveness with a more lightweight design. The key factor 

contributing to the better performance of our method over conventional approaches is that 

our SDU-Net learns globally useful features effectively and automatically from the 

hierarchical architecture while other machine learning methods predict the attribute based on 

local hand-crafted features.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed the 1-ring filter on spherical space based on the icosahedron 

discretized sphere for developing corresponding operations for constructing the Spherical 

CNNs. The 1-ring filter has a natural and intuitive definition, making it interpretable for 

recognizing patterns on the spherical surface. We then extended the conventional U-Net and 

deformable convolution/pooling to the spherical surface and construct the SDU-Nets by 

deploying corresponding spherical operations. Furthermore, we have shown that the SDU-

Net is computationally efficient and capable of learning useful features and adaptive 

receptive filed for different tasks, including cortical surface parcellation and cortical attribute 

map development prediction. Extensive ablation studies on these two challenging tasks 

confirm the robustness, efficiency, and accuracy of the SDU-Net both visually and 

quantitatively.

Zhao et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our main motivation in this paper was to design a general filter on the spherical surface that 

can be easily used and extended to various cortical surface tasks. Although the 1-ring filter 

can already provide us an efficient way to obtain high level representations from the data 

defined on the spherical surface manifold, it is inherently limited to model a small part of 

geometric transformations. Therefore, we further propose the spherical deformable 1-ring 

filter and spherical deformable convolution/pooling to significantly improve the network’s 

transformation modeling capability, instead of expensive data collection and augmentation, 

especially in medical imaging. In this way, cortical surface analysis can be benefited and 

facilitated by the prosperous deep learning techniques more efficiently. From this point of 

view, there are a lot of potential directions and applications to be explored. Some interesting 

future work may include extending CycleGAN [51] and its variants to harmonize cortical 

feature maps across multiple scanners, ResNet [52] to help classify and find biomarkers for 

brain disorders, and VoxelMorph framework [8] to cortical surface for faster surface 

registration.

One limitation of our work is that the reference direction we defined on the sphere only 

guarantees the azimuthally rotation invariance and does not strictly guarantee invariance for 

other rotations, which means the same pattern can be detected when spheres are rotated 

along the z-axis and may not be detected when spheres are rotated across the z-axis. 

Therefore, it may lead to distortions in the learned features in polar regions. It is still 

acceptable and can be overcome for supervised learning using big data with its ground truth, 

such as the cortical surface parcellation and attribute map prediction. However, when facing 

unsupervised learning, this design needs to be reconsidered and some specific modifications 

may be necessary to fulfill the rotation invariant requirements.

Finally, our SDU-Net presented here is a general model and not limited to a particular 

cortical feature or analysis task. It may be also useful in other genus 0 organs and computer 

vision tasks. It provides a valuable tool for research studies involving deep learning-related 

cortical surface-based tasks and thus can help better study and understand brain 

development, aging, and disorders. Our code is freely available at https://www.nitrc.org/

projects/infantsurfparc/.

Acknowledgments

This work was supported in part by NIH grants: MH107815, MH116225, and MH117943.

References

[1]. Krizhevsky A, Sutskever I, and Hinton GE, “Imagenet classification with deep convolutional 
neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[2]. Long J, Shelhamer E, and Darrell T, “Fully convolutional networks for semantic segmentation,” in 
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–
3440.

[3]. Ren S, He K, Girshick R, and Sun J, “Faster r-cnn: Towards real-time object detection with region 
proposal networks,” in Advances in neural information processing systems, 2015, pp. 91–99.

[4]. Ronneberger O, Fischer P, and Brox T, “U-net: Convolutional networks for biomedical image 
segmentation,” in International Conference on Medical image computing and computer-assisted 
intervention. Springer, 2015, pp. 234–241.

Zhao et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/infantsurfparc/
https://www.nitrc.org/projects/infantsurfparc/


[5]. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, and Ronneberger O, “3d u-net: learning dense 
volumetric segmentation from sparse annotation,” in International conference on medical image 
computing and computer-assisted intervention. Springer, 2016, pp. 424–432.

[6]. Nie D, Cao X, Gao Y, Wang L, and Shen D, “Estimating ct image from mri data using 3d fully 
convolutional networks,” in Deep Learning and Data Labeling for Medical Applications. 
Springer, 2016, pp. 170–178.

[7]. Xiang L, Chen Y, Chang W, Zhan Y, Lin W, Wang Q, and Shen D, “Ultra-fast t2-weighted mr 
reconstruction using complementary t1-weighted information,” in International Conference on 
Medical Image Computing and Computer-Assisted Intervention. Springer, 2018, pp. 215–223.

[8]. Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, and Dalca AV, “Voxelmorph: a learning 
framework for deformable medical image registration,” IEEE transactions on medical imaging, 
2019.

[9]. Dale AM, Fischl B, and Sereno MI, “Cortical surface-based analysis: I. segmentation and surface 
reconstruction,” Neuroimage, vol. 9, no. 2, pp. 179–194, 1999. [PubMed: 9931268] 

[10]. Fischl B, Sereno MI, and Dale AM, “Cortical surface-based analysis: Ii: inflation, flattening, and 
a surface-based coordinate system,” Neuroimage, vol. 9, no. 2, pp. 195–207, 1999. [PubMed: 
9931269] 

[11]. Fischl B, “Freesurfer,” Neuroimage, vol. 62, no. 2, pp. 774–781, 2012. [PubMed: 22248573] 

[12]. Li G, Wang L, Yap P-T, Wang F, Wu Z, Meng Y, Dong P, Kim J, Shi F, Rekik I et al., 
“Computational neuroanatomy of baby brains: A review,” NeuroImage, vol. 185, pp. 906–925, 
2019. [PubMed: 29574033] 

[13]. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, 
Webster M, Polimeni JR et al., “The minimal preprocessing pipelines for the human connectome 
project,” Neuroimage, vol. 80, pp. 105–124, 2013. [PubMed: 23668970] 

[14]. Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, and Wei Y, “Deformable convolutional networks,” in 
Proceedings of the IEEE international conference on computer vision, 2017, pp. 764–773.

[15]. Wu Z, Li G, Wang L, Shi F, Lin W, Gilmore JH, and Shen D, “Registration-free infant cortical 
surface parcellation using deep convolutional neural networks,” in International Conference on 
Medical Image Computing and Computer-Assisted Intervention. Springer, 2018, pp. 672–680.

[16]. Seong S-B, Pae C, and Park H-J, “Geometric convolutional neural network for analyzing surface-
based neuroimaging data,” Frontiers in Neuroinformatics, vol. 12, p. 42, 2018. [PubMed: 
30034333] 

[17]. Monti F, Boscaini D, Masci J, Rodola E, Svoboda J, and Bronstein MM, “Geometric deep 
learning on graphs and manifolds using mixture model cnns,” in Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 2017, pp. 5115–5124.

[18]. Liu P, Wu Z, Li G, Yap P-T, and Shen D, “Deep modeling of growth trajectories for longitudinal 
prediction of missing infant cortical surfaces,” in International Conference on Information 
Processing in Medical Imaging. Springer, 2019, pp. 277–288.

[19]. Gopinath K, Desrosiers C, and Lombaert H, “Graph convolutions on spectral embeddings for 
cortical surface parcellation,” Medical image analysis, vol. 54, pp. 297–305, 2019. [PubMed: 
30974398] 

[20]. Gopinath K, “Adaptive graph convolution pooling for brain surface analysis,” in International 
Conference on Information Processing in Medical Imaging. Springer, 2019, pp. 86–98.

[21]. Hu H-N, Lin Y-C, Liu M-Y, Cheng H-T, Chang Y-J, and Sun M, “Deep 360 pilot: Learning a 
deep agent for piloting through 360 sports videos,” in 2017 IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR). IEEE, 2017, pp. 1396–1405.

[22]. Esteves C, Allen-Blanchette C, Makadia A, and Daniilidis K, “Learning so (3) equivariant 
representations with spherical cnns,” in Proceedings of the European Conference on Computer 
Vision (ECCV), 2018, pp. 52–68.

