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Many recent advances have been made in the applications 
of deep learning and convolutional neural networks 

(CNNs) to radiology tasks involving diagnosis determina-
tion and finding identification on chest radiographic im-
ages (1–4). Multiple public datasets exist for labeled chest 
radiographic images (2,3) with the National Institutes of 
Health (NIH) datasets released as ChestX-ray8 and ChestX-
ray14 being among the largest and most studied (1,4). One 
previous study of these data used long short-term memory 
recurrent neural networks with 512 3 512-pixel input im-
ages and focused on label dependencies (4). Deep learning 
analyses concurrent with the dataset’s release involved 1024 
3 1024 resolution images and investigations that included 
the AlexNet, GoogLeNet, VGGNet-16, and ResNet-50 ar-
chitectures (3). Another study that showed improved perfor-
mance based on area under the receiver operating character-
istic curve (AUC) compared with these two prior works used 
224 3 224-pixel inputs and a DenseNet121 architecture 
with a modified model head (1).

Achieving better model performance with lower input 
image resolutions might initially seem paradoxical, but, in 
various machine learning paradigms, a reduced number of 

inputs or features is desirable as a means of lowering the 
number of parameters that must be optimized, which in 
turn diminishes the risk of model overfitting (5). Never-
theless, extensive lowering of image resolution eliminates 
information that is useful for classification. Furthermore, 
there is an inherent trade-off in CNN implementations in 
that graphics processing unit–based optimization can have 
memory limitations where using a higher image resolution 
can reduce the usable maximum batch size, and a higher 
batch size can allow improved calculation of the gradient 
with regard to the loss function. Consequently, determin-
ing the optimal image resolution for different radiology-
based machine learning applications remains an open 
problem. In this study, we have investigated this problem 
by selecting eight of the 14 diagnoses in the NIH ChestX-
ray14 dataset and examining CNN performance for a wide 
spectrum of image resolutions and network training strate-
gies. Our results revealed practical insights for improving 
the performance of radiology-based machine learning ap-
plications and demonstrated diagnosis-dependent perfor-
mance differences that allow for potential inferences into 
relative difficulties of different radiology findings.
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Purpose: To examine variations of convolutional neural network (CNN) performance for multiple chest radiograph diagnoses and im-
age resolutions.

Materials and Methods: This retrospective study examined CNN performance using the publicly available National Institutes of Health 
chest radiograph dataset comprising 112 120 chest radiographic images from 30 805 patients. The network architectures examined 
included ResNet34 and DenseNet121. Image resolutions ranging from 32 3 32 to 600 3 600 pixels were investigated. Network 
training paradigms used 80% of samples for training and 20% for validation. CNN performance was evaluated based on area under 
the receiver operating characteristic curve (AUC) and label accuracy. Binary output networks were trained separately for each label or 
diagnosis under consideration.

Results: Maximum AUCs were achieved at image resolutions between 256 3 256 and 448 3 448 pixels for binary decision net-
works targeting emphysema, cardiomegaly, hernias, edema, effusions, atelectasis, masses, and nodules. When comparing performance 
between networks that utilize lower resolution (64 3 64 pixels) versus higher (320 3 320 pixels) resolution inputs, emphysema, 
cardiomegaly, hernia, and pulmonary nodule detection had the highest fractional improvements in AUC at higher image resolutions. 
Specifically, pulmonary nodule detection had an AUC performance ratio of 80.7% 6 1.5 (standard deviation) (0.689 of 0.854) where-
as thoracic mass detection had an AUC ratio of 86.7% 6 1.2 (0.767 of 0.886) for these image resolutions.

Conclusion: Increasing image resolution for CNN training often has a trade-off with the maximum possible batch size, yet optimal 
selection of image resolution has the potential for further increasing neural network performance for various radiology-based machine 
learning tasks. Furthermore, identifying diagnosis-specific tasks that require relatively higher image resolution can potentially provide 
insight into the relative difficulty of identifying different radiology findings.
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the remaining samples were randomly selected from the images 
in the dataset that did not contain the finding or diagnosis of 
interest. Cross-entropy loss function weights were then calcu-
lated based on the proportion of positive images in this enriched 
20 000-image subsample. Each 20 000-image sample was split 
such that 80% (16 000/20 000) was used for training and 20% 
(4000/20 000) was used as a validation set. Subsampling the 
dataset for each diagnosis label–specific binary CNN was per-
formed to decrease the amount of computational time needed 
per epoch and to reduce the numerical mismatch between posi-
tive and negative samples (thus allowing the loss function cross-
entropy weights to move closer to one). Preliminary simulations 
across the full 112 120 image dataset showed relatively worse 
initial performance compared with subsampling, likely owing to 
reduced tractability of the optimization problem related to the 
overabundance of negative samples. The DeLong method was 
used to calculate variance of the AUC for the validation set im-
ages (10,11). When appropriate, z-score–based statistical analy-
sis was used to compare AUC by using a P value of .05.

Image augmentation was utilized for each training epoch 
consisting of random rotations up to 20°, random brightness 
and contrast fluctuations, black pixel padding, and random flip-
ping of the images about the vertical axis. AUCs were calculated 
based on test time image augmentation based on four randomly 
selected augmentations (default FastAI test time image augmen-
tation parameters). For comparison, some prior work has limited 
image augmentation to only vertical axis flipping (1), while other 
work has used augmentation consisting of 25 pixel translation of 
512 3 512-pixel images in four random directions combined 
with up to a 15° rotation and 80%–120% rescaling (4).

We elected to only model eight out of the 14 labels in the 
ChestX-ray14 dataset owing to concerns about the clinical utility 
and relevance of models trained on the six excluded labels. We ex-
cluded the label of “pneumothorax,” because manual inspection of 
the dataset images revealed that many of the radiographs with the 
pneumothorax label already had chest tubes in place which raised 
concerns that models trained on these labels would potentially de-
tect chest tubes instead of clinically relevant pneumothoraces. We 
excluded the labels of “consolidation,” “infiltration,” and “pneu-
monia” owing to the mutual ambiguity of these three labels. Simi-
larly, we excluded the labels of “fibrosis” and “pleural thickening,” 
as without access to the radiologist’s reports underlying the natural 
language processing labels we were concerned about the ambiguity 
of pleural fibrosis versus interstitial fibrosis as well as the ambiguity 
of pleural fibrosis versus pleural thickening.

Results
Before training network models and evaluating performance, 
one possible heuristic method of selecting an appropriate im-
age resolution size for radiology deep learning is simple inspec-
tion of the images to determine how low the image resolu-
tion can become before identification of radiologic findings 
becomes overly difficult for a human observer. Figure 1 shows 
a selected chest radiograph for patient 103 (60-year-old male 
patient) labeled as having a thoracic mass. The size of the im-
age stored in the NIH database is 1024 3 1024 pixels, and for 

Materials and Methods
Our institutional review board approved this study and deemed 
it to be Health Insurance Portability and Accountability Act 
compliant. CNNs were trained on the NIH ChestX-ray14 
dataset comprising 112 120 chest radiographic images stored 
at a 1024 3 1024-pixel resolution. This dataset covers 30 805 
unique patients. CNNs were trained by using PyTorch (https://
pytorch.org) and FastAI (https://www.fast.ai) version 0.7 using 
the Anaconda (Austin, Tex) distribution of Python (https:www.
python.org) on a single Nvidia GTX 1080 Ti graphics process-
ing unit (Santa Clara, Calif ). The default bilinear interpola-
tion method of image resizing within these libraries was used to 
manipulate image resolutions. The Sklearn package was used to 
calculate the AUC. The model architectures studied included 
ResNet34 and DenseNet121 (6,7). The batch size was set to 
eight unless otherwise specified.

Learning rate was fixed at 0.0005. To understand the impact 
of different learning rates in our CNN modeling, we used tech-
niques inspired by Smith et al (8,9) to plot model validation loss 
as a function of different potential learning rates (see Section 1, 
Appendix E1 [supplement] for further details). For comparison, 
this learning rate is within an order of magnitude of the 0.001 
learning rate in Rajpurkar et al (1) and the 0.0001 learning rate 
in Irvin et al (2) for chest radiograph deep learning.

