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Activating mutations in BRAF disrupt the
hypothalamo-pituitary axis leading to
hypopituitarism in mice and humans
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Germline mutations in BRAF and other components of the MAPK pathway are associated
with the congenital syndromes collectively known as RASopathies. Here, we report the
association of Septo-Optic Dysplasia (SOD) including hypopituitarism and Cardio-Facio-
Cutaneous (CFC) syndrome in patients harbouring mutations in BRAF. Phosphoproteomic
analyses demonstrate that these genetic variants are gain-of-function mutations leading to
activation of the MAPK pathway. Activation of the MAPK pathway by conditional expression
of the Braf“600t/+ jllele, or the knock-in BrafR241R/+ allele (corresponding to the most fre-
quent human CFC-causing mutation, BRAF p.Q257R), leads to abnormal cell lineage deter-
mination and terminal differentiation of hormone-producing cells, causing hypopituitarism.
Expression of the BrafV60%t/+ jllele in embryonic pituitary progenitors leads to an increased
expression of cell cycle inhibitors, cell growth arrest and apoptosis, but not tumour formation.
Our findings show a critical role of BRAF in hypothalamo-pituitary-axis development both in
mouse and human and implicate mutations found in RASopathies as a cause of endocrine
deficiencies in humans.
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ARTICLE

ASopathies are a class of developmental syndromes

that result from germline mutations in components of

the Ras-RAF-MEK-ERK/mitogen-activated protein kinase
signalling ~ pathway  (ERK/MAPK  pathway  hereafter).
RASopathies include Noonan, Costello, Leopard and cardio-
facio-cutaneous (CFC) syndromes, which share considerable
phenotypic similarities!2, CFC is a rare autosomal-dominant
disorder characterised by multiple congenital anomalies, includ-
ing a characteristic facial appearance, short stature, abnormalities
of ectodermal tissues (hair and skin), congenital heart defects,
gastrointestinal dysmotility and intellectual disability>. CFC is
caused by mutations in BRAF, MEKI and MEK2; Noonan syn-
drome by mutations in PTPN11, SOSI, KRAS, RAF1, SHOCK2,
NRAS and occasionally BRAF and MEK1; and Costello syndrome
by mutations in HRAS*-12. The majority of individuals with CFC
(50-75%) have heterozygous activating mutations in the ERK/
MAPK effector protein kinase BRAF'. The ERK/MAPK pathway
signalling results from activation of the receptor-linked tyrosine
kinases by growth factors, hormones and cytokines, which then
trigger an intracellular phosphorylation cascade in which Ras
activates the protein kinase activity of RAF (Raf-1; A-Raf and B-
Raf), which in turn phosphorylates and activates MEK1/2 leading
to phosphorylation and activation of ERK1/2-MAPK. This results
in different cellular events from proliferation, changes in cell
differentiation, apoptosis and senescencel3. Mutations in BRAF
have a high occurrence rate in different types of tumours,
including thyroid (30-50%), ovarian (30%) and colorectal
cancers (5-20%), but are most predominantly found in melano-
mas (50-70%)141>. Approximately 90% of activating BRAF
mutations present in neoplasms are the result of substitution of a
valine to glutamic acid at position 600: BRAF p.V600E. This
mutation results in increased protein kinase activity leading to
a constitutively active ERK/MAPK pathway!>. A few studies
have identified the somatic mutation BRAF p.V60OE as a driver
of the non-secreting benign pituitary tumour, papillary
craniopharyngiomal®17, However, pituitary somatic mutations in
BRAF pV600E have also been identified in corticotroph adeno-
mas leading to hypersecretion of adrenocorticotropic hormone
(ACTH), causing Cushing disease!®. The differences between
papillary craniopharyngioma (a non-secreting benign tumour)
and ACTH-secreting adenomas with the same underlying genetic
driver, BRAF p.V600E, reflect different, yet unknown, roles
of oncogenic BRAF in different pituitary cell types leading to
tumorigenesis.

Interestingly, RASopathies have been associated with endocrine
phenotypes such as short stature due to growth hormone (GH)
deficiency and pubertal delay!!®. However, the precise role for
the ERK/MAPK pathway in the pathogenesis of endocrine defi-
ciencies that are a component of the clinical phenotype of
RASopathies has not been established.

Congenital hypopituitarism (CH) is a heterogeneous disorder
with a wide range in severity and clinical presentations. It is
defined by one (isolated) or more deficiencies (combined pitui-
tary hormone deficiency (CPHD)) in the six anterior pituitary
(AP) hormones, with growth hormone deficiency (GHD) being
the most prevalent and often seen in isolation?’. Septo-optic
dysplasia (SOD) is a rare form of CH with a prevalence of
1:10,000 live births?! and is often defined by the triad of hypo-
pituitarism with subsequent endocrine deficits, midline neuro-
radiological defects (absent/hypoplastic corpus callosum and
septum pellucidum) and optic nerve hypoplasia?2-24. Mutations
in several transcription factors or signalling molecules that con-
trol normal development of the hypothalamo-pituitary (HP) axis
are associated with CH or SOD in mouse and humans?’. How-
ever, the underlying aetiology for the majority of CH patients
remains unknown.

Here, we report the association of SOD and CFC syndrome
with BRAF genetic variants in five unrelated patients. Using
transgenic mouse models, we show that activation of the MAPK
pathway in the progenitors of the pituitary gland leads to
abnormal terminal differentiation of hormone-producing cells,
transient expansion of the pituitary stem cell pool followed by cell
growth arrest and apoptosis leading to postnatal hypopituitarism.
We demonstrate a biological role of activation of the MAPK
pathway in the aetiology of pituitary hormone deficiencies, and
the biological link between congenital forms of human hypopi-
tuitarism and RASopathies due to activation of the ERK/MAPK
pathway. Hence, patients with RASopathies should be screened
for hormone deficiencies as this could improve their comorbid-
ities. Moreover, our findings implicate components of MAPK
pathway as possible candidate genes for CH in humans.

Results

Identification of BRAF mutations in five patients with SOD
associated with CFC syndrome. Five patients with CFC were
identified to have clinical features of SOD. The following pre-
viously reported de novo heterozygous genetic variants in BRAF
were identified: the functionally characterised BRAF p.Q257R
(patients 1 and 4)710 and the partially characterised BRAF p.
T241P (patient 3)>>, BRAF p.F468S (patient 2) and BRAF p.
G469E (patient 5) (Fig. 1)2627, All the identified mutations lead to
changes in highly evolutionarily conserved amino acids (Fig. 1c).
Patients from Pedigrees 1-3 were born to non-consanguineous
Caucasian parents, Pedigree 4 was of consanguineous Pakistani
origin, and Pedigree 5 was of non-consanguineous African origin.
All had characteristic features of CFC encompassing facial dys-
morphism, growth failure, feeding problems, structural cardiac
abnormalities, neurodevelopmental delay and CNS abnormalities
detected on magnetic resonance imaging (MRI) (clinical features
are described in Supplementary Fig. 1 and Supplementary Tables 1
and 2). Due to the endocrine profile from these patients clearly
showing endocrinopathies associated with brain and eye
abnormalities characteristic of SOD, we reasoned that mutations
in novel genes or known hypopituitarism or SOD causative genes,
other than the reported BRAF variants, could be responsible for
the observed clinical phenotype. To assess this, we performed
whole-exome sequencing of the five patients. After assessing all
coding and splice region variants in the genes previously asso-
ciated with SOD, CH and CFC, results did not identify any
potential pathogenic variants other than those in the BRAF gene
(Supplementary Table 3). We also assessed all variants in the
patients that are present in the ClinVar database as ‘pathogenic’
and ‘likely pathogenic', and the BRAF variants were the only ones
that could explain the disease in our patients. Together these
results suggest that the clinical endocrine phenotype observed in
our patients is due to BRAF mutations.

Patient 1 was referred at age 1.9 years for investigation of short
stature (height SDS —3.6; body mass index (BMI) SDS 0.3) and
recurrent hypoglycemia. GH deficiency was diagnosed at the age
of 2.5 years, and GH treatment commenced at 3.6 years.
Levothyroxine was commenced at 4.1 years due to a rapidly
falling free T, concentration. Following the lack of pubertal onset
at 14.1 years and a suboptimal response to GnRH testing
(luteinizing hormone (LH) peak 4.1 IU/1), testosterone treatment
was commenced. MRI revealed a small anterior pituitary and
infundibulum, with midline defects.