[23]. Cohen TS, Geiger M, Köhler J, and Welling M, “Spherical CNNs,” in International Conference 
on Learning Representations, 2018.

[24]. Su Y-C and Grauman K, “Learning spherical convolution for fast features from 360 imagery,” in 
Advances in Neural Information Processing Systems, 2017, pp. 529–539.

Zhao et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[25]. Zhao Q, Zhu C, Dai F, Ma Y, Jin G, and Zhang Y, “Distortion-aware cnns for spherical images.” 
in IJCAI, 2018, pp. 1198–1204.

[26]. Lee Y, Jeong J, Yun J, Cho W, and Yoon K-J, “Spherephd: Applying cnns on a spherical 
polyhedron representation of 360deg images,” in Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2019, pp. 9181–9189.

[27]. Zhao F, Xia S, Wu Z, Wang L, Chen Z, Lin W, Gilmore JH, Shen D, and Li G, “Spherical u-net 
for infant cortical surface parcellation,” in 2019 IEEE 16th International Symposium on 
Biomedical Imaging (ISBI 2019). IEEE, 2019, pp. 1882–1886.

[28]. Liu M, Yao F, Choi C, Ayan S, and Ramani K, “Deep learning 3d shapes using alt-az anisotropic 
2-sphere convolution,” in International Conference on Learning Representations, 2019.

[29]. Rao Y, Lu J, and Zhou J, “Spherical fractal convolutional neural networks for point cloud 
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, 2019, pp. 452–460.

[30]. Jiang CM, Huang J, Kashinath K, Prabhat, Marcus P, and Niessner M, “Spherical CNNs on 
unstructured grids,” in International Conference on Learning Representations, 2019.

[31]. Parvathaneni P, Bao S, Nath V, Woodward ND, Claassen DO, Cascio CJ, Zald DH, Huo Y, 
Landman BA, and Lyu I, “Cortical surface parcellation using spherical convolutional neural 
networks,” in International Conference on Medical Image Computing and Computer-Assisted 
Intervention. Springer, 2019, pp. 501–509.

[32]. Badrinarayanan V, Kendall A, and Cipolla R, “Segnet: A deep convolutional encoder-decoder 
architecture for image segmentation,” IEEE transactions on pattern analysis and machine 
intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. [PubMed: 28060704] 

[33]. Xu Y, Xiao T, Zhang J, Yang K, and Zhang Z, “Scale-invariant convolutional neural networks,” 
arXiv preprint arXiv:1411.6369, 2014.

[34]. Worrall DE, Garbin SJ, Turmukhambetov D, and Brostow GJ, “Harmonic networks: Deep 
translation and rotation equivariance,” in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2017, pp. 5028–5037.

[35]. Jaderberg M, Simonyan K, Zisserman A et al., “Spatial transformer networks,” in Advances in 
neural information processing systems, 2015, pp. 2017–2025.

[36]. Chen L-C, Papandreou G, Schroff F, and Adam H, “Rethinking atrous convolution for semantic 
image segmentation,” arXiv preprint arXiv:1706.05587, 2017.

[37]. Zhao F, Xia S, Wu Z, Duan D, Wang L, Lin W, Gilmore JH, Shen D, and Li G, “Spherical u-net 
on cortical surfaces: Methods and applications,” in International Conference on Information 
Processing in Medical Imaging. Springer, 2019, pp. 855–866.

[38]. Zhao F, Wu Z, Wang L, Lin W, Xia S, Shen D, Li G, U. B. C. P. Consortium et al., 
“Harmonization of infant cortical thickness using surface-to-surface cycle-consistent adversarial 
networks,” in International Conference on Medical Image Computing and Computer-Assisted 
Intervention. Springer, 2019, pp. 475–483.

