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Purpose:  To evaluate the performance of machine learning algorithms on organ-level classification of semistructured pathology re-
ports, to incorporate surgical pathology monitoring into an automated imaging recommendation follow-up engine.

Materials and Methods:  This retrospective study included 2013 pathology reports from patients who underwent abdominal imaging at 
a large tertiary care center between 2012 and 2018. The reports were labeled by two annotators as relevant to four abdominal organs: 
liver, kidneys, pancreas and/or adrenal glands, or none. Automated classification methods were compared: simple string matching, 
random forests, extreme gradient boosting, support vector machines, and two neural network architectures—convolutional neural net-
works and long short-term memory networks. