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Purpose:  To evaluate whether deep neural networks trained on a similar number of images to that required during physician training 
in the American College of Cardiology Core Cardiovascular Training Statement can acquire the capability to detect and classify myo-
cardial delayed enhancement (MDE) patterns.

Materials and Methods:  The authors retrospectively evaluated 1995 MDE images for training and validation of a deep neural network. 
Images were from 200 consecutive patients who underwent cardiovascular MRI and were obtained from the institutional database. 
Experienced cardiac MR image readers classified the images as showing the following MDE patterns: no pattern, epicardial enhance-
ment, subendocardial enhancement, midwall enhancement, focal enhancement, transmural enhancement, and nondiagnostic. Data 
were divided into training and validation datasets by using a fourfold cross-validation method. Three untrained deep neural network 
architectures using the convolutional neural network (CNN) technique were trained with the training dataset images. The detection 
and classification accuracies of the trained CNNs were calculated with validation data.

Results:  The 1995 MDE images were classified by human readers as follows: no pattern, 926; epicardial enhancement, 91; subendo-
cardial enhancement, 458; midwall enhancement, 118; focal enhancement, 141; transmural enhancement, 190; and nondiagnostic, 
71. GoogLeNet, AlexNet, and ResNet-152 CNNs demonstrated accuracies of 79.5% (1592 of 1995 images), 78.9% (1574 of 1995 
images), and 82.1% (1637 of 1995 images), respectively. 

Conclusion:  Deep learning with CNNs using a limited amount of training data, less than that required during physician training, 
achieved high diagnostic performance in the detection of MDE on MR images.

© RSNA, 2019

Supplemental material is available for this article.

In recent years, the ability of computers to classify images 
has progressed remarkably with the introduction of the 

convolutional neural network (CNN), which is a type of 
deep neural network (1,2). CNNs can classify nonmedi-
cal images with a small error rate (top five errors in 1000 
class recognitions of 6.67%–4.94%) that is similar to that 
of human performance (2–5). In image recognition for 
medical applications, CNNs have demonstrated good di-
agnostic performance in the detection of metastatic lymph 
nodes in women with breast cancer (area under the receiver 
operating characteristic curve [AUC], 0.994) (6), tubercu-
losis with chest radiography (AUC, 0.99) (7), assessments 
of skeletal maturity on pediatric bone radiographs (with 
accuracy similar to that of an expert radiologist) (8), and 
liver masses in CT images for differentiating malignancy 
(AUC, 0.92) (9).

Acquisition of myocardial delayed enhancement 
(MDE) images with cardiovascular MRI has been widely 
performed in the past decade; these images can reveal 
pathologic myocardial changes such as myocardial fibrosis 
or infiltration (10). Classification of MDE patterns enables 
the differentiation of ischemic myocardial disease from 

nonischemic myocardial disease (11). In addition, the clas-
sification of enhancement patterns may enable the differ-
entiation of types of nonischemic cardiomyopathy (10). 
Thus, the detection and classification of MDE patterns 
have become essential steps for the diagnosis of myocardial 
disease.

Physicians are typically trained in cardiovascular MR 
image interpretation according to their specialized level in 
cardiac imaging. In addition, the interpretation of cardio-
vascular MR images requires a certain level of proficiency. 
Although proficiency criteria, such as the number of case 
reviews required for each level of training, have been devel-
oped (12), it may be difficult to accumulate sufficient car-
diovascular MRI experience depending on the facility envi-
ronment or examination time frame. Therefore, if a CNN 
were used as a diagnostic aid, it could provide a reference 
finding for an expert physician and might detect a lesion 
before the image arrives in the hands of a physician who 
is not accustomed to the interpretation of cardiovascular 
images. However, it remains unclear how many images a 
CNN must “read” before attaining sufficient diagnostic 
performance.
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Image Preparation
The datasets consisted of 1995 MDE images from the 200 pa-
tients. For the training dataset, MDE images were prepared by 
referring to the cardiovascular MRI guidelines for level II train-
ing (those who wish to perform and interpret cardiovascular 
MRI examinations as part of their practice of cardiovascular 
medicine) from the Core Cardiovascular Training Statement 4 
Task Force 8 (12). There is no general rule on the percentage 
split between the training and validation data, as this depends 
on the signal-to-noise ratio in each data point (image) and the 
overall training dataset size (13). The performance of the CNN 
was assessed by using a stratified fourfold cross-validation pro-
cedure to reduce prediction error variance. The MDE images 
were randomly divided into four groups on a patient-by-patient 
basis to avoid inclusion of similar images in both the training 
and validation datasets. The study population was randomly 
divided into four nonoverlapping groups of patients of ap-
proximately the same sample size. Four training and validation 
datasets were built. These datasets consisted of training and test 
images at a ratio of almost 3:1. Images were magnified for each 
patient so that the short axis of the largest part of the heart fit 
within the image size (256 3 256 pixels). Images were then 
converted from the Digital Imaging and Communications in 
Medicine format to the Joint Photographic Experts Group, or 
JPEG, format using the export function of the Digital Imaging 
and Communications in Medicine image viewer (EV Insite; 
PSP, Tokyo, Japan).