[39]. Greve DN and Fischl B, “Accurate and robust brain image alignment using boundary-based 
registration,” Neuroimage, vol. 48, no. 1, pp. 63–72, 2009. [PubMed: 19573611] 

[40]. Yeo BT, Sabuncu MR, Vercauteren T, Ayache N, Fischl B, and Golland P, “Spherical demons: 
fast diffeomorphic landmark-free surface registration,” IEEE transactions on medical imaging, 
vol. 29, no. 3, pp. 650–668, 2009. [PubMed: 19709963] 

[41]. Meng Y, Li G, Gao Y, and Shen D, “Automatic parcellation of cortical surfaces using random 
forests,” in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE, 
2015, pp. 810–813.

[42]. Fischl B, Van Der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat DH, Busa E, Seidman LJ, 
Goldstein J, Kennedy D et al., “Automatically parcellating the human cerebral cortex,” Cerebral 
cortex, vol. 14, no. 1, pp. 11–22, 2004. [PubMed: 14654453] 

[43]. Li G, Wang L, Shi F, Gilmore JH, Lin W, and Shen D, “Construction of 4d high-definition 
cortical surface atlases of infants: Methods and applications,” Medical image analysis, vol. 25, 
no. 1, pp. 22–36, 2015. [PubMed: 25980388] 

Zhao et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[44]. Li G, Nie J, Wang L, Shi F, Gilmore JH, Lin W, and Shen D, “Measuring the dynamic 
longitudinal cortex development in infants by reconstruction of temporally consistent cortical 
surfaces,” Neuroimage, vol. 90, pp. 266–279, 2014. [PubMed: 24374075] 

[45]. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, 
Maguire RP, Hyman BT et al., “An automated labeling system for subdividing the human 
cerebral cortex on mri scans into gyral based regions of interest,” Neuroimage, vol. 31, no. 3, pp. 
968–980, 2006. [PubMed: 16530430] 

[46]. Tateno K, Navab N, and Tombari F, “Distortion-aware convolutional filters for dense prediction 
in panoramic images,” in Proceedings of the European Conference on Computer Vision (ECCV), 
2018, pp. 707–722.

[47]. Meng Y, Li G, Rekik I, Zhang H, Gao Y, Lin W, and Shen D, “Can we predict subject-specific 
dynamic cortical thickness maps during infancy from birth?” Human brain mapping, vol. 38, no. 
6, pp. 2865–2874, 2017. [PubMed: 28295833] 

[48]. Gilmore JH, Knickmeyer RC, and Gao W, “Imaging structural and functional brain development 
in early childhood,” Nature Reviews Neuroscience, vol. 19, no. 3, p. 123, 2018. [PubMed: 
29449712] 

[49]. Li G, Lin W, Gilmore JH, and Shen D, “Spatial patterns, longitudinal development, and 
hemispheric asymmetries of cortical thickness in infants from birth to 2 years of age,” Journal of 
neuroscience, vol. 35, no. 24, pp. 9150–9162, 2015. [PubMed: 26085637] 

[50]. Isola P, Zhu J-Y, Zhou T, and Efros AA, “Image-to-image translation with conditional adversarial 
networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 
2017, pp. 1125–1134.

[51]. Zhu J-Y, Park T, Isola P, and Efros AA, “Unpaired image-to-image translation using cycle-
consistent adversarial networks,” in Proceedings of the IEEE international conference on 
computer vision, 2017, pp. 2223–2232.

[52]. He K, Zhang X, Ren S, and Sun J, “Deep residual learning for image recognition,” in 
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–
778.

Zhao et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
An example of the cortical surface represented by triangular meshes at different stages of 

neuroimaging data analysis pipeline. The surfaces are color-coded by mean curvature.
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Fig. 2. 
Representative icosahedron discretized spherical surfaces with sequential subdivisions. The 

number of vertices of each spherical surface is denoted under the surface.