Network weights were initialized with ImageNet-trained 
weights, and models were trained end-to-end with all layers 
open, as this showed better performance than selectively training 
only on the top layer of the models. Each network was trained for 
binary classification with a weighted cross-entropy loss function. 
Our training paradigm involved subsampling the 112 120-im-
age dataset to 20 000 images with positive sample enrichment 
so that for each diagnostic label under consideration, all positive 
samples were included in the 20 000-image subsample and then 

Abbreviations
AUC = area under the receiver operating characteristic curve, CNN 
= convolutional neural network, NIH = National Institutes of 
Health

Summary
Tracking convolutional neural network performance as a function 
of image resolution allows insight into how the relative subtlety of 
different radiology findings can affect the success of deep learning in 
diagnostic radiology applications.

Key Points
 n Understanding the impact of image resolution (pixel dimensions) 

in deep learning is important for the optimization of radiology 
models.

 n Different diagnoses or image labels can have different model 
performance changes relative to increased image resolution (eg, 
pulmonary nodule detection benefits more from increased image 
resolution than thoracic mass detection).

 n Most diagnostic labels examined had optimal performance at reso-
lutions between 256 and 448 pixels per dimension, yet emphy-
sema and pulmonary nodule detection specifically showed greater 
preference for a range of higher resolution convolutional neural 
network image inputs compared with low resolutions such as 32 
3 32 and 64 3 64 pixels.

http://radiology-ai.rsna.org
https://pytorch.org
https://pytorch.org
https://www.fast.ai
https:www.python.org
https:www.python.org
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Figure 1: Comparison of chest radiographs at different image resolutions for patient 103 (60-year-old man with a tho-
racic mass). The mass finding is visible in all images but with visually observable improved clarity in the higher resolution 
examples (bottom row).

cardiomegaly, hernia, atelectasis, edema, and effusion. Each of 
these AUCs represents the predictions of a ResNet34 trained 
for three iterations on 20 000 samples. Performances plateau at 
resolutions of 256 3 256 and 320 3 320 pixels. The hernia 
prediction network is notable here as a special case owing to its 
higher performance variability, presumptively because this diag-
nosis label has the smallest total number of positive samples in 
the NIH dataset (only 227 total cases). Indeed, performance for 
hernia detection improves to 0.943 AUC at a 256 3 256-pixel 
resolution when the positive sample enrichment is enhanced by 
further subsampling down to 2000 training and testing images 
to reduce the discrepancies between loss function weights.

The performance plateau in Figure 2 at 256 3 256-pixel and 
320 3 320-pixel image resolutions can be contrasted with the 
poorer performance at lower resolutions where diagnostic infor-
mation contained within the image is lost. Figure 3 highlights 
these discrepancies for eight diagnostic labels: emphysema, car-
diomegaly, hernia, atelectasis, edema, effusion, mass, and nod-
ule. The bar graph shows the percentage AUC performance for 
32 3 32-pixel and 64 3 64-pixel image resolution networks 
compared with more optimally trained networks at a 320 3 
320-pixel image resolution. For the diagnostic label of edema, 

comparison, Figure 1 shows this chest radiograph resized to 
four different resolutions under consideration for deep learn-
ing inputs (32 3 32, 64 3 64, 128 3 128, and 224 3 224 
pixels). The extremely low-resolution samples at 32 3 32-pixel 
and 64 3 64-pixel dimensions have readily observable limi-
tations from the perspective of diagnostic quality, yet this is 
less noticeable immediately for the second row of resolutions. 
For comparison, possible MRI slice presentations include 128 
3 128-pixel and 256 3 256-pixel resolutions (12), whereas 
possible axial CT scan slice resolutions are 512 3 512 pixels 
(13). Without relying on visual inspection, it is also possible 
to systematically examine the effect of image resolution on 
validation set loss in a manner similar to Smith et al (8,9). In 
this study, rather than focusing on direct loss function output 
comparisons, we computed validation set AUCs, which poten-
tially possess more readily accessible extrinsic interpretability 
compared with validation set loss for radiologists, even though 
the 2018 work by Smith et al (8) still represents the standard 
of reference in terms of hyperparameter selection methodology 
within the deep learning community.