Patient 2 was referred at the age of 0.9 years following MRI of
the brain, which revealed features suggestive of SOD. She was
short (height SDS —3.1), with multiple congenital abnormalities.
GH and thyroid-stimulating hormone (TSH) deficiencies were
diagnosed at 9.7 years. Levothyroxine was commenced at 9.7
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Fig. 1 Mutations identified in hBRAF in patients with CFC and SOD. a Schematic diagram of the hBRAF protein and the location of the mutations
identified. The numbers indicate the location where each protein domain begins and ends. The mutations identified in the patients are labelled indicating
the position of the substitution. b Electropherograms illustrating the mutations identified, indicated by an arrow and an ‘N’ in the sequence of each patient,
with the corresponding wild-type (Wt) sequence below. (i) A heterozygous missense variant (c.721A>C) was identified in exon 6 of BRAF in patient 3, (ii) a
heterozygous missense variant (c.770A>G) was identified in exon 6 of BRAF in patients 1 and 4, (iii) a heterozygous missense variant (c.1403T>C) was
identified in exon 11 of BRAF in patient 2, (iv) a heterozygous missense variant (c.1406G>A) was identified in exon 11 of BRAF in patient 5. ¢ Amino acid
conservation of the BRAF substitutions identified in our study. (i) The threonine residue (represented by the green ‘T") at position p.T241, (i) the glutamine
(represented by the green 'Q") at position p.Q257, (iii) the phenylalanine (represented by the green ‘F') at position p.F468 and (iv) the glycine (represented
by the green ‘G') at position p.G469, and their adjacent protein sequences either side, respectively, are located at conserved regions across multiple

species.

years, followed by GH at age 11.4 years. She entered puberty
spontaneously at 8.3 years, but failed to progress through puberty.
A GnRH test at 9.7 years demonstrated an exaggerated
gonadotrophin response to GnRH stimulation. Investigations at
age 13 years revealed elevated gonadotrophins (LH 44.5IU/l,
follicle-stimulating hormone (FSH) 53.51U/1) with an undetect-
able estradiol. Primary ovarian failure was diagnosed and
transdermal oestrogen commenced. She subsequently died of a
respiratory infection at age 16 years.

Patient 3 was referred at 5.6 years for investigation of short
stature. She had a normal GH response to provocation but a
low IGF1. GH was commenced and, at the age of 9 years, she
had a borderline response to synacthen stimulation and
hydrocortisone was started; subsequently she had a normal
cortisol peak (593 nmol/l) to synacthen off hydrocortisone. She
entered puberty spontaneously but failed to progress further.
At 15.4 years, a GnRH test showed an exaggerated response,
and she was commenced on oral oestrogen with a diagnosis of
hypogonadism.

Patient 4 presented at 11.1 years with short stature. Endocrine
testing revealed GH deficiency with low gonadotrophins and
testosterone, and GH treatment was commenced. Despite a
temporary loss to follow-up from age 13.8 to 16 years [when he
had entered puberty (G3 P2 with 6 ml testes bilaterally)], he had
continuously received GH treatment. GH treatment was stopped,
and re-testing at 18 years (15ml testes bilaterally) confirmed
persistent GH deficiency [peak GH 3.0 ug/l, IGF1 31.8 nmol/l
(NR 32.1-62.6)].

Patient 5 presented at age 3.7 years with short stature.
Endocrine testing revealed normal GH secretion. The rest of
the pituitary endocrinology function was normal, apart from a
low IGF1. On follow-up, his growth rate is suboptimal and
further investigations are planned.

BRAF is expressed in the developing human HP axis. The
clinical phenotypes observed in our patients suggested a func-
tional role of BRAF at the level of the forebrain and HP axis in
humans. Therefore, we analysed the expression pattern of BRAF
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during human embryonic development. BRAF mRNA transcripts
were localised to the central nervous system, and in the devel-
oping endocrine HP axis with strong expression in the ventral
diencephalon (prospective hypothalamus) and the primordium of
the pituitary gland, Rathke’s pouch (RP) (Supplementary Fig. 2c,
d). BRAF expression was detected throughout the neural tube, the
dorsal root ganglia, the retina and refractive lens of the devel-
oping eye, and cranial nerves. The domains of expression of
BRAF correlate with the developmental defects observed in the
patients with BRAF mutations, and suggest a role for mutated
BRAF in pituitary development.

The BRAF genetic variants are activating mutations that lead
to increased kinase activity and activation of the ERK/MAPK
pathway. Previously, the BRAF variant ¢.770A>G (p.Q257R) was
shown to result in increased ERK/MAPK pathway activity with
higher levels of phosphorylated-ERK!?. The BRAF p.T241P and
the p.G469E27-28 have been previously described in CFC patients
but only partially characterised??, indicating a mild but not sta-
tistically significant increase in phosphorylation of ERK. How-
ever, no functional studies have been performed for the p.F468S
genetic variant, despite being found as a somatic mutation in sun-
exposed melanoma?® and colorectal carcinoma3. Therefore, to
further assess the pathogenicity and functional effects of these
variants on the ERK/MAPK pathway we undertook a phospho-
proteomics approach using label-free mass spectrometry analyses
of HEK293T cells transiently transfected with wild-type (Wt)
BRAF and its variants p.T241P, p.Q257R, p.F468S and p.G469E.
We used the oncogenic BRAF variant p.V600E, as a known
strong activator of the ERK/MAPK pathway, and the previously
characterised and most common CFC-causing mutation BRAF p.
Q257R as positive controls. As expected, phosphoproteomic
analyses identified increased phosphorylation of multiple com-
ponents of the ERK/MAPK pathway for the oncogenic BRAF
variant p.V600E and p.Q257R when compared with Wt BRAF
(Fig. 2a). Interestingly, the BRAF variants p.T241P and p.F468S
generated a phosphorylation pattern for the components of the
ERK/MAPK pathway similar to that of BRAFp.V600E and p.
Q257R (Fig. 2a). These data clearly indicate that p.T241P and p.
F468S BRAF mutations also activate the ERK/MAPK pathway.
Contrastingly, the BRAF p.G469E variant showed an increase in
phosphorylation of proteins involved in ERK/MAPK signalling,
albeit at much lower levels compared to the T241P, p.Q257R, p.
F468S and p.V600E variants, suggesting a milder activation of the
ERK/MAPK pathway for this variant.

Kinase substrate enrichment analysis (KSEA) showed a
significantly increased kinase activity of MEKI/MEK2 and
ERK1/2 for the BRAF p.V600E, p.T241P, p.Q257R and p.F468S
variants when compared to Wt (Fig. 2b). In line with the peptide
phosphorylation studies, KSEA estimated a milder increase in the
activities of ERK1/2 and MEK1/2 for the p.G469E variant when
compared to the p.T241P, p.Q257R, p.F468S and p.V600E forms
(Fig. 2b). To confirm the mass spectrometry results, we assessed
the levels of phosphorylated-ERK compared to those of total ERK
by western blot (Fig. 2c). In agreement with the phosphopro-
teomic analysis, densitometry quantification of the western blot
bands revealed that the p.T241P, p.Q257R, p.F468S, p.G469E and
p.-V600E BRAF variants led to an increased phosphorylation of
ERK when compared to Wt BRAF (Fig. 2d). These data confirm
that the p.T241P, p.F468S and p.G469E BRAF mutations led to
activation of the ERK/MAPK pathway, although the BRAF p.
G469E had a milder effect; however, it was still greater than
Wt BRAF.

As expected, gene ontology analysis using the genes that
encode the phosphopeptides affected by the expression of the

BRAF p.T241P, p.Q257R, p.F468S and p.G469E variants
identified increased phosphorylation in proteins involved in the
RAS-ERK/MAPK and the epidermal growth factor receptor
(EGFR) signalling pathways (Supplementary Fig. 3). Together,
our data show that the variants p.T241P, p.F468S and p.G469E
result in activation of the MAPK pathways with the BRAF
p.G469E having a milder activation effect compared to the
p.T241P, p.Q257R and p.F468S.

Activation of the ERK/MAPK pathway in pituitary progenitors
(Prop1:Cre;BrafV600E/+) results in severe postnatal hypopitui-
tarism and lack of terminal differentiation of hormone-
producing cells. Given the hypopituitarism phenotype observed
in the CFC patients, we set out to determine whether the ERK/
MAPK pathway plays a role in pituitary development. We
expressed the BrafVo00E/+ allele3! in the developing anterior
pituitary gland using the Propl:Cre pituitary-specific transgenic
line32. The Propl:Cre line drives expression of Cre recombinase
by Propl regulatory elements and efficiently expresses Cre in
anterior pituitary32. However, ectopic expression of Cre has been
reported in other tissues. To circumvent this, we crossed Propl:
Cre to the Rosa26CAGLxpSTOPLxpTomato reporter line (Rosal™/+
hereafter)3? to obtain Prop1:Cre;Braf V600E/+;Rosa™/+, and only
embryos that exhibited Tomato expression exclusively in the
pituitary gland were included in this study (Supplementary
Fig. 4). Postnatally, Prop1:Cre;BrafV00E/+;Rosa™/+ (Prop1:Cre;
Braf VOUOE/+ thereafter) pups showed clear signs of severe
hypopituitarism with dwarfism and growth failure, and they died
prematurely around weaning compared to their Wt littermates
(Fig. 3a—c). Perinatal lethality was observed and after postnatal
day (P) 10, only 20% of the Propl:Cre;Braf VO0OE/* mutants
remained alive. Dissection of the pituitary glands revealed a
highly hypomorphic anterior lobe (AL) consisting of only a
rudimentary thin layer of cells in the mutants compared to Wt
littermates (Fig. 3b, b’ and Supplementary Fig. 4i, I’). Moreover,
histological sections of postnatal pituitaries revealed big cavities
within the parenchyma of the AL (Supplementary Figs. 4, 6, 12,
13, 15 and 24), suggesting that tissue degeneration or death
occurred in Propl:Cre;BrafV®%0E/+ mutant pituitaries. Haema-
toxylin and eosin staining revealed severe morphological
abnormalities with thickening of the Rathke’s pouch, multiple
bifurcation of the pituitary cleft and an expanded marginal zone
(Supplementary Fig. 5).