Index Image Classification
To classify each image in the training dataset according to 
MDE category, images in the training set were presented in 
random order. Index classification was performed by two radi-
ologists independently without clinical information (Y.O. and 
S.K., with 10 and 6 years of experience in cardiac radiology, 
respectively). If discrepancies existed between the two readers, 
a consensus was achieved with discussion after both reading 
sessions were complete.

MDE image datasets were visually classified into seven catego-
ries while blinded to clinical information. The MDE categories 

Therefore, the purpose of this study was to evaluate whether 
CNNs can acquire the capability to detect and classify MDE 
patterns using a similar number of images to that used to train 
expert readers during physician interpretation training.

Materials and Methods
This single-center study was approved by our institutional re-
view board, which waived the requirement to obtain written 
informed consent for the retrospective analysis. All authors had 
control of the data and information submitted for publication. 
No individuals from industry were included in this study or 
had any control over the data or information. This study re-
ceived no financial or industry support.

A flow diagram of the procedure used in this study is shown 
in Figure 1. This study consisted of three steps. First, MDE im-
ages were extracted from an image database and prepared. Second, 
CNNs were trained by using a training dataset. Third, the diag-
nostic performance of the trained CNNs was tested 
by using a validation dataset; this process was per-
formed four times by using fourfold cross-validation.

Image sections obtained during cardiovascular 
MRI examination of 264 consecutive patients be-
tween March 2010 and July 2014 were extracted 
from the picture archiving and communication sys-
tem at our institution. The most common clinical 
indication for the examinations was ischemic heart 
disease. We excluded cardiovascular MR images 
without MDE analysis. Thus, MDE images from 
examinations in 200 patients obtained with three 
MRI systems were analyzed in this study. There 
were 128 men aged 18–89 years (mean age 6 
standard deviation, 60 years 6 15) and 72 women 
aged 28–89 years (mean age, 68 years 6 14). De-
tailed MDE protocols are given in Appendix E1 
(supplement).

Abbreviations
AUC = area under the receiver operating characteristic curve, CI = 
confidence interval, CNN = convolutional neural network, MDE = 
myocardial delayed enhancement

Summary
Deep learning with deep neural networks can detect the presence 
of myocardial delayed enhancement (MDE) on cardiovascular MR 
images and may obtain the ability to classify MDE by training with 
a similar number of images to that required for physicians who 
perform or interpret cardiovascular MRI examinations as part of 
their practice.

Key Points
nn The use of deep learning convolutional neural networks (CNNs) 

enabled the detection of myocardial delayed enhancement (MDE) 
patterns on cardiovascular MR images, with an area under the re-
ceiver operating characteristic curve of 0.938–0.948.

nn Three different CNN architectures enabled the classification of 
MDE patterns with a similar accuracy of 78.9%–82.1%.

nn Deep neural networks enabled image sorting according to the 
presence of MDE in clinical practice and may support clinicians 
who are less experienced in cardiac MRI.