Figure 2 shows the effects of varying the image resolu-
tion on an AUC for six distinct diagnosis labels: emphysema, 

http://radiology-ai.rsna.org
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or if artificial intelligence can help prioritize the reading or-
der for a study list in a triage scenario (15). In this study, 
when each selected label is considered separately, the AUCs 
have similar or higher performance compared with the mul-
tilabel DenseNet121 model in Rajpurkar et al (1) and other 
ChestX-ray14 deep learning approaches (3,4). However, our 
goal is not to report incremental model improvements based 
on different choices of hyperparameters and image augmenta-

32 3 32-pixel resolution networks come closest to cap-
turing the performance of the higher resolution net-
work with 88.1% 6 1.5 (standard deviation) (0.814 
of 0.924) of the 320 3 320-pixel model performance. 
For the 64 3 64-pixel resolution networks, these low-
resolution networks have over 85% of the AUC per-
formance of the 320 3 320-pixel resolution networks 
for the diagnostic labels of atelectasis, edema, effusion, 
and thoracic mass.

Table 1 depicts further comparison of the AUCs 
for 64 3 64-pixel resolution ResNet34 models 
trained for three subsample epochs with 320 3 
320-pixel resolution ResNet34 models. Each of the 
eight diagnostic labels under consideration is listed 
along with the total number of positive samples with 
this label contained within the dataset (and the num-
ber of cases for which this is the only finding label). 
Diagnosis-specific AUCs from prior reports that have 
investigated this dataset with deep learning are also 
included for comparison (1,4). Table 2 further sup-
plements Table 1 and Figure 2 by listing the AUC and 
standard deviation for all eight diagnosis labels and 
nine image resolutions that we have investigated for 
the ResNet34 architecture. The image resolution with 
the optimal AUC for each diagnosis label is shown 
in a footnote. For selected example receiver operating 
characteristics, see Section 2, Appendix E2 (supple-
ment). A z-score–based statistical analysis showed that 
the optimal resolution had a significantly higher AUC 
compared against all other image resolutions for all di-
agnosis labels (P , .05).

An interesting example of different resolution sensi-
tivities for different diagnosis labels occurs when com-
paring the thoracic “mass” and “nodule” labels. Figure 4 
compares the validation set AUCs at varying resolutions 
for “mass” and “nodule” detection networks. Two differ-
ent CNN architectures (ResNet34 and DenseNet121) 
were trained for each diagnostic label for 10 iterations. 
CNN performance at thoracic “mass” detection (green 
and black curves) noticeably achieves higher perfor-
mance than “nodule” detection (blue and gold curves) 
at the lower image resolutions of 64 3 64 and 128 3 
128 pixels. At 224 3 224-pixel input image resolution 
and above, performances plateau but the “mass” detec-
tion networks still outperform the “nodule” networks 
within each architecture class. Table 3 further expands 
on Figure 4 by showing the AUC and standard deviation 
of performance for mass and nodule models under three 
different modeling paradigms.

Discussion
Prior work on the NIH ChestX-ray14 dataset has focused on 
whether deep learning performance can exceed that of clini-
cal radiologists (1). Other radiology deep learning research 
focused on other modalities and applications has investigated 
whether artificial intelligence can augment a radiologist’s per-
formance for breast cancer detection in mammography (14) 

Figure 2: Validation set area under the receiver operating characteristic curve (AUROC) 
for six different diagnostic labels shows improved performance with increased image resolu-
tion and a plateau effect on performance improvement for resolutions higher than 224 3 224 
pixels. Models were trained with ResNet34 architecture for three subsample epochs. Resolutions 
shown are as follows: 32 3 32, 64 3 64, 128 3 128, 224 3 224, 256 3 256, 320 3 320, 
448 3 448, 512 3 512, and 600 3 600 pixels. Error bars represent standard deviation of the 
area under the curve calculated via the DeLong method.