To determine whether terminal differentiation of hormone-
producing cells was compromised leading to the observed
postnatal hypopituitarism, we examined the expression of
hormones by immunohistochemistry (IHC) at E17.5 of develop-
ment and postnatal day (P) 5 (Fig. 4 and Supplementary Fig. 6).
Interestingly, Propl:Cre;Braf VO00E/+ mutant pituitaries showed
complete absence of terminally differentiated somatotrophs (GH
+ve); thyrotrophs (TSH+ve) and gonadotrophs (LH+-ve) cells at
E17.5 (Fig. 4b, d, j) with a significant increase of corticotrophs/
melanotrophs (POMC+ve cells) and lactotrophs (PRL+ve)
compared to Wt (Fig. 4f, h). IHC against hormones at P5
revealed similar results, with complete absence of TSH, LH and
FSH and a severely reduced number of GH+ve cells. Remarkably,
at P5, the AL of the pituitary gland exhibited severe hypoplasia
with a rudimentary thin layer of cells formed by mainly ACTH
and PRL positive cells surrounding empty lumens and cavities
(Supplementary Fig. 6). Double immunofluorescence against the
pituitary stem cell marker Sox2 in combination with either
POMC or PRL revealed that a large proportion of Sox2+ve cells
co-express the terminal differentiation marker ACTH, and a few
Sox2+-ve cells also expressed PRL, which was never seen in Wt at
E18.5 and P5 (Fig. 5 and Supplementary Fig. 7), suggesting that
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Fig. 2 The BRAF genetic variants are pathogenic and result in activation of the ERK/MAPK pathway. a Heat map of the phosphopeptide enrichment
analyses by mass spectrometry of the BRAF variants: p.T241P, p.Q257R, p.F468S and p.G469E. These mutations result in activation of the ERK/MAPK
pathway, as indicated by the increase in the ERK/MAPK phosphorylated peptides BRAF and ERK1/2. Note that the p.G469E is a mild activator with most of
the peptides in blue, indicating low kinase activity. b KSEA for the BRAF variants p.T241P, p.Q257R, p.F468S and p.G469E compared to Wt BRAF shows an
increased activity for the kinases MEK1/2 and ERK1/2 involved in the ERK/MAPK pathway, as well as an increase for JAK2 and Ret (colours represent fold
change over BRAF wild-type protein expressed as Log2). ¢ Western blot of cell lysates from transfected HEK293T cells with BRAF p.V60OE (control) and
BRAF p.T241P, p.Q257R, p.F468S and p.G469E plasmids to detect levels of total ERK and phosphorylated-ERK (p-ERK), normalised to p-actin and GAPDH.
d, e Graphs of the western blot quantification showing increase in the p-ERK/GAPDH (d) and p-ERK/total ERK (e) ratios associated with BRAF p.T241P,
p.Q257R, p.F468S and p.G469E compared to Wt BRAF (****p <0.0001, ***<0.001 and *<0.05 one-way ANOVA, data represented as mean £ SD).
Twenty micrograms of each BRAF variant plasmid including Wt and empty vector were used in the experiment. NT line, non- transfected control. Images
are representative of nine independent experiments.

increased MAPK signalling favours Sox2+ve cells to differentiate  abnormalities in terminal differentiation of hormone-producing
into ACTH and PRL. Together, our results demonstrate that cells. Since BRAF p.V600E is an oncogenic somatic mutation that
expression of oncogenic Braf'®%%F in developing progenitors activates the MAPK pathway but is not found in CFC patients, we
(Propl+-ve cells) results in severe postnatal hypopituitarism due studied whether the most common germline mutation identified
to a lack in terminal differentiation of TSH, LH and FSH and in CFC patients (the BRAF p.Q257R), equivalent to the mouse
severe reduction of GH hormone-secreting cells. Interestingly, Braf p.Q241R mutation, results in pituitary endocrine defi-
none of the postnatal pups exhibited pituitary tumours such as ciencies. In this model, the BrafloxpSTOPLoxpQ24IR/+ jg ybiqui-
papillary craniopharyngioma, which is known to harbour somatic ~ tously expressed under CAG:Cre reporter line34-36, In the
BRAF p.V600E mutations. C57BL/6 genetic background, this allele results in CFC-like

phenotypic abnormalities, with perinatal lethality due to
The murine knock-in allele harbouring the human CFC- cardiac abnormalities as observed in CFC patients. Interestingly,
causing mutation BRAFp.Q257R (CAG:Cre;BrafQ4IR/+) exhibits CAG:Cre;Braf@4IR/+ mutant pituitaries exhibit morphological
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Fig. 3 Expression of BrafV600E in the developing anterior pituitary gland (Prop1:Cre;BrafV600E/+) |eads to severe hypopituitarism. a Surviving mutant
pups Propl:Cre;Braf/600E/+ exhibit dwarfism and failure to thrive compared to PropT™/+;BrafV600E/+ (Wt) littermates. b, b’ Whole mount pictures of
Prop1*/+;Braf"600E/+ Wt (b) and Prop1:Cre;BrafV600E/+ mutant (b’) pituitaries at postnatal day P22 reveal a hypoplastic anterior lobe (b, AL arrowheads)
composed of a rudimentary layer of cells in the mutant mice compared to Wt (b). € Growth chart illustrating growth failure of PropT:Cre;BrafV600t/+
mutants (n=9) which die prematurely soon after weaning compared to Wt littermates (n=7). ***p < 0.001; **p < 0.01; *p < 0.05 unpaired two-tailed
Student’s T-test. Data represented as mean + SEM of n =3-6 pups per genotype. AL anterior lobe, PL posterior lobe, P postnatal day.

abnormalities, consisting of pituitary cleft bifurcations and
overgrowth of the marginal zone that expands into the pituitary
lumen and cavities within the anterior pituitary gland (Supple-
mentary Figs. 8 and 21). These morphological abnormalities are
reminiscent of the Propl:Cre;Braf’®0%F mutant pituitaries but
represent a milder morphological phenotype (Supplementary
Fig. 5). IHC at E18.5 revealed abnormal terminal differentiation
of hormone-producing cells in these mutants, with a clear
decrease in GH, TSH and LH and an increase in ACTH and PRL
compared to the Wt littermates (Fig. 6). This phenotype resem-
bles the Propl:Cre;BrafV600E/* mutants pituitaries (Fig. 4) but
with a reduced severity. Importantly, the CAG:Cre;BrafQ24IR/+
pituitary phenotype partially recapitulates the clinical phenotype
of four of our patients. Patients 1-4, with either p.T241P, p.
Q257R or p.F468S mutations, presented with GH/IGF1 defi-
ciency, with patients 1 and 2 (harbouring p.Q257R and p.F468S
respectively) also having associated TSH deficiency.

Activation of the ERK/MAPK pathway leads to down-
regulation of Pitl and Sf1 cell lineages and an increase in TPit
(corticotrophs and melanotrophs). The abnormal terminal dif-
ferentiation observed in both the Propl:Cre;Braf00E/+ and
CAG:Cre;BrafQ4IR/+ pituitaries suggested that early cell lineage
commitment transcription factors could be affected upon acti-
vation of the ERK/MAPK pathway. To ascertain this, we analysed
the expression pattern of cell lineage commitment markers Pitl

(POUIFI) required for GH, TSH, PRL?’, Sfl1 (NR5AI) required
for LH/FSH3S, TPit/TBX19 which gives rise to corticotroph
(ACTH) and melanotroph (MSH) lineages®**0, and the a-
glycoprotein hormone subunit (a-GSU) required for gonado-
trophs and Pitl-independent thyrotrophs*!. Before performing
our analyses, we tested that the onset of Cre recombinase activity
from the Propl:Cre transgenic line occurred prior to the
appearance of the cell lineage commitment markers using the
RosaT™/+ (RosaCAGLxpSTOPLxpTdTomatoy yeporter from Propl:Cre;
BrafV600E/+;Rosa™/+ embryos. We observed positive Tomato
expression from E10.5 and by E12.5, all of the RP appeared
positive for Tomato, including the emergent Pomc cells (Sup-
plementary Fig. 9). Moreover, using the Rosa™/* allele to per-
form genetic lineage tracing, we identified that all the Tomato+ve
cells gave rise to TPit, Pitl and Sfl lineages by double immu-
nostaining against Tomato and the respective lineage commit-
ment marker at E15.5 (Supplementary Fig. 10). These results
show that Cre activity from our transgenic Propl:Cre line affects
all the emerging pituitary cell lineages.

Analysis of pituitary cell lineage commitment factors at E15.5
revealed that the number of TPit+ve cells was increased in the
Prop1:Cre;BrafV000E/+ and CAG:Cre; Braf@4R/+ embryos com-
pared to Wt (Fig. 7a, d, g, j). The Pitl lineage transcription factor
appeared severely reduced in the Propl:Cre;BrafV600E/+ pitui-
taries with only a few positive cells compared to Wt (Fig. 7b, e, k);
again, a consistent but milder phenotype was observed in CAG:
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Fig. 4 Activation of the ERK/MAPK pathway in the anterior pituitary gland (Prop1:Cre;BrafV600E/+) results in defective terminal differentiation

of endocrine cells. a-j Immunohistochemistry against GH, TSH, POMC, PRL and LH in coronal sections through the pituitary gland of Prop1:Cre;Braf"600E/+
(b, d, f h,j) and Wt (a, ¢, e g, i) embryos at E17.5 of gestation. Absence of immunoreactivity for GH, TSH, LH in PropT:Cre;Braf"600t/+ (b, d, j) mutant
pituitaries compared to PropTt/+;BrafV600E/+ (a, ¢, i) reveals deficient terminal differentiation. Note that the anterior pituitary in PropT:Cre;BrafV600E/+ is
enlarged compared to Wt littermates. Prop1:Cre;Braf600E/+ pituitaries exhibit an increase in POMC () and PRL (h) expression compared to Wt littermates
(e, g, respectively). d’, h’ Higher magnification views of the squared area in d and h, respectively, revealing an expanded intermediate lobe (IL arrowheads
in d’ and h’) with multiple bifurcations (arrows in d’ and h’). Images are representative of three embryos per genotype. IL intermediate lobe, PL posterior
lobe, GH growth hormone, TSH thyroid-stimulating hormone, POMC proopiomelanocortin, PRL prolactin, LH, luteinising hormone. Scale bar: f, 200 pm;

h’ 500 pm.

