
EDITORIAL

Any sufficiently advanced technology is indistin-
guishable from magic.

Arthur C. Clarke

Deep learning is a popular form of artificial intelligence
(AI) that has shown great effectiveness for many medi-

cal imaging tasks. In this article, we provide a set of instruc-
tions to access computing resources needed to perform
deep learning on medical images. The article includes a
simple deep learning example—categorizing medical im-
ages—to show how to use a notebook computing environ-
ment. This article will not provide a detailed description of
the algorithm but will focus on helping people unfamiliar
with deep learning computing to create an environment
that will allow them to perform many deep learning tasks.

This article includes the “baby steps” that will help
those with little or no AI programming experience or ac-
cess to specialized hardware. The reader can use web-based
resources to execute deep learning algorithms on medical
images. It is important to have a computer with Internet
access available while you read this article so you can ex-
ecute the code; reading this article alone will not provide as
much insight into deep learning.

Software Setup
Cloud computing resources can enable any user to perform
deep learning without an expensive computer. The easiest

and cheapest option is to use Google’s Colab Notebooks,
hereafter referred to as Colab (https://colab.research.google.
com). The first recommendation is that when choosing
Colab, use the Chrome browser. Once you have Chrome
installed, open up the website https://colab.research.google.
com to view an introduction to the Colab Notebook envi-
ronment (Fig 1).

Interactive computing notebooks are web applications
that allow creation and sharing of code, text, data, tools,
and so forth, and are often used by software developers.
Colab has many learning resources available, so those un-
familiar with Colab might take a few minutes to review
those resources.

There are a few important concepts needed to use
notebooks. Those who have written computer programs
know we typically write the program using a text editor
of some sort and then run it using either an interpreter or
compiler. Notebooks are different: they have many “cells;”
together, the cells will be a complete program. Any cell can
be selected and run, without the requirement of executing
prior or subsequent cells. You can also run a cell and then
edit its contents and run it again until you get the cell to
perform the desired function. This does require you have
some visible result from that cell (which is displayed below
the cell and is replaced with new output when the cell is
rerun), and there is no debugger as in some conventional
development environments where you can set stop points

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Magician’s Corner: How to Start Learning about Deep
Learning
Bradley J. Erickson, MD, PhD

From the Department of Radiology, Mayo Clinic, Mayo Building E2, 200 First St SW, Rochester, MN 55905. Received May 4, 2019; revision requested June 11; revision
received July 1; accepted July 3. Address correspondence to the author (e-mail: bje@mayo.edu).

Conflicts of interest are listed at the end of this article.

Radiology: Artificial Intelligence 2019; 1(4):e190072  •  https://doi.org/10.1148/ryai.2019190072  •  Content code:

Figure 1:  The opening screen of Google’s Colab Notebook.

https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
https://colab.research.google.com
mailto:bje%40mayo.edu?subject=

2� radiology-ai.rsna.org  n  Radiology: Artificial Intelligence Volume 1: Number 4—2019

How to Start Learning about Deep Learning

(it has “# Cell 1” as the first line) and click the arrowhead on
the left, and you are now executing your first notebook com-
mands. These commands install a library (fastai) that does the
actual machine learning. You may get a note about executing a
non-Google notebook and also about restarting a runtime; click
“Run Anyway” to accept those alerts. Once that cell has finished
executing, click the button that says “Restart Runtime.” Select
the Runtime . Change Runtime Type from the Runtime menu,
choose the options “Python3” and “GPU” and select “SAVE.”
Note that these instructions are also shown below the output
from executing the first cell. These instructions (and the title at
the top of the notebook) are text cells, which are used for docu-
mentation or explanation, but do not contain code that is to be
executed.

The next cell starts with:
Cell 2
clean out any old data just to be sure, such as if rerun-

ning cells
!rm -rf MagiciansCorner
Click the arrowhead to execute this cell. Any previously

downloaded data will be removed (by the Unix command “rm”),
and then the data we will be using will be downloaded (by the
command “git clone https://github.com/...”). The data are then
unzipped and ready to be used. You might be asking yourself
“What previously downloaded data?” and that is where the abil-
ity to rerun cells comes in. Let’s suppose you ran the whole note-
book and then wanted to download a different dataset or wanted
to change something in the notebook and run the whole thing
(which the author did several times as a part of debugging). The
“rm -rf MagiciansCorner” command is included because if the
cell has already been run, the directory and old data would ex-
ist, and the command to unzip data into that existing directory
would fail. If you are adventurous (and I hope you are), go ahead
and click the arrowhead again! You will see it execute the cell
of code again, and now it will delete the “MagiciansCorner”
directory.

and view the values stored in variables without having to print
them out. Once you are happy with the results of a particular
cell, you can then create a new cell as follows: from the Insert
> Code Cell menu, enter the code, and run and edit the code
until the cell is correct. You continue adding cells of code and
reviewing output until the entire program is written. Notebooks
do not (currently) have a debugger, so you must print out values
to see if the program is actually doing what you expected. The
full list of Colab commands can be viewed by clicking Tools .
Command Palette. (Please note the Colab menu labels used in
this paragraph are as of this writing.)