Figure 3: Bar graph shows percentage area under the receiver operating characteristic 
curve (AUROC) achievable with low-resolution models compared with a higher resolution 320 
3 320-pixel resolution model for eight example diagnostic labels. Edema prediction models 
at 32 3 32-pixel resolution are able to capture the highest percentage of a 320 3 320-pixel 
resolution model.

http://radiology-ai.rsna.org
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data in a time sensitive manner, having marginally reduced 
CNN performance with a multilabel model compared with 
a large number of binary classification networks might be a 
worthwhile trade-off for the sake of reduced computational 
overhead, especially owing to the many likely computational 
redundancies in such an approach. However, for radiology 
deep learning applications, particularly those focused on crit-
ical findings, even small performance changes can potentially 
have dramatic effects on patient care and outcomes, which 
would make increased computational overhead more toler-
able than in other domains.

The main focus of our results shows that some findings 
such as emphysema and pulmonary nodules benefit more from 
higher image resolution for increased AUC performance than 
other diagnoses such as thoracic masses. For pulmonary nodule 
detection compared with thoracic mass detection, performance 

tion, but instead to clarify the implications of some of these 
modeling choices, specifically with regard to image resolu-
tion. For six out of eight diagnostic labels for which our 
present approach outperforms the previous literature values, 
our goal is not to claim direct superiority of our techniques 
or approaches. We pointedly moved away from some of the 
training paradigms of other studies (1,3,4) by training bi-
nary networks on dataset subsamples instead of multilabel 
models on the full dataset and, as a consequence, disinvite 
direct performance comparisons, because the validation set 
of images is not consistent between our analysis and prior 
reports. Nevertheless, our binary classification models pos-
sibly have an advantage over multilabel models in that model 
hyperparameters and network weights can be customized and 
optimized for each specific diagnosis label. In multiple non-
radiology applications requiring large-scale analysis of image 

Table 1: Comparison of the AUCs for 64 3 64-Pixel Resolution ResNet34 Models Trained for Three Subsample Epochs 
with the ResNet34 Architecture

Diagnostic Label

Positive 
Samples 
Present

Single 
Finding 
Cases

Yao et al 
2017 (4) 
AUC

Rajpurkar  
et al 2017 (1) 
AUC

64 3 64-Pixel  
AUC 

320 3 320-Pixel 
AUC

320 3 
320-Pixel  
Accuracy (%)

Loss  
Function 
Weight

Emphysema 2516 892 0.829 0.9371 0.671 6 0.015 0.935 6 0.007 85.6 6.949
Cardiomegaly 2776 1093 0.904 0.9248 0.738 6 0.011 0.927 6 0.006 79.2 6.205
Hernia 227 110 0.914 0.9164 0.522 6 0.054 0.838 6 0.032 72.2 87.105

Atelectasis 11 559 4215 0.772 0.8094 0.809 6 0.007 0.887 6 0.005 79.9 0.730
Edema 2303 628 0.882 0.8878 0.836 6 0.009 0.924 6 0.006 83.2 7.684
Effusion 13 317 3955 0.859 0.8638 0.825 6 0.007 0.913 6 0.005 80.2 0.502
Mass 5782 2139 0.792 0.8676 0.767 6 0.008 0.886 6 0.006 84 2.459
Nodule 6331 2705 0.717 0.7802 0.689 6 0.009 0.854 6 0.006 80.1 2.159

Note.—For the eight diagnostic labels under consideration, we show the number of labeled samples in the dataset, the number of those 
cases in which the finding of interest was the only finding label in the case, the AUC performance for two prior works (1,4), low-resolution 
64 3 64-pixel resolution model AUCs with DeLong standard deviation, 320 3 320-pixel resolution model AUCs with standard deviation, 
320 3 320-pixel resolution model prediction accuracy, and the weight used for the positive samples in the cross-entropy loss function. 
AUC = area under the receiver operating characteristic curve.