Cre;BrafQ?4IR/+ pituitaries (Fig. 7b, h, k). Furthermore, the
gonadotroph cell lineage marker, SfI, was reduced by in situ
hybridisation in both Propl:Cre;BrafV6%%E/+ and CAG:Cre;
BrafQ4IR/+ E15.5 pituitaries (Supplementary Fig. 11c, f, i), and
similar findings were obtained on immunostaining (Supplemen-
tary Fig. 10m-r). IHC against a-GSU revealed a reduced number
of a-GSU-positive cells in the Propl:Cre;BrafV600E/+ mutants
compared to Wt but no evident differences were found in the
CAG:Cre;BrafQ41//+ (Fig. 7¢, f, i). The reduction in Pit1+ve cells
was also observed in both PropI:Cre;BrafV600E/+ and CAG:Cre;
Braf@4IR+ mutants at E18.5 (Supplementary Fig. 12) and
postnatally at P5 in the Propl:Cre;BrafV600E/+ (Supplementary
Fig. 6g, n), indicating that the downregulation of Pit1 was not due
to a developmental delay. In situ hybridisation for Pomc and Pit]
revealed similar results to IHC with a marked increase of Pomc in
the Prop1:Cre;BrafV®%E/+ and CAG:Cre;Braf4IR+ mutants and
decreased Pit] mRNA expression (Supplementary Fig. 11). We
then investigated whether the increase in ACTH+-ve cells was due
to an increased expanded domain of the melanotroph lineage
marker Pax7 42. No differences in the expression domain of Pax7
were observed between Wt and the Propl:Cre;Braf/00F/+ or
CAG:Cre; BrafQ4IR/+ mutant pituitaries (Supplementary Fig. 13).

Since we identified abnormalities in cell lineage commitment
markers, we sought to determine if early pituitary specification
was compromised in both PropI:Cre;BrafV600/+ and CAG:Cre;
BrafQ41R/+ mutants. The expression pattern of the transcription
factors implicated in early pituitary development such as Lhx3 43,
Propl** and Pitx]1* displayed no discernible differences
between mutants and Wt pituitaries at both E11.5 or E13.5
(Supplementary Fig. 14), demonstrating that activation of the

ERK/MAPK pathway does not impair the induction of Rathke’s
Pouch (RP).

Our data show that activation of the ERK/MAPK pathway by
expressing both the BrafVo0F and the BrafQ24IR alleles reduces
Pitl-dependent terminal differentiation of the somatotrophs
(GH) and thyrotrophs (TSH), while increasing the number of
ACTH+ve and PRL+ve cells. Furthermore, the TPit lineage
(corticotophs and melanotrophs) was highly increased in both
Propl1:Cre;Braf®%E/+ and CAG:Cre; BrafQ4IR/+ mutant pitui-
taries. Together these data indicated that increased activation of
the MAPK pathway affects cell lineage determination during early
development of the pituitary gland.

Activation of the MAPK pathway causes a transient increase in
proliferation of the Sox2+ve progenitor cells with a decreased
mitotic index at later stages of development. The activation of
the ERK/MAPK pathway has been shown to regulate proliferation
in multiple systems!31>. We therefore measured the mitotic index
(ML, % of dividing cells) in RP and AL cells at E11.5, E13.5, E15.5,
E16.5, P1 and P5, using anti-phopho-histone H3 antibody (a-
pHH3) by IHC (Supplementary Fig. 15). The MI was significantly
increased in the Propl:Cre;Braf/600E/+ pituitaries at E11.5-13.5,
but this was a transient effect, with a subsequent decrease in MI in
mutant pituitaries by E16.5. This decrease in MI was exacerbated
postnatally at P1 and P5 when compared with the Wt (Supple-
mentary Fig. 15). Double immunofluorescence against pHH3 and
Sox2 revealed co-localisation of these two markers, indicating that
the proliferating cells are Sox2+ve pituitary progenitor/stem cells
(PSCs) (Supplementary Fig. 16). Further, we used the thymidine
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Fig. 5 Activation of the ERK/MAPK results in increased expression of POMC and PRL with a portion of Sox2+{ve progenitor/stem cells co-expressing
POMC and PRL. Double immunofluorescence (IF) against POMC (green, a-f), PRL (green, g-1) and Sox2 (red, a-I) on coronal sections of E18.5 Wt

pituitaries (a-c, g-i) and PropT:Cre;BrafV600t/+ (d-f, j-1). The Propl:Cre;Braf"60%t/+ mutant pituitaries (d) exhibit a higher number of POMC+ve cells

compared to Wt (a). Enlarged merged images of the marginal zone revealed co-expression of Sox2 and POMC within a portion of POMC+-ve cells (white
arrowheads in ). Increase in number of PRL+ve cells was observed in the PropT:Cre;BrafV600E/+ pituitaries (j) compared to Wt (g). i’ and I’ represent
enlarged images of squared areas in i and |, respectively, showing the marginal zone. Cells expressing both Sox2 and PRL were observed in the MZ of
the PropT:Cre;BrafV600E/+ mutant pituitaries (white arrowheads in I’), while no co-expression of Sox2 and PRL was detected in the cells of Wt pituitaries
(I). Images are representative of four embryos per genotype. AL anterior lobe, MZ marginal zone, PL posterior lobe. Scale bars: a, d, g, j 150 um; ¢/, ', T',

and I’ 40 um.

analogue 5-Bromo-2'-deoxyuridine (BrdU) to label cells in the S
phase of the cell cycle, by treating pregnant females with a 2-h
pulse of BrdU at E13.5 and E15.5. Detection of BrdU by immu-
nofluorescence revealed that most of the BrdU+ve cells are Sox2
+ve, indicating that at this stage, most dividing cells are Sox2+ve
PSCs (Supplementary Fig. 17). Moreover, quantification of per-
centage of BrdU cells revealed an increased in BrdU-ve incor-
poration at E13.5 but not at E15.5, in line with the pHH3 MI
(Supplementary Fig. 15).

Since we observed a substantial increase of TPit and Pomc cells
at E15.5 compared to other lineages (Fig. 7 and Supplementary
Fig. 10), we asked if activation of MAPK favoured proliferation of
the emerging Tpit and Pomc lineages. We performed double
immunofluorescence for BrdU and TPit, Pitl or Pomc, at both
E13.5 and E15.5. At E13.5, we did not observe any co-labelling of
the emerging lineage commitment markers with BrdU (Supple-
mentary Fig. 18). At E15.5, almost no co-labelling of BrdU with
cell lineage markers was observed; only very few double BrdU+ve
cells co-localised with TPit or Pomc and the proportion of these

cells was similar to Wt (Supplementary Fig. 19). These
experiments show that activation of MAPK does not cause
overproliferation of the Tpit+ve cells, but rather leads to
overproliferation of Sox2+ve undifferentiated progenitors. We
then performed double immunostaining of Sox2 with either TPit,
Pitl or Pomc, which revealed a large number of Sox2+ve cells
aberrantly co-expressing Tpit and Pomc (Supplementary Fig. 20).
This experiment indicates that activation of MAPK favours
commitment of Sox2+ve cells towards TPit- and Pomc lineages,
but once these cells undergo lineage commitment, they do not
over-proliferate.

Taken together, our results show that expression of Braf p.
V600E results in a transient, yet severe, increase in cell
proliferation of the Sox2+ve cells, resulting in an expansion of
the stem cell compartment by E15.5. Additionally, increased
MAPK signalling favours Sox2+-ve cells to commit into Tpit- and
Pomc lineages while negatively affecting Pit and Sfl lineages.
Subsequently, the proliferation rate is significantly reduced over
time. We examined the proliferation in the CAG:Cre;BrafQ241R/+
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Fig. 6 Abnormal terminal differentiation of hormone-producing cells in the Braf@241R/+ knock-in allele (CAG:Cre;BrafQ@241R/+), |HC against GH, TSH,
POMC, PRL and LH hormones on coronal sections of Wt (a-e) and mutant CAG:Cre;BrafQ?4’R/+ (f-j) embryos at E18.5. GH (f), TSH (g) and LH (j) were
severely reduced in CAG:Cre;BrafR?41R/+ mutant pituitaries compared to Wt. Increase in POMC (h, h’) and PRL i, i) were found in mutants compared to
Wt (¢, d, respectively). f-j’ represent higher magnification of the boxed areas in f-j, respectively. Note that CAG:Cre;BrafR24’R/+ mutant pituitaries exhibit
overgrowth of marginal zone (MZ) with extended growths into the pituitary lumen (arrowheads in f'-j’). Images are representative of three embryos per
genotype. AL anterior lobe, IL intermediate lobe, PL posterior lobe, GH growth hormone, TSH thyroid-stimulating hormone, POMC proopiomelanocortin,

PRL prolactin, LH luteinising hormone. Scale bar: j 200 pm; j* 500 pm.

pituitaries and, similar to the PropI:Cre;BrafV600E/+, identified an
increased MI at E13.5; however, from E15.5 no significant
differences were noted (Supplementary Fig. 21).