Notebooks have several special commands that often prove
useful. One can execute commands on the host computer by
putting the “!” (exclamation point character) in front of the
command. With Colab, the host computer uses a Unix operat-
ing system, so to see the files in the current directory, the user en-
ters “!ls” (for list files) into a cell, and then executes that cell. We
will use this capability to get data into the Colab host computer
using a command called “git.” But first, you must get the actual
notebook that has the code we have prepared for you.

To access the notebook, click on the File . Open Notebook
menu option. When you click that, you will be presented with a
dialog box with the option “GitHub.” GitHub (Microsoft, Red-
mond, Wash) is a website that allows developers to save programs
and associated data that can be accessed by the program called
git to track program changes and version control. Enter “RSNA”
into the search field and hit the search icon, and then select the
repository “RSNA/MagiciansCorner” using the drop-down list
arrows. Below that, you will see an entry called “MedNISTClas-
sify.ipynb” (Fig 2). Select that and after a few seconds you will see
the notebook appear. Congratulations—you are ready to start
programming deep learning algorithms!

There are a few things to note: there is a slight color differ-
ence (light gray) in the background between cells and the output
of cells. Clicking on a cell will also change the color of the left
side and an arrowhead/triangle will appear. Select the first cell

Figure 2:  Dialog to select the starting notebook for this article.

https://pubs.rsna.org/journal/ai

Radiology: Artificial Intelligence Volume 1: Number 4—2019  n  radiology-ai.rsna.org� 3

Erickson

(also known as “labels”) to the algorithm. Of course, if we give
all examples to the algorithm, we probably train it the best (more
examples are better), but doing this makes assessing its perfor-
mance inaccurate—these algorithms are very good at learning
and may learn the specifics of the examples and not the general
principles such that showing it an unknown would be much less
likely a correct prediction. Therefore, most people hold out a
set of cases to test the algorithm after it is trained to estimate
the performance. Sometimes this is called the “testing” set, and
sometimes the “validation” set. The reason it is important to pay
attention to this term is because the algorithm training process
usually also has a “hold out” set that it uses for assessing perfor-
mance, and this set will be called “validation” if “test” is the hold-
out, and “test” if “validation” is used internally. Please run cell 5.

Now that our data are set up for training, it is wise to visu-
ally confirm that things look right, and that is the purpose of
the next cell (cell 6). Running that cell (go ahead and run it)
will display a few images from the training set and their associ-
ated label (class). This is a random sample, so you may not see
an example image from each class.

Training the Model
Now that the data are prepared, we are ready to start the task
of training the model. “Model” is the term used for the struc-
ture of the machine learning network and varies in the number
of layers, the type of layers, number of nodes in a layer, and
so forth. The user must define each of these, but we will use
FastAI, which has good starting points. One popular model
architecture is the ResNet34 model. This gets its name be-
cause it uses residual networks in its model and has 34 layers.
(ResNet18 and ResNet50 are other popular models with 18
and 50 layers, respectively.) ResNets use skip connections to
jump over layers, simplifying the network, speeding learning
and reducing the impact of vanishing gradients (a topic for
later). Error_rate is the metric that is displayed, though actu-
ally the system optimizes for a loss function, and that defaults
to cross_entropy—more on cross entropy later.

You are ready to train the model! Go ahead, click the arrow
to run cell 7.

Now the moment we have all been waiting for: click the ar-
rowhead to run the cell “learn.fit_one_cycle(1).” As one might
deduce, this line of code takes the model we created (called
“learn”) and tells the computer to fit the data in the training set
to the labels for that training set. The “1” in the parentheses tells
the computer to do just one cycle—that is, all the examples in
the training set are sampled just once. (Go ahead and run this
cell, if you haven’t already.)