Table 2: Performance for the Eight Diagnostic Labels and Nine Image Resolutions Investigated for the ResNet34 Archi-
tecture after Three Training Epochs

Resolution Emphysema Cardiomegaly Hernia Atelectasis Edema Effusion Mass Nodule

32 3 32 0.543 6 0.015 0.587 6 0.013 0.543 6 0.045 0.731 6 0.008 0.814 6 0.011 0.591 6 0.009 0.584 6 0.010 0.545 6 0.010
64 3 64 0.671 6 0.015 0.738 6 0.011 0.522 6 0.054 0.809 6 0.007 0.836 6 0.009 0.825 6 0.007 0.767 6 0.008 0.689 6 0.009
128 3 128 0.828 6 0.010 0.884 6 0.007 0.665 6 0.037 0.851 6 0.006 0.900 6 0.007 0.884 6 0.006 0.836 6 0.007 0.767 6 0.008

224 3 224 0.888 6 0.009 0.915 6 0.006 0.75 6 0.040 0.864 6 0.006 0.912 6 0.006 0.903 6 0.005 0.866 6 0.007 0.808 6 0.007

256 3 256 0.916 6 0.007 0.916 6 0.006 0.804 6 0.038 0.882 6 0.005 0.917 6 0.007 0.913 6 0.005 0.879 6 0.006 0.827 6 0.007

320 3 320 0.935 6 0.007 0.927 6 0.006* 0.838 6 0.032* 0.887 6 0.005 0.924 6 0.006* 0.913 6 0.005 0.886 6 0.006 0.854 6 0.006

448 3 448 0.931 6 0.006 0.922 6 0.006 0.812 6 0.044 0.893 6 0.005* 0.916 6 0.007 0.919 6 0.005* 0.894 6 0.006* 0.868 6 0.006*

512 3 512 0.936 6 0.007* 0.894 6 0.007 0.687 6 0.036 0.870 6 0.006 0.905 6 0.006 0.902 6 0.005 0.862 6 0.007 0.836 6 0.007

600 3 600 0.933 6 0.007 0.882 6 0.008 0.75 6 0.033 0.853 6 0.006 0.909 6 0.007 0.901 6 0.005 0.847 6 0.007 0.833 6 0.007

Note.—Values are mean area under the receiver operating characteristic curves (AUC) 6 standard deviations. 
* These resolutions achieved the highest AUC performance for each diagnosis label.

http://radiology-ai.rsna.org
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discrepancies between ranges of image resolutions are likely due 
to the size difference between these findings. By definition, a 
pulmonary nodule is less than 3 cm, whereas a mass exceeds that 
size (16). In contrast, emphysema typically presents more dif-
fusely on a radiograph than a nodule or mass, and thus, relatively 
poor performance at low resolutions likely relates to more gener-
alized loss of information within the images.

Perhaps higher image resolution input models not unam-
biguously outperforming lower resolution input models might 
seem counterintuitive. However, before development of the 
ResNet architecture and residual learning blocks, very deep 
neural network architectures frequently encountered a prob-
lem of higher training error (loss) compared with shallower 
model equivalents as an increased number of model parame-
ters reduced the tractability of optimization (7). Therefore, the 
present issue of increasing image resolution not necessarily im-
proving performance can perhaps be likened to this 
similar phenomenon in which the higher parameter 
count presents an obstacle to performance not just 
owing to the risk of overfitting but also owing to the 
increased complexity of the optimization problem.

In the field of radiology, different deep learning 
applications have employed many different image 
resolutions that can be compared with our nine se-
lected image resolutions. For example, 3D U-Net 
liver volumetry has used 128 3 128 3 128 arrays 
(17), while pediatric elbow fraction classification 
has used 500 3 500-pixel inputs (18). Subtle 
musculoskeletal fraction detection is another case 
potentially similar to our pulmonary nodule label 
here, where increased image input resolution ben-
efits performance owing to the size of the finding 
itself.