Braf p.V60OE results in increased expression of cell senescence
marker (SA)-B-galactosidase, p16!NK42 and the cell cycle inhi-
bitors p21, p27XiPl and p57KiP2 leading to cell growth arrest,
decreased proliferation and apoptosis of PSC in vitro. Several
reports have shown that expression of BRAF p.V600E alone is not
sufficient to cause transformation and malignancy in vitro and
in vivo*6-49, Instead, BRAF p.V60OE causes an initial cell pro-
liferation, followed by growth arrest, oncogene-induced senes-
cence (OIS) and apoptosis®*>2, Hence, we hypothesised that
expression of Braf/®0’F alone in PSC results in OIS leading to
growth arrest, apoptosis and severe hypoplasia. To test our
hypothesis, we performed in situ hybridisation of cell cycle
inhibitors at E16.5 and P1 (Fig. 8). We chose embryonic day
E16.5 as the starting developmental point because this is the stage
when we first observed a decreased MI in the BrafY00E mutant
pituitaries (Supplementary Fig. 15). Expression of the cell cycle
inhibitors Cdknlc (p57XiP2), Cdkn2a (p16!NK42), Cdknla (p21)

and Cdknlb (p27XiPl) was upregulated in Propl:Cre;BrafV600E/+
both in E16.5 and P1 mutant pituitaries compared to Wt (Fig. 8).
Quantification of mRNA using real-time quantitative reverse
transcription PCR (RT-qPCR) from P1 pituitaries showed a 17.8-
fold upregulation of the senescence marker p16!NK4a, 4 6-fold
upregulation of the cell cycle inhibitor p57KiP2, and to a lesser
extent, increases in p21 and p27KiP1. Double immunofluorescence
of Sox2 with p57KiP2 or p27KiPl confirmed abnormal co-
expression and upregulation of these cell cycle inhibitors by the
Sox2+ve PSCs along the marginal zone in mutant BrafV00E
pituitaries compared to Wt (Fig. 9af, g-1). Moreover, immuno-
fluorescence using the activated MAPK readout pERK revealed
persistent activation of pERK in the stem cell compartment of
mutant pituitaries (Supplementary Fig. 22).

To assess whether expression of Braf p.V600E causes decreased
proliferation and apoptosis, we tested the effect of Braf p.V600E
in PSCs isolated from E18.5, P4 and P14 pituitaries in vitro.
Cultures of PSCs from Propl:Cre;BrafVe00E/+;Rosa™/+ or Wt
were performed using stem cell adherent cultures, and the
number of colonies and cells per colony were used as a readout of
proliferative capacity (Fig. 10 and Supplementary Fig. 23).
Following culture, 98% of the cells were positive for Tomato,
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Fig. 7 Expression of BrafV600E and BrafQ241R |eads to abnormal cell lineage specification with increase in TPit (corticotrophs and melanotrophs)
and decrease in Pit1 (somatotrops, thyrotrophs and lactotrophs). IHC against TPit (a, d, g), Pit1 (b, e, h) and a-GSU (¢, f, i) on sagittal section of
E15.5 embryos of Wt (a-c), PropT:Cre;BrafV600t/+ (d-f) and CAG:Cre;BrafR24R/+ (g-i). Expression of TPit was increased in the Propl:Cre;BrafY600E/+
and CAG:Cre;Braf@241R/+ pituitaries compared to Wt (arrows in d, g). Quantification of TPit-positive cells shows statistically significant increase in the %
of TPit+ve cells in both Propl:Cre;Braf"600E/+ and CAG:Cre;BrafQ24™R/+ pituitaries compared to Wt (j). Severe reduction of Pitl immunoreactivity was
observed in PropT:Cre;BrafV600E/+ with only few positive foci (arrows in ) compared to Wt (b). Quantification of the Pit1-positive cells revealed a
decrease in Pit1 cells in Prop1:Cre;Braf"600E/+ and CAG:Cre;BrafR?41R/+ mutant pituitaries (k). Mild reduction of a-GSU was observed in PropT:Cre;BrafV600t/
+ pituitaries (arrows in ) (I). Note that PropT:Cre;BrafV600t/+ and CAG:Cre;BrafR241R/+ pituitary glands exhibited morphological abnormalities with
expanded overgrowth and bifurcations of IL (arrowheads d-f and g-i) and overall enlarged size. Quantification of percentage of TPit (j), Pit1 (k) and
a-GSU-positive cells (I) (***p<0.007; **p < 0.07; *p < 0.05 one-way ANOVA, data represented as mean = SEM from n = 4-5 pituitaries per genotype).
AL anterior lobe, IL intermediate lobe, PL posterior lobe, IHC immunohistochemistry. Images are representative of four or five embryos per genotype.

Scale bar: i 200 pm.

demonstrating Cre activity and recombination of the Rosa™
allele. Moreover, expression of the BrafV600E/+ allele was assessed
both by western blotting using a specific Braf p.V600E antibody
and by immunofluorescence (Supplementary Fig. 23¢c, m). Braf p.
V600E -expressing PSCs fail to show overt differences in
proliferation as assessed by the number of colonies and number
of cells per colony at E18.5 (Supplementary Fig. 23a, b). To
demonstrate that the ERK/MAPK pathway had been activated,
we performed western blot and immunofluorescence against
phosphorylated-ERK, which demonstrated increased levels of
phosphorylated-ERK in the Prop1:Cre;BrafV00E/+;Rosa ™/ cells
compared to Wt. A significant increase in the senescence markers
such as senescence-associated (SA)-B-galactosidase, pl6INK4a,
p57KiP2 and p21 was observed in mutant PSCs compared to Wt
PSCs (Supplementary Fig. 23e, I; h, 0; 1, p; j, q). Importantly, the
colony-forming capacity of the mutant PSCs at both P4 and P14
was severely compromised postnatally, when the pituitary
hypoplasia is evident in vivo (Fig. 10a-d). TUNEL immuno-
fluorescence revealed increased numbers of apoptotic cells in

mutant PSCs compared to Wt and a significantly decreased MI,
with less pHH3+-ve cells per colony in Braf p.V600E -expressing
mutant PSCs compared to Wt (Fig. 10g-h, i, j, n-o0). Taken
together, our data show that expressing Braf p.V600E in PSCs
leads to cell growth arrest, with increase in the expression of
senescence markers pl6!NK42 p21 SA-B-galactosidase and cell
cycle inhibitors, leading to a reduction in colony formation and
an increased apoptosis of PSCs in vitro. Since we observe an
increase in TUNEL+ve cells in PSCs, we reasoned that the
hypoplastic pituitary phenotype of postnatal Prop1:Cre;BrafV600E/
T mutants could be due to a combination of both reduced
proliferation and increased apoptosis. Therefore, we assessed
apoptosis in the pituitary glands of Prop1:Cre;BrafV600E/+ and Wit
at three stages (E16.5, P1 and P5) by using an anti-activated
cleaved CASPASE antibody (Supplementary Fig. 24). Quantifica-
tion of CASPASE+ve cells revealed a significant increase in
apoptotic cells in the Propl:Cre;BrafV600E/+ mutant pituitaries
compared to their Wt littermates at E16.5, P1 and P5, indicating
that expression of Braf p.V60OE leads to an increase in apoptosis.
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Fig. 8 Expression of BrafV600E yesults in upregulation of cell cycle inhibitors p57KiP2, p27KiP1 and the senescence markers p16/NK4a and p21. a-h In situ
hybridisation of sagittal sections through embryonic pituitary gland of Wt (a-d) and PropT:Cre;BrafV600E/+ mutant pituitaries (e-h) at E16.5 reveals
significantly increased p57KiP2, p16INK4a p271 and p27KiPT mRNA transcripts in mutant pituitaries. p57KiP2 transcripts were upregulated and its expression
domain was expanded ventrally (arrows in e). p16/NK4a mRNA transcripts were upregulated in the ventral portion of the AL (arrows in f). p27 transcripts
were located in the AL in mutant pituitaries (arrows in g) and absent in Wt (¢), although p27 was expressed in the basisphenoid bone (bb, arrowheads in
¢, g) in Wt. Expression of p27KiP! was significantly upregulated in the ventral side of the AL (arrows in h) compared to Wt (arrows in d). The IL was
negative for p27KiPT (arrowheads in d). i-p Representative coronal sections at P1 of Wt i-l and Prop1:Cre;BrafV600E/+ mutant pituitaries m-p. p57KiP2Z mRNA
transcripts were localised mainly in the IL and the MZ (arrowheads in i) while in the mutants expression was found ectopically throughout the AL (arrows
in m). Expression of p16/NK4a (arrows in n), p27 (arrows in 0) and p27KiPT (arrowheads in p) was upregulated compared to the corresponding Wt pituitaries
(j-D. Images are representative of five embryos per genotype. Asterisks indicate tissue cavities within the AL. @ Quantitative RT-gPCR from P1 pituitary
glands revealed increased mRNA expression of p57KiP2 (4.6-fold increase), p16/NK4a (17.81-fold increase), p21 and p27KiPT compared to Wt (****p < 0.0007;
**p < 0.01; *p<0.05 unpaired two-tailed Student's T-test. Data represented as mean = SEM from n=4 pituitaries or 5 pituitaries for p16/NK4a per
genotype). AL anterior lobe, IL intermediate lobe, MZ marginal zone, PL posterior lobe. Scale bars in h, n & p represents 200 um.