Figure 1:  Diagram of data flow from image extraction to myocardial de-
layed enhancement (MDE) pattern classification. CMR = cardiovascular MRI, 
CNN = convolutional neural network.
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80%, and disease prevalence of 0.5, where the maximum mar-
ginal error does not exceed 10% at a 95% confidence interval 
(CI) (19). The Fisher exact test was used for categorical variables. 
Differences between CNN classification results and the teaching 
index determined by the expert readers were evaluated by using 
a confusion matrix. The sensitivity or precision of the CNNs for 
each category and the accuracy for all categories were also deter-
mined with a confusion matrix. Analysis was performed with 
software (SPSS, version 23 [IBM, Armonk, NY] and EZR A 
version 3.0.1 [R Foundation for Statistical Computing] [20]).

Results
Patient characteristics are shown in Table 1. There were no 
significant differences in the patient background heart dis-
ease by sex. The results of MDE pattern classification by 
the two expert readers are given in Table 2. Microvascular 
obstructions were found in 51 of the 190 images with a 
transmural pattern (26.8%) and 20 of the 458 with a suben-
docardial pattern (4.4%). In the classification of the MDE 
pattern, the agreement between the two readers (k = 0.775) 
and between teacher data and CNN-classified results (k = 
0.71 and 0.74) were both substantial.

In the validation phase, the accuracies and AUCs of the 
CNNs for the detection of any MDE and nondiagnostic pat-
tern with use of the validation datasets were 87.2% (95% 

were as follows: no MDE, focal enhancement, 
epicardial enhancement, subendocardial enhance-
ment, transmural enhancement, nondiagnostic 
enhancement, and midwall enhancement (10). 
Detailed criteria for MDE classification are given 
in Appendix E2 (supplement).

Deep Learning
Three different CNN architectures (AlexNet, 
GoogLeNet, and ResNet-152) were used to cre-
ate trained CNN models. The AlexNet model 
had eight layers and 7.27 3 108 floating point 
operations, the GoogLeNet model had 22 lay-
ers and 2.0 3  109 floating point operations, 
and the ResNet-152 model had 152 layers and 
11 3 109 floating point operations (2–4). The 
AlexNet and GoogLeNet models were modified 
with batch normalization to improve loss conver-
gence (14). Because these original architectures 
have 1000-class output layers, we modified them as seven-class 
output layers. The training system and other parameters are 
described in Appendix E3 (supplement).

Trained CNNs were evaluated in the test phase by using the 
validation dataset for each image. Because patients do not neces-
sarily show the same MDE pattern in each image, per-patient 
classification evaluation was not performed. As the CNN out-
puts are probabilities for each category by the softmax function, 
the highest probability index was used as the determined MDE 
classification from the CNN for each image. As the sum of the 
probabilities in the softmax function is 1, the probabilities clas-
sified with MDE present pattern (nondiagnostic images were 
classified as MDE present) were summed, and ROC was calcu-
lated after dividing into two with and without MDE. Diagnostic 
performances for detecting any MDE pattern were calculated 
as a 2 3 2 contingency table (15) and with receiver operating 
characteristic analysis.

Statistical Analysis
Continuous variables that were normally distributed were sum-
marized and reported as means 6 standard deviations, whereas 
continuous variables that were not normally distributed were 
summarized by reporting the medians and interquartile range. 
Interobserver agreement was determined with the Cohen κ 
coefficient for diagnostic performance (16) and defined as fol-
lows: poor (κ < 0), slight (κ = 0–0.20), fair (k = 0.21–0.40), 
moderate (κ = 0.41–0.60), substantial (k = 0.61–0.80), and 
almost perfect (κ = 0.81–1.00) (17).

The AUC was calculated for each CNN for MDE detection 
(18). P < .05 was considered indicative of a statistically signifi-
cant difference. In this study, the performance of the deep neu-
ral network was examined in an image-based fashion; however, 
treating multiple images per patient as independent when evalu-
ating diagnostic performance overstates the legitimate sample 
size. Therefore, the sample size calculation for diagnostic perfor-
mance was based on a per-patient approach. The dataset size sat-
isfied the calculated sample size of 200 patients, which was based 
on the following assumptions: sensitivity of 80%, specificity of 

Table 1: Patient Characteristics

Patient Characteristic
All Patients  
(n = 200) Men (n = 128)

Women  
(n = 72)