When investigating image resolution impact in 
nonradiology deep learning, CIFAR-10 is a classic da-
taset for low-resolution (32 3 32-pixel) images (19). 
For comparison, ImageNet is a large diverse image da-
taset with 14 197 122 images in a variety of resolutions 
(20,21). Effective weights for models trained on this 

dataset can then be used to initialize models targeted at other 
applications (6,7), as has been done here via transfer learning, 
although development of medical image-specific model weight 
initializations may allow for further modeling improvements 
and training time reductions in the future.

As hardware improvements and algorithmic advancements 
continue to occur, developing radiology deep learning applica-
tions at higher image resolutions becomes continuously more 
feasible. One limitation of our present work was that, owing to 
graphics processing unit memory constraints, we fixed our batch 
size at eight for all models, as our hardware was not capable of 
training high-resolution models at larger batch sizes. However, 
as hardware advances make graphics processing units with larger 
amounts of random access memory increasingly available, there 
is an opportunity for obtaining better performance from high 
image resolution models with larger batch sizes. Additionally, the 

Table 3: Performance for Three Variants of Mass and Nodule Models

Resolution Mass A Nodule A Mass B Nodule B Mass C Nodule C

32 3 32 0.584 6 0.010 0.545 6 0.010 0.582 6 0.010 0.589 6 0.009 0.585 6 0.010 0.528 6 0.010
64 3 64 0.767 6 0.008 0.689 6 0.009 0.735 6 0.009 0.715 6 0.009 0.804 6 0.008 0.664 6 0.009
128 3 128 0.836 6 0.007 0.767 6 0.008 0.863 6 0.007 0.804 6 0.008 0.844 6 0.007 0.761 6 0.008
224 3 224 0.866 6 0.007 0.808 6 0.007 0.879 6 0.006 0.852 6 0.007 0.866 6 0.007 0.806 6 0.007
256 3 256 0.879 6 0.006 0.827 6 0.007 0.905 6 0.005 0.862 6 0.006 0.870 6 0.006 0.818 6 0.007
320 3 320 0.886 6 0.006 0.854 6 0.006 0.908 6 0.005 0.862 6 0.006 0.873 6 0.006 0.829 6 0.007
448 3 448 0.894 6 0.006 0.868 6 0.006 0.911 6 0.005 0.873 6 0.006 0.874 6 0.006 0.835 6 0.007
512 3 512 0.862 6 0.007 0.836 6 0.007 0.898 6 0.006 0.876 6 0.006 0.874 6 0.006 0.842 6 0.007
600 3 600 0.847 6 0.007 0.833 6 0.007 0.904 6 0.006 0.878 6 0.006 0.873 6 0.006 0.831 6 0.007

Note.—Values are mean area under the receiver operating characteristic curves 6 standard deviations. Type A models for these resolution 
levels use a ResNet34 architecture trained for three epochs, whereas Type B models involve a ResNet34 architecture trained for 10 epochs. 
Type C models are a DenseNet121 architecture trained for 10 epochs.

Figure 4: Comparison of area under the receiver operating characteristic curve (AUROC) 
as a function of input image resolution for “mass” and “nodule” detection models trained for two 
different architectures (ResNet34 and DenseNet121) for 10 subsample epochs. Mass predic-
tion models achieve better performance at lower resolutions, which is presumptively attributable 
to the larger size (>3 cm) of pulmonary masses compared with pulmonary nodules.

http://radiology-ai.rsna.org
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natural language processing labels in the ChestX-ray14 dataset 
are known to be imperfect, which places a potential limitation 
on achievable AUC, independent of selected image resolution.

In this study, despite limitations, we have shown that, as 
would be intuitively expected, subtler findings benefit from 
CNN training at relatively higher image resolutions, specifically 
for the case of pulmonary nodule detection versus mass detec-
tion on chest radiographs. Moreover, as advancements are made 
toward improving techniques for deep learning hyperparameter 
selection (8), the consequences of proper and improper selection 
of input image resolution in radiology deep learning applications 
may further be elucidated.
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