We also observed an increase in apoptotic cells in the CAG:Cre;  Discussion

BrafQ4IR/+ pityitaries compared to Wt (Supplementary Fig. 25). In this manuscript, we report the association of SOD and CFC
Hence, expression of Braf p.V60OE results in an increased syndrome in patients harbouring activating mutations in BRAF.
apoptosis of the Sox2+ve progenitor stem cell pool, and when Hormone deficiencies, such as GH deficiency and delayed
coupled with a significant decrease in proliferation, a severe puberty, have been reported in patients with CFC, along with
hypoplasia of the anterior pituitary occurs in the Propl:Cre; some endocrine abnormalities’!®. However, the pathogenesis
BrafV600E/+ mutants. underlying the hormone deficiencies with the link between
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Fig. 9 Activation of ERK/MAPK pathway by expression of BrafV690F results in increased expression of the cell cycle inhibitors p57KiP2 and of p27Kir1
in the Sox2-+ve stem cells at E18.5. a-1 Coronal sections through the pituitary gland at E18.5 of Wt (a-c, g-i) and Prop1:Cre;Braf600t/+ (d-f, j-1). Double
immunofluorescence against cell cycle inhibitor p57KiP2 (green, a-f) and p27KiP! (green, g-1) with the pituitary stem cell marker Sox2 (red, a-I). The cell
cycle inhibitor p57KiP2 was found to be upregulated in the Propl:Cre;Braf/600t/+ pituitaries (arrowheads in d) compared to the Wt (a). ¢’, f Merged
enlarged images of squared areas in ¢ and f reveal increased p57KiP2 immunoreactivity co-localising with Sox2 (arrowheads in f') in the PropT:Cre;BrafV600F
mutant pituitaries compared to Wt (arrowheads in ¢’). Expression of p27KiP1 (arrowheads in j) is observed in the marginal zone (MZ) of the mutant
pituitaries compared to Wt (g). Confocal merged images of the marginal zone revealed co-localisation of Sox2 with p27KiPT in the mutant PropT:Cre;
BrafVé00E/+ pituitaries (yellow nuclei, arrowheads in I’), while no co-localisation of p27KiP! and Sox2 was seen in Wt pituitaries (arrows in i’). i’, I’ are
enlarged images of the squared areas in i and | respectively. Images are representative of three embryos per genotype. AL anterior lobe, MZ marginal zone,
PL posterior lobe. Scale bars in a and g represent 200 um. Scale bars in ¢’ and i' represent 25 um.

RASopathies and developmental abnormalities of the HP axis
leading to CH have not been previously established. In this study,
we characterise the functional consequences of one genetic var-
iant in BRAF, BRAF p.F468S, which has been previously reported
but not functionally characterised. We also report more detailed
functional analyses of the less well characterised BRAF p.T241P
and BRAF p.G469E mutants, which occur in both Leopard syn-
drome and CFCZ?>?7:28, Phosphoproteomic analyses of these
genetic variants demonstrate that all the genetic variants are
indeed pathogenic, with the BRAF p.T241P, BRAF p.F468S and
BRAF p.Q257R variants resulting in similar phosphopeptide
enrichment and clear over-activation of the ERK/MAPK path-
way. However, the BRAF p.G469E genetic variant showed rela-
tively modest activation of the ERK/MAPK pathway in our
phosphoproteomic analyses, indicating that this is a mild acti-
vator of the pathway, coinciding with a milder clinical phenotype
with no cardiovascular or HP phenotypes, although the latter

could still evolve given that the growth pattern of the proband is
abnormal.

Short stature may be multifactorial in CFC patients and other
RASopathies, for example, due to poor feeding, as well as gas-
trointestinal and cardiac defects, which may mean that endocrine
evaluation is often not undertaken in CFC patients. Our murine
transgenic experiments show that the MAPK pathway is essential
for pituitary gland development, with activating mutations leading
to CH and therefore patients with CFC should be screened for
pituitary hormone deficiencies. We show that activation of the
ERK/MAPK pathway by expressing Braf p.V600E only in the pi-
tuitary gland (Propl+-ve pituitary progenitors cells) or the knock-
in allele of the most common human CFC-causing mutation, the
hBRAF p.Q257R (CAG:Cre;BrafQ4IR/+), results in clear hypopi-
tuitarism with a decrease in the cell lineage determination factors
Pitl and Sfl, required for terminal differentiation of somatotrophs
(GH+-ve), thyrotrophs (TSH+ve), lactotrophs (PRL+ve) and

12 | (2021)12:2028 | https.//doi.org/10.1038/541467-021-21712-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a P4 b P14
WT Prop1:Cre;Braf V®"%* Wt Prop1:Cre;Braf vo°&*
e /-"'_\ _
5.4 s, )
- \ ‘ .
e ] @- . « &3 5 Y 10 g
L] PR Xg e . - 5 :
°. 8 ¢ ce <
v s° a S0 e e z ®
.. s o ® L. . ‘@, k.
P - — -
“ 3 *a e i
_.‘»90 e e’ ° = 0 o
°n A . s o ]
Q D A Vi ;O @ E »
: . s . . .
7 “ -y L 3 » . *
s s @
c d
601 > 100~
5 Wt
2 —_ S
£ " —t- a Prop1:Cre;BrafVeooe+
Q e @ —= ==
° = = =g
k] 3 50 agt sifee =,
g »; . 5 S
£ T 5 “aan) e
> = £ " ..l "
z l-.#— IS =
5 g
0 ' Z o , ,
P4 P14 P4 P14
DAPI/a-Sox2 DAPI/ DAPI/ SA-B-galactosidase
i
ES
g
a
3
g
a
$
]
3
x
i
s
[
a
3
<
=
I
a
m n o
Prop1:Cre; "
Brafvma’kDa 25+ *kk 301
V600E 95 204 25+
a-BRAF - o -
5 15 x 8 207
o s}
- ° ) °
% 2 104 g H 154
a-pERK — i S8 S® 1l
52 8§ é T s
s 2 J
® S -
o == £ ) o
o-GAPDH ——| - 36 o
Prop1:Cre; Prop1:Cre;
wt Bra)emgf/' wt Bra?vsmiEh

Fig. 10 Expression of Braf p.V60OE in postnatal pituitary stem cells leads to decreased proliferation and increased apoptosis in vitro. PSC cultures
from Wt and PropT:Cre;BrafV600t/+ at postnatal stage P4 (a) and P14 (b) reveal a significant decreased capacity in colony formation (¢) and number of
cells per colony (d) in mutant PSCs compared to Wt. The ability of the mutant PSCs to form colonies diminishes over time from P4 to P14 (c).
Immunostaining with the PSCs marker Sox2 revealed that all the cells in culture are Sox2+ve (e, f). TUNEL immunofluorescence revealed a significant
increase in apoptotic cells in the mutant PSC colonies (arrowheads in h and quantification n) while almost no apoptotic cells were seen in the Wt colonies
(g, n). Immunofluorescence against pHH3 revealed a substantial decrease in pHH3-+ve cells in the mutant PSCs (arrowhead in j) compared to Wt
(arrowheads in ). o Quantification of the number of pHH3+ve cells per colony shows a significant decrease in the mitotic index in the mutant PSC colonies
compared to Wt. The Propl:Cre;BrafV600E/+ mutant colonies express the senescence SA-p-galactosidase (arrowheads I) while only a few positive cells were
detected in Wt (arrowheads in k). Western blotting of PSC lysate revealed expression of Braf p.V60OE resulting in increased pERK in the PropT:Cre;BrafV600E/
+ mutant PSCs compared to Wt. *** statistically significant p < 0.001, unpaired two-tailed Student's T-test, data represented as mean = SEM (number of
colonies and cells per colony of three mutants and three Wt from three independent experiments performed in triplicates ¢, d); n number of TUNEL+-ve cells
per colony of 12 colonies from three mutants and three Wt; o number of pHH3+ve cells of 21 colonies from three mutants and three Wt. Images are
representative of three independent experiments. Scale bar in e and e represent 50 and 10 um respectively.
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gonadotrophs (LH+ve and FSH+ve). Importantly, these pheno-
types partially recapitulate endocrinopathies reported in our CFC
probands in this study and in association with other reported
RASopathies!»19-23-35,

Interestingly in both our murine models, Prop1:Cre;BrafV600E/+
and CAG:Cre;BrafQ?4IR+ activation of ERK/MAPK signalling
results in an increase in PRL+ve and ACTH+ve cells during
development. The increase in lactotrophs upon activation of the
MAPK pathway in our mutants is consistent with several in vitro
and in vivo studies”®-%0, Indeed, persistent activation of the ERK/
MAPK pathway in rat GH4 pituitary somatotrophs and lacto-
trophs, by either addition of exogenous epidermal growth factor
(EGF) or expression of oncogenic RasV12, results in increased
secretion of PRL. Additionally, EGF treatment of postnatal
pituitaries has been shown to drastically increase the proportion of
lactotrophs and PRL secretion through increased ERK/MAPK
signalling®®%0, Of interest, a CFC patient carrying a heterozygous
mutation in MEK]I has been reported to have GH deficiency with
hyperprolactinemia®!.

Our results demonstrate that activation of the ERK/MAPK
pathway results in a significant increase of TPit+ve and corti-
cotroph cells. This is in line with multiple reports in which
activation of the MAPK pathway has been shown to be required
for the transcriptional activation of the Pomc gene in ACTH+ve
corticotrophs®263, Mutations in hUSP8, which lead to increased
EGEFR signalling via activation of the MAPK pathway, result in
increased Pomc expression in corticotroph adenomas®®, and
Fukouka et al.®> have shown that Pomc promoter activation is
dependent on MAPK and can be inhibited by the EGFR blocker
Gefitinib.