Ischemic heart disease 85 (42.5) 60 (46.9) 25 (34.7)
Nonischemic cardiomy-

opathy
46 (23.0) 30 (23.4) 16 (22.2)

Valvular heart disease 14 (7.0) 9 (7.0) 5 (6.9)
Inflammatory disease 12 (6.0) 7 (5.5) 5 (6.9)
Arrhythmia 2 (1.0) 1 (0.8) 1 (1.4)
Cardiac tumor 2 (1.0) 1 (0.8) 1 (1.4)
Congenital heart disease 2 (1.0) 1 (0.8) 1 (1.4)
Pericardial disease 1 (0.5) 0 (0) 1 (1.4)
Heart failure, unknown 

etiology
36 (18.0) 19 (14.8) 17 (23.6)

Note.—Data are numbers of patients, with percentages in parentheses.

Table 2: Results of MDE Classification by Two Experts

Enhancement Pattern No. of Images  (n = 1995)

No enhancement 926 (46.4)
Subendocardial 458 (23.0)

Transmural 190 (9.5)
Focal 141 (7.1)

Midwall 118 (5.9)
Epicardial 91 (4.6)
Nondiagnostic 71 (3.6)

Note.—Numbers in parentheses are percentages. MDE = myo-
cardial delayed enhancement

https://pubs.rsna.org/journal/ai
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of images that were accurately and inaccurately classified by the 
GoogLeNet CNN are shown in Figures 2 and 3, respectively.

Discussion
We investigated the potential for CNNs to detect and classify 
MDE patterns and demonstrated that CNNs were useful for 
detecting MDE patterns with an accuracy of 87.2%–88.9%. 
Furthermore, the CNNs could classify MDE patterns into 
seven categories with an overall accuracy of 78.9%–82.1%.

CNNs have frequently been used for research in the field of 
computer vision (1). For image recognition trained by large da-
tasets such as ImageNet, CNNs have shown a low recognition 

CI: 85.6%, 88.6%) and 0.939 (95% CI: 0.929, 0.949), re-
spectively, for AlexNet, 87.4% (95% CI: 85.9%, 88.8%) and 
0.938 (95% CI: 0.927, 0.949) for GoogLeNet, and 88.9% 
(95% CI: 87.5%, 90.3%) and 0.948 (95% CI: 0.939, 0957) 
for ResNet-152 (Table 3). The sensitivities of the architectures 
according to pattern are shown in Table 4. The overall accura-
cies of AlexNet, GoogLeNet, and ResNet-152 for the classifica-
tion of the seven patterns of MDE were 78.9%, 79.8%, and 
82.1%, respectively.

As an example, the confusion matrix of the GoogLeNet CNN 
is shown in Table 5. The confusion matrixes of the other CNN ar-
chitectures are shown in Tables E1 and E2 (supplement). Examples 

Table 5: Confusion Matrix between Teaching Images and GoogLeNet Classification Results

CNN Image  
Classification

Teaching Image Classification

Total
Precision 
(%)

No  
Pattern Focal Transmural Subendocardial Nondiagnostic Epicardial Midwall 

No pattern 834 19 5 26 6 18 18 926 90.1
Focal 39 72 5 17 1 4 3 141 51.1
Transmural 15 6 138 25 0 1 5 190 72.6
Subendocardial 38 13 20 373 4 3 7 458 81.4
Nondiagnostic 10 1 1 9 49 1 0 71 69.0
Epicardial 30 1 3 5 1 48 3 91 52.7
Midwall 27 2 5 2 0 4 78 118 66.1
Total 993 114 177 457 61 79 114 1995 …
Sensitivity (%) 84.0 63.2 78.0 81.6 80.3 60.8 68.4 … …

Note.—Unless otherwise indicated, data are numbers of images. The teaching image classification was used as the standard of reference. 
The overall accuracy for CNN image classification was 79.8%. CNN = convolutional neural network.