Zhao et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Three types of convolution filters on the icosahedron discretized spherical surfaces.
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Fig. 4. 
Consistent definition of 1-ring filter’s neighborhood orders. The black vertices vi represent 

neighboring vertices on sphere. The blue vertices vi′ represent projected vertices onto the 

tangent plane of the center vertex v0. The orders are then obtained according to θi.
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Fig. 5. 
Spherical convolution operation using 1-ring filter. The convolution transfers the input 

feature maps with D channels to the output feature maps with F channels using F filters.
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Fig. 6. 
Spherical pooling operation using 1-ring filter. The input surface with i-th subdivision is 

pooled to (i-1)-th subdivision. The feature map channel number D is unchanged.
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Fig. 7. 
Illustration of spherical deformable convolution operation.
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Fig. 8. 
Illustration of spherical deformable pooling operation.
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Fig. 9. 
Illustration of upsampling methods on the spherical surface. A, B, and D are our methods, C 

is the Fixed Indices used in [30], [31]. The left input feature maps are on (i-1)-th 

subdivision. The right output feature maps are on i-th subdivision. In A, B, C, we used 

yellow to represent the vertices on (i-1)-subdivision, and blue to represent newly generated 

vertices on i-th subdivision. In D, we used different colors to represent three different 

vertices a, b, c on (i-1)-th subdivision, and other different colors to represent the data 

channels, which is consistent with the channel colors in Fig. 5 and Fig. 6. Then each 

subfigure shows how the i-th subdivision is upsampled from the (i-1)-subdivision using 

respective upsampling methods.
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Fig. 10. 
Spherical deformable U-Net architecture. The number of features Ci after each operation is 

denoted above the box. The number of vertices Ni is denoted below the box. Ni+1 = 4Ni − 6, 

Ci+1 = Ci × 2. The k in the input number of vertices Nk indicates that the input surface is on 

the k-th icosahedron subdivision. Typically, we use the 7-th subdivision of icosahedron with 

40,962 vertices and set C1=64.
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Fig. 11. 
From left to right: after three successive convolution layers, the sampling locations of trained 

1-ring filter overlapped on parcellation map (i.e., fixed receptive filed with 3-ring) for two 

activation units (green points) on the pars orbitalis (a small ROI, top row) and paracentral 

lobule (a large ROI, bottom row); sampling locations of trained deformable filters on 

parcellation, sulc and curv maps. Note how the receptive filed is adaptively transformed for 

different structures.
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Table II

Model Complexity And Runtime Comparison Of Spherical Deformable Networks And Their Plain 

Counterparts

Parameters (M) Inference time (ms)

Spherical U-Net23 26.86 20.3

Spherical Deformable U-Net23 26.89 51.9

Spherical U-Net18 1.67 4.1

Spherical Deformable U-Net18 1.68 13.2

Spherical SegNet 1.37 3.5

Spherical Deformable SegNet 1.39 12.2

Spherical FCN-8s 1.01 3.0

Spherical Deformable FCN-8s 1.02 11.5
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Table III

Comparison With Different Upsampling Methods For Infant Cortical Surface Parcellation

Dice (%)

SDU-Net-Linear Interpolation 92.91±1.52

SDU-Net-Max-pooling Indices 86.69±3.74

SDU-Net-Fixed Indices 92.85±1.98

SDU-Net-Transposed Convolution 93.07±1.51
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Table IV

Comparison With Other Spherical Cnns On Infant Cortical Surfaces

Dice (%)

Wu et al. [15] 87.06

Jiang et al. [30], [31] 75.15±3.09

Spherical U-Net18-Rectangular filter [16], [25], [46] 92.24±1.98

Spherical U-Net18–1 ring filter 92.28±1.70

Spherical U-Net18–2 ring filter 92.28±2.03

SDU-Net 93.07±1.51

Note that Wu et al.’s result is directly reported in their paper. Jiang et al. [30] and Parvathaneni et al. [31] are implemented using the default 
spherical U-Net architecture in Jiang et al.’s code. Other methods are all implemented by ourselves using the spherical convolution filter in the 
referred papers.
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Table VI

Comparison Of Different Methods On Cortical Thickness Map Prediction

Methods MAE (mm) MRE (%)

Linear Regression 0.3595±0.0641 14.89±3.12

Polynomial Regression 0.6067±0.0901 26.63±4.53

4-layer Neural Network 0.3665±0.0603 14.67±2.89

Random Forest [47] 0.2950±0.0394 12.42±2.01

Spherical U-Net [37] 0.2817±0.0409 11.15±1.56

SDU-Net 0.2804±0.0515 11.10±2.08
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