Fibroblast growth factors Fgf8, Fgfl0 and Fgfl8 signal through
the MAPK pathway, and their expression in the pituitary orga-
niser, the infundibulum, is essential for pituitary progenitor pro-
liferation and anterior pituitary formation®%%7. Our data partially
agree with a recent study in which the ERK/MAPK pathway was
activated using two different alleles, namely KrasG!2P and
BrafV000E under Hesx1 regulatory elements®®. In this report,
activation of the MAPK pathway also resulted in increased ACTH
+ve cells, a decrease in the cell lineage determination factors Pitl
and Sf1, and an increase in the number of TPit+ve cells, which are
all consistent with our results. Activation of either KrasG12D or
Braf000F in Hesx1-+ve cells resulted in perinatal lethality, with
none of the mutant pups surviving to birth®, Hence, the early
lethality seen in these mutants precluded the study of the effect of
Braf p.V60OE expression in pituitary progenitors postnatally. In
our experiments, embryos that expressed Cre and activated Braf p.
V600E in the CNS, developed severe brain abnormalities and
perinatal death. Hence we designed our experiment to select only
pituitary-specific activation of the BrafV60E allele. We found that
pups carrying the Braf"®%F allele only in the pituitary gland
survive birth and do not develop pituitary tumours but instead
develop hypopituitarism.

Previous studies have identified somatic BRAF p.V600E
mutations as drivers of two pathologically distinct pituitary
tumours, namely the non-secreting benign pituitary tumour
known as papillary craniopharyngioma (PCP)!®!7, and more
recently ACTH-secreting pituitary adenomas leading to Cush-
ing’s disease!®. Hence, BRAF p.V60OE can lead to two patholo-
gically distinct types of pituitary tumours, most probably
depending on the pituitary cell type of origin from which the
mutation arises. Our murine data suggest that expression of
Braf p.V60OE in embryonic pituitary progenitors/stem cells does
not lead to pituitary tumours. One possibility is that the
expression of Braf p.V60OE alone is not sufficient to cause
tumours. This is in agreement with several studies that show that
activation by Braf p.V600E alone promotes cell growth inhibition,

lack of terminal differentiation and apoptosis?®-4749>1, Further-
more, PCPs affect mainly adults, and consist of undifferentiated
cells, which is at variance with the highly differentiated cortico-
troph and lactotroph populations of our PropI:Cre;BrafV600E/+
mutants. Therefore, it is plausible that PCPs require a second
mutational hit in either another oncogene or a tumour sup-
pressor. Alternatively, in order for BRAF p.V60OE to lead to
tumour formation, the mutation may need to occur in a differ-
entiated pituitary cell or adult pituitary stem cell rather than in
an embryonic pituitary progenitor.

The early postnatal death of our Prop1:Cre;Braf%E/+ mutant
mice at around weaning may be attributed to severe hypopitui-
tarism with complete lack of TSH. Thyroxine deficiency in mice
has been linked to postnatal lethality in several studies, and
thyroxine has been shown to be essential for survival after
6 weeks of age and post-weaning to independent life®®70. The
CFC-causing mutation (CAG:Cre; BrafQ241R/+) in a C57BL/6
genetic background shows terminal differentiation deficiencies
with a decrease in GH, TSH, LH and FSH, which is in accordance
with our CFC patients. Due to cardiovascular abnormalities
associated with CFC syndrome, these mice die perinatally, how-
ever, in a CDI1 genetic background these animals survive the
cardiovascular abnormalities and develop dwarfism with low
IGF1 levels, further reinforcing the effect of the genetic back-
ground on the CFC phenotype’!72,

Our study has specifically investigated the role of Braf in the
murine pituitary, where activation of the MAPK pathway through
expression of Braf/®%E or BrafQ24IR glleles leads to pituitary
hypoplasia and CH. Expression of Braf"600E/+ in pituitary pro-
genitors leads to a transient increased proliferation of the Sox2
+ve PSCs, leading to enlargement of the marginal zone. However,
the proliferative capacity of the mutant pituitaries significantly
decreases later in development, with pituitaries becoming hypo-
plastic and favouring differentiation into ACTH+ve and PRL+ve
cells. The Sox2+ve pituitary stem cells aberrantly express ACTH
and PRL and fail to normally differentiate into GH-, TSH-, FSH-
and LH-producing cells. Moreover, activation of the ERK/MAPK
pathway leads to increased expression of the senescence-
associated markers pl6/NK4a  p21 SA-B-Galactosidase, and
increased expression of the cell cycle-dependent kinase inhibitors
p57KiP2 and p27KiPl; Jeading to cell growth arrest and increased
apoptosis of the Sox2+ve progenitor/stem cell pool. Apoptosis of
the Sox2+-ve pituitary stem cells coupled with cell growth arrest
leads to depletion of the stem cell pool and pituitary hypoplasia,
rather than tumour formation.

The patients reported in this study harbour activating
mutations, and patients 1-4 clearly exhibit varying degrees of
hypopituitarism. The rather poor response to GH treatment
observed in our patients in the face of GH deficiency suggests
that there may be a co-existing GH insensitivity, or altered
function of growth plate chondrocytes, as has been previously
described in RASopathies. Patient 1 showed evidence of hypo-
gonadotropic hypogonadism. Of note, IGF1 was low in patients
3 and 5 in spite of normal GH concentrations in response to
provocation, and this may reflect neurosecretory dysfunction of
GH secretion, as has also previously been documented in
RASopathy patients. Three of our patients (patients 2, 3 and 4)
manifested exuberant LH and FSH responses to GnRH stimu-
lation, with patients 2 and 3 needing sex steroids to progress
through puberty. Our studies do not exclude a hypothalamic
contribution to the phenotype in humans, as Braf/BRAF is
expressed in both the hypothalamus and the pituitary; however,
our study has focused on demonstrating the role of BRAF
within the pituitary gland.

To date, there has been no molecular explanation underlying
the association between childhood onset hypopituitary disorders
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such as SOD and BRAF variants. Unifying features include GH
deficiency, with the evolution of other pituitary abnormalities
such as TSH deficiency, which parallels the phenotype of both
murine models (Propl:Cre;Braf’®E) and the human CFC-
causing mutation (CAG:Cre;BrafQ24I%/+), Individuals with CFC
syndrome should therefore be screened for pituitary abnormal-
ities and hypopituitarism, as these are associated with further
morbidity and, if undiagnosed, potential mortality. Our findings
show a direct and vital role for BRAF in the development of the
HP axis in both mice and humans, and implicate for the first time
BRAF mutations found in RASopathies as an underlying cause of
congenital endocrine deficiencies in humans, thereby explaining
previously described endocrinopathies in CFC/RASopathies.
Hence, patients with RASopathies should be closely monitored
for endocrine deficiencies early in life. Our work also reveals that
BRAF and components of the MAPK pathway are potential novel
candidate genes for congenital pituitary disease, such as SOD, or
isolated or CPHDs, and thus mutations in components of the
MAPK pathway could be mutated in CPHD. In conclusion, our
murine models illustrate a role for BRAF and, more generally, the
MAPK signalling pathway in pituitary development, and explain
the underlying mechanism by which activating mutations in
components of the MAPK pathway can lead to hypopituitarism.

Methods

Animals. All experiments were conducted under the regulations, licenses and local
ethical review of the UK Home Office Animals (Scientific Procedures) Act 1986
and are described and QM-AWERB Ethical committee. The transgenic lines
Rosa26CAGLoxpSTOPLoxpTdTomato (stock #007905), BrafV600E/+ (stock #017837)
were obtained from the JAX lab and have been previously described3!-3. The
Prop1:Cre transgenic line32 was kindly provided by Shannon Davis and Sally
Camper. The CAG:Cre;BrafQ4IR/+ mice were provided by Shin-ichi Inoue et al.34.
Animals were kept in 12 h light/12 h dark cycle, with constant supply of food and
water, temperatures of 65-75 °F (~18-23°C) with 40-60% humidity.

Patient recruitment. Patients with CFC were recruited to the study, and Sanger
sequencing was performed in regional accredited Genetics laboratories. Ethical
committee approval was obtained from the UCL Great Ormond Street Hospital for
Children Joint Research Ethics Committee (09/H0706/66). Informed written
consent was obtained from all patients and/or parents. The human embryonic and
foetal material was provided by the Joint Medical Research Council (MRC)/
Wellcome Trust HDBR Resource (www.hdbr.org) with approved Research Ethics
Committee 18/NE/0290 and 18/LO/0822.

Whole-exome sequencing and alignment. Whole-exome capture and sequencing
was performed at BGI (Shenzhen, China) using SureSelect Human All Exon v6 60
Mb kit (Agilent Technologies, Santa Clara, CA, USA) and BGISEQ-500 platform
(Illumina, San Diego, CA, USA). Sequencing reads were aligned with Burrows-
Wheeler Aligner (BWA) v0.7.1774 to human genome build 38 (GRCh38.p1) not
including alternate assemblies (GCA_000001405.15_GRCh38_no_alt_analysis_set.
fna). Read duplicates were marked with Sambamba?>.