Table 3: Diagnostic Performance of Trained CNNs

Architecture Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%) AUC

AlexNet 84.9 (908/1069) 
[82.7, 87.0]

89.7 (831/926) 
[87.6, 91.6]

90.5 (908/1003) 
[88.5, 92.3]

83.8 (831/992) 
[81.3, 86.0]

87.2 (1739/1995) 
[85.6, 88.6]

0.939 [0.929, 
0.949]

GoogLeNet 85.1 (910/1069) 
[82.9, 87.2]

90.1 (834/926) 
[88.0, 91.9]

90.8 (910/1002) 
[88.9, 92.5]

84.0 (834/993) 
[81.6, 86.2]

87.4 (1744/1995) 
[85.9, 88.8]

0.938 [0.927, 
0.949]

ResNet-152 85.2 (911/1069) 
[82.9, 87.3]

93.2 (863/926) 
[91.4, 94.7]

93.5 (911/974) 
[91.8, 95.0]

84.5 (863/1021) 
[82.2, 86.7]

88.9 (1774/1995) 
[87.5, 90.3]

0.948 [0.939, 
0.957]

Note.—Numbers in parentheses are raw data, and numbers in brackets are 95% confidence intervals. AUC = area under the receiver oper-
ating characteristic curve, CNN = convolutional neural network, NPV = negative predictive value, PPV = positive predictive value.

Table 4: Sensitivity and Overall Accuracy of MDE Classification for Each CNN Architecture

Architecture
No  
Pattern

Focal  
Pattern

Transmural 
Pattern

Subendocar-
dial Pattern

Nondiagnostic 
Pattern

Epicardial 
Pattern

Midwall  
Pattern

Overall  
Accuracy k Value

AlexNet 89.7 
(831/926)

51.1 
(72/141)

72.6  
(138/190)

79.0  
(362/458)

69.0 (49/71) 52.7  
(48/91)

62.7 
(74/118)

78.9 
(1574/1995)

0.70

GoogLeNet 84.0 
(834/993)

63.2 
(72/114)

78.0  
(138/177)

81.6  
(373/457)

80.3 (49/61) 60.8  
(48/79)

68.4 
(78/114)

79.8 
(1592/1995)

0.71

ResNet-152 93.2 
(862/926)

45.4 
(64/141)

79.5  
(151/190)

83.4  
(382/458)

76.1 (54/71) 52.7  
(48/91)

63.6 
(75/118)

82.1 
(1637/1995)

0.74

Note—Data are percentages. CNN = convolutional neural network, MDE = myocardial delayed enhancement.
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Figure 2:  Examples of MR images correctly classified by the GoogLeNet architecture. Ground-truth labels are listed 
below each image. Arrows indicate myocardial enhancement.

Figure 3:  Examples of MR images misclassified by the GoogLeNet architecture. Ground-truth labels are listed below 
each image. The three rows under the ground-truth label show the top three categories and probabilities classified by the 
trained GoogLeNet convolutional neural network. Arrows indicate myocardial enhancement.

https://pubs.rsna.org/journal/ai
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error rate, similar to that of humans (5,21); hence, we used this 
approach in the present study. The GoogLeNet CNN architec-
ture demonstrated a sensitivity of 81.6% in the detection of sub-
endocardial patterns.

Because the basic level of training in the Core Cardiovascular 
Training Statement (level I) is insufficient for using CNNs in 
clinical practice, we trained using images from 150 cases, refer-
ring to the guidelines for level II training required by the Core 
Cardiovascular Training Statement for specialized cardiovascular 
MRI (12). CNNs demonstrated almost-perfect accuracy during 
the training phase. The difference in accuracy between the train-
ing and validation phases was thought to be the result of overfit-
ting. One reason for this was likely the small training dataset, in 
addition to the CNN recognition ability. Although the required 
number of images in a training dataset cannot be stated explic-
itly, the use of larger datasets to train CNNs may improve the 
classification ability.

In some previous studies (7,8), CNN training was performed 
by using downsized images to reduce the calculation cost; how-
ever, this may cause information loss. With use of a high-reso-
lution model, CNNs can provide the correct label in the higher 
rank of possibility scores (22). Image downsizing was not per-
formed in our study, and information loss in the MDE image 
might not have occurred. Moreover, in previous studies, lesion 
identification and cropping were performed by the observer in 
advance (9,23,24). In studies using conventional radiography, 
structures had similar sizes in the imaging plane (8,21) but im-
ages were downsized to reduce calculation costs. In our study, 
image areas outside the heart region were cropped; however, le-
sion identification was not performed in advance. Nevertheless, 
CNNs demonstrated sufficient MDE detection capability, and 
the pattern recognition was relatively good.