In practice we will do more training than one cycle, but it
is quite impressive that with such a small amount of training,
we are achieving better than 96% accuracy. Factors that con-
tribute to this include the training algorithm, the large training
set size, and relatively distinctive images in each class. But can
we do better? Most likely yes, if we run it for more cycles. This
is where notebooks shine: replace the “1” in the line of code
“learn.fit_one_cycle (1)” with the number 5. Your line in cell
7 should now look like this: “learn.fit_one_cycle (5).” Then
run cell 7 again by clicking the arrowhead. You will see it start to

This ability to interactively rerun portions of a program is
one example of how notebook coding is different from tradi-
tional program development methods. Note also that when the
cell code is completed, the number in the brackets (where the
arrowhead was) has incremented. This number reflects the last
time that cell was run and can help to show the sequence of ex-
ecution of cells. You do not have to execute each cell in sequence:
you can skip cells and go back and execute them again (changed
or unchanged). Note also that below each code cell, there is text
showing the output from when the code was originally created
and then run by me, before being stored on github. When you
run a cell, the output from the original run is erased and the new
results are shown. If you download the notebook from GitHub
again, your results will be erased, and the notebook will be just
like it was when you first downloaded (including showing origi-
nal output, since that is what was saved on GitHub).

Nearly all deep learning libraries for imaging tasks are de-
signed for photographic-type images, that is, images in the
Joint Photographic Experts Group (JPEG) or Portable Network
Graphics (PNG) format. We will use one such library in this
article. Because we want to work with DICOM images, we must
either alter the libraries to handle the unique aspects of medical
images (namely, 16 bits of gray rather than three channels of 8
bits each of red, green, and blue intensity) or alter medical im-
ages to appear like photographic images (convert 16 bits to 8 bits
and replicate into all three color channels). A basic understand-
ing of how images are stored in computers is needed. A pixel on
a screen gets its intensity from the numerical value stored. We
use a two-dimensional array of such values to store a complete
image. And, if we want color, each pixel is actually stored with
three values: one each for red, green, and blue (RGB). If the
RGB values are all the same, the pixel will be a gray color some-
where between black and white, depending on the value for the
RGB triplet. For instance, black would be a triplet of (0,0,0) and
white would be (255,255,255) because nearly all JPEG images
use values from 0 to 255. As mentioned, the images you down-
load have already been converted from DICOM to 8-bit “color”
images with the red, green, and blue channels set to be equal.

We will teach our deep learning model to categorize im-
ages into one of six classes: CT abdomen (CTAbd), CT chest
(CTChest), CT head (CTHead), MR breast (MRBreast), MR
brain (MRBrain), and chest radiograph (CXR). We have sepa-
rated the images into a folder for each type. The next cell (cell
3—go ahead and execute it by clicking the arrowhead) lists the
folders (or directories) so you can see the six classes of images.

For this lesson, we will be using the FastAI deep learning li-
brary (http://fast.ai) loaded in the first cell. This library was cho-
sen because it produces very good results with little training and
with little code modification. The next cell points the FastAI li-
brary to the directories with the data (classes_dir). There is also a
randomizer that FastAI uses for deciding the subset of cases that
will be used for training versus testing. We can set the fraction of
cases used for testing using “valid_pct = 0.2” or 20% in this case,
leaving 80% of the dataset for training. Please run cell 4.

It is important to know that in most deep learning tasks ap-
plied to radiology, we do “supervised learning,” which means
that we give example model training images with known answers

http://fast.ai

4� radiology-ai.rsna.org  n  Radiology: Artificial Intelligence Volume 1: Number 4—2019

How to Start Learning about Deep Learning

use cloud computing resources to solve machine learning
problems. Subsequent articles will use other libraries that will
show the many decisions that must be made to build a deep
learning network.

Disclosures of Conflicts of Interest: B.J.E. Activities related to the pres-
ent article: disclosed no relevant relationships. Activities not related to the present
article: disclosed no relevant relationships. Other relationships: claimed a copyright
on the processed datasets primarily so others cannot “take” them. No plans for pat-
ent or commercialization. (These are on public GitHub site to make it easy for
readers to download).

compute again, but because the model has not been discarded,
the training resumes where it left off, and adds five more cycles
of training, and the loss values, accuracy, and times are printed
out. You are free to run this cell again as often as you like, but
at some point, the loss/error will cease to improve. Have you
hit the limit of what the computer can learn? Perhaps. This is a
common problem faced by all machine learning experts: when
to quit.

And here we draw this lesson to a close. Notebook envi-
ronments, such as Google Colab, provide a simple way to

https://pubs.rsna.org/journal/ai