Variant calling and annotation. Variant calling across exome capture target
regions with 100 bp padding was performed using Genome Analysis Toolkit
(GATK) v4.0.3.07677 according to the best practices workflow for joint (multi-
sample) calling’8. The resultant variants were normalised and decomposed using
Bceftools v1.8 (https://github.com/samtools/bcftools) and annotated with ANNO-
VAR, All variants in the genes previously associated with hypopituitarism, SOD,
and CFC were assessed for pathogenicity. In order to exclude any other reported
pathogenic variation in the exome we also examined all variants listed as ‘patho-
genic' and ‘likely pathogenic' in the ClinVar database (v.2018-10-28) and variants
annotated as ‘pathogenic’ and ‘likely pathogenic' by InterVar.

Plasmids and site-direct mutagenesis. The full-length cDNA hBRAF (NM_
004333.4) clone in MAM pCR4-TOPO vector was provided by www.hdbr.org.
HindIII and NotI restriction sites were introduced by PCR and products subcloned
in the pcDNA3.1 (+) (Addgene). Mutagenesis was performed using QuikChange II
XL Site-Directed Mutagenesis Kit (Agilent Technologies) according to the manu-
facturer’s instructions. Mutagenesis primers are indicated in the Supplementary
Table 4. All mutations were confirmed by Sanger sequencing.

Cell culture and western blotting. HEK293T cells were grown in Dulbecco
modified Eagle’ medium (DMEM) supplemented with 10% FBS. Cells were seeded

in 24-well plates at 1.75 x 10° cells/well 24 h before transfection. Cells were
transfected with equal amounts (200 ng) of Wt or mutant p.T241P, p.Q257R, p.
F468S, p.G469E and pV600E hBRAF plasmids using Lipofectamine 2000 (Life-
Technologies) according to the manufacturer’s instructions. Cells were harvested
24 h after transfection in a lysis buffer [50 mM Tris-Base (pH 7.6), 150 mM NaCl,
1% Triton X-100] implemented with protease inhibitors (Complete Mini, EDTA-
free tablets, Roche) at 1:6 ratio with the total volume and 1% phosphatase inhibitor
Cocktail3 (Sigma-Aldrich)]. Bradford assay was used to quantify protein (Pierce
BCA Protein Assay Kit, Thermo Scientific). Western blot membranes were incu-
bated overnight at 4 °C with primary antibodies (Supplementary Table 6). Mem-
branes were analysed using Odyssey 2.1 Imaging System (LI-COR Biosciences).
Experiments were independently repeated nine times and the statistical analysis
was performed using one-way ANOVA.

Phosphoproteomics. Cells were washed twice with PBS supplemented with 1
mM Na3;VO, and 1 mM NaF, lysed in urea buffer (8 M urea in 20 mM in HEPES
pH 8.0 supplemented with 1 mM Na;VO,, 1 mM NaF, 1 mM Na,P,0; and 1
mM sodium B-glycerophosphate) and stored at —80 °C. Cell lysates were further
homogenised by sonication, insoluble material was removed by centrifugation
and protein in cell extracts was quantified. Following described procedures, 250
ug of protein was reduced, alkylated and digested with trypsin. Peptide solutions
were desalted with Oasis cartridges and phosphopeptides enriched using TiO, as
previously reported3?. Phosphopeptide pellets were re-suspended in recon-
stitution buffer (20 fmol/pl enolase in 3% ACN, 0.1% TFA) and loaded onto an
Orbitrap Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific) operated
with a parameter setting previously described®?. Peptide identification from MS
data was automated with Mascot Daemon 2.5.0. Searches were performed
against the SwissProt Database (uniprot_sprot_2014_08.fasta) using the para-
meters described in 81, Pescal (vO1)software was used for label-free peptide
quantification®, and undetectable peptides were assigned a value equal to the
lowest detected intensity across sample divided by 10. Values of two technical
replicates per sample were averaged and intensity values for each peptide were
normalised to total sample intensity. Differences in peptide phosphorylation
between Wt and BRAF variants were reported as fold over Wt and statistical
significance for those changes was assessed using unpaired two-tailed t-test.
Kinase activities from phosphoproteomics data were inferred by KSEA as
described before80.

Immunohistochemistry, immunofluorescence, and in situ hybridisation.
Immunostaining was performed by deparaffinisation of the sections followed by
rehydration through decreasing ethanol dilutions. Heat-induced antigen retrieval
was performed with a microwave in 10 mM sodium citrate buffer (pH 6). Samples
were left to cool and incubated for 1h in blocking buffer [1 PBS, 0.1% Triton X-
100, 5% Normal Goat Serum (Vector Laboratories)]. Primary antibodies and their
concentration are listed in Supplementary Table 6. Staining was achieved using
DAB Peroxidase Substrate Kit (Vector Laboratories; SK-4100). The colorimetric
reaction was stopped with water and the sections were counterstained using hae-
matoxylin (Sigma-Aldrich). For immunofluorescence, conjugated secondary anti-
bodies Alexa Fluor 568 or 488 were used, or a biotinylated secondary followed by
streptavidin. Sections were mounted with Vectashiled containing DAPI (Vector
Laboratories). Images were acquired with Leica or confocal LSM 880 laser scanning
confocal microscope with AiryScan. Figures were generated with Adobe Photoshop
CS6. The MI is the percentage of pHH3-positive cells compared to total number of
cells (average counts from three different sections, separated approximately by 100
um, per each embryo/pituitary with a minimum of # = 5-8 per genotype and
stage). Caspase represent number of positive cells per section with an average of
three sections per pituitary/embryo. In situ hybridisation was performed by
adapting the protocol from 3 and described before in’>82. In short, slides were
deparaffinised, rehydrated and fixed with 4% PFA. Slides were incubated with
proteinase K, followed by a second fixation with 4% PFA and finally incubated with
0.1 M triethanolamine and 0.1% acetic anhydride (Sigma). Hybridisation was
achieved by an overnight incubation with 100 ng of the digoxigenin-labelled probe
at 65 °C. Sections were washed in 0.1 M Tris-HCI Buffer (pH = 7.5) followed by an
overnight incubation at 4 °C with anti-Dig antibody (Sigma-Aldrich). Signal
detection was achieved by colorimetric reaction using 4-nitro blue tetrazolium
chloride solution (NBT; Sigma-Aldrich) and 5-bromo-4-chloro-3-indolyl phos-
phate disodium salt (BCIP; Sigma-Aldrich). The digoxigenin-labelled antisense
probes hBRAF, Pomcl, Pitl, Propl, Lhx3, Pitxl, Pax7, SfI, p16INKéa, po7Kipl,
p57KiP2 and p21 were generated from plasmids containing either a portion or full-
length cDNA of each gene obtained from Source Bioscience, HD.B.R., A.
McMahon; M. Rosenfeld; Sally Camper; Leonardo Guasti, Andreas Kispert and
Peter Gruss®384, respectively. In utero BrdU (5-bromo-2’-deoxyuridine; Sigma)
was performed by IP injection of pregnant females at a final concentration of 100
mg/kg; 2 h after injection embryos were dissected and fixed. At least three embryos
per genotype were used for each gestational stage. Cell counts were performed
using Image] software, and graphs and statistics using Graph-Pad Prism v.9.

RT-qPCR gene panel and primer design. RNA expression levels of Cdkn2a
(p16™NK4) Cdknla (p21), Cdknlb (p27KiPl), Cdknlc (p57XiP2) genes were
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analysed by RT-qPCR. RT-qPCR was performed using QuantiTect SYBR Green
PCR Kit (Qiagen) according to the manufacturer’s protocol and analysed with
Stratagene (Agilent Technologies). A comparative Ct method (2~A2CT2 method)
was used to compare the mRNA expression levels of genes of interest normalised to
GAPDH. Differences in mRNA expression levels were compared by using Student’
T-tests. Primers are shown in Supplementary Table 5.

Pituitary stem cell culture and SA-f-galactosidase. PSCs were cultured from
murine AL incubated for 2h in enzyme mix [0.5% w/v Collagenase, 50 pg/ml
DNase, 2.5 ug/ml Fungizone, trypsin 0.1% in Hank’s Balanced Salt Solution] and
mechanically dissociated into single cells. In all, 10,000 cells/well were plated in 12-
well plates and cultured in stem cell-promoting media [Ultraculture Medium
(Lonza), supplemented with 5% FCS (Sigma), 1% penicillin/streptomycin (P/S:
Fisher), 1% glutamax (Fisher), 20 ng/ml basic fibroblast growth factor (R&D) and
50 ng/ml cholera toxin (Sigma)]. Media was changed every 48 h and cultures were
maintained for 8 days. SA-B-Gal staining: staining on PSC cultures was performed
according to the manufacturer’s instructions (Cell Signalling kit (#9860)).

Statistics and reproducibility. Statistical analyses were performed using Prism 6
and 9 software (GraphPad). The number of independent experiments and of
replicates (n) is indicated in each the figure legends. Unless stated otherwise, at
least three biological independent replicates were performed for each panel and
came from at least three independent experiments. When appropriate, normal-
isation of the data was performed within each independent experiment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The authors declare that all the data supporting the findings herein are included in the
article (or Supplementary materials) and available from the corresponding author (C.G.
M.) upon reasonable request. All mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE (https://www.ebi.ac.uk/
pride/archive/projects/PXD018190) partner repository with the dataset identifier
PXD018190. The source data underlying graphs and un-cropped gels in the manuscript
main figures and supplementary materials are provided as a Source Data file. The exome
sequencing data that support the findings are not publicly available due to information
that could compromise the research participant’s privacy/consent. A reporting summary
for this article is available as a Supplementary Information file.
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