When physicians evaluate myocardial ischemia, they 
determine the extent of irreversible necrosis from suben-
docardial layers toward the epicardium in accordance with 
the so-called “wave-front phenomenon” (25). Therefore, dif-
ferentiation between ischemic and nonischemic patterns is 
based on pathophysiologic characteristics. However, we could 
not determine how the CNNs recognized the subendocardial 
pattern. The CNNs had a tendency to confuse the transmural 
pattern containing endocardial enhancement with the endo-
cardial pattern itself (11.3%, 20 of 177 images). In contrast, 
the number of subendocardial patterns that CNNs misdiag-
nosed as transmural patterns was small (5.5%, 25 of 457 im-
ages). Unfortunately, we have no way of knowing the reason 
for this discrepancy in misdiagnosis. GoogLeNet occasion-
ally misdiagnosed the absence of an MDE pattern as focal 
enhancement (3.9%, 39 of 993 images) or subendocardial 
enhancement (3.8%, 38 of 993 images). As demonstrated 
in Figure 3, subtle signal intensity changes may mimic a fo-
cal or small subendocardial enhancement. Some cases of the 
epicardial pattern were classified as showing no pattern. In 
addition, CNNs may recognize epicardial hyperenhancement 
as high signal intensity from adjacent epicardial fat, a rep-
resentative case of which is shown in Figure 3. Some cases 
of midwall hyperenhancement were classified as having no 
MDE (15.8%, 18 of 114 images) or a subendocardial pattern 

(6.1%, seven of 114 images). A relatively large focal pattern 
along the myocardium might cause misclassification. As dis-
cussed earlier, physicians can classify images based on the pa-
tient’s pathophysiologic background in a clinical setting and 
infer the cause of misdiagnosis by the CNN. As is often said, 
deep neural networks are a kind of “black box” for which 
there is no theoretical deduction of the determination pro-
cess. Therefore, final confirmation by a diagnostic physician 
remains necessary.

Our study had some limitations. The data we used were 
obtained with several MRI machines at a single medical center, 
and the models were not validated on data obtained outside 
our institution or on MRI equipment that our institution does 
not use. We did not equalize the number of images in each 
dataset, and these images were extracted from consecutive ex-
aminations to approximate the frequency of cases that would 
be experienced in a daily clinical situation based on the data 
from an actual educational hospital. For the categories that 
demonstrated low sensitivity, increments of the numbers of im-
ages may lead to improvements in classification sensitivity. The 
diagnostic performances were calculated in an image-based 
fashion. This study was focused on detecting and classifying 
patterns in MDE images; classification according to clinical 
or pathologic diagnosis was not done. However, interpreting 
MDE images in clinical practice relies on patient-based diag-
nostic information, so diagnostic performance using clinical 
information should be evaluated in a future study. Unlike other 
organs for which pathologic samples are readily available in the 
form of resected specimens, such as liver or lung, it is difficult 
to construct a large dataset of cardiologic specimens. Such a 
dataset is necessary for deep learning based on pathologic di-
agnosis. In addition, classification was performed for each im-
age section; summary pattern classification for each patient was 
not performed. This is because patients do not necessarily show 
the same MDE pattern in each section. However, it is known 
that pattern classification is closely related to disease, and we 
thought that it was important to evaluate the performance of 
CNNs in pattern recognition as a preliminary study. MDE di-
agnosis beyond pattern differentiation might be made possible 
by performing clinical diagnosis based on image recognition 
with CNNs.

In conclusion, deep learning with CNNs using a smaller 
amount of training data than required during physician train-
ing may provide the ability to detect MDE on cardiovascular 
MR images. The agreement of MDE pattern classification by 
CNNs was substantial after training with a relatively small da-
taset; however, the classification accuracies of the MDE pat-
terns were 78.9%–82.1%, indicating that it may be insuffi-
cient to rely completely on the model as opposed to a human 
reviewer.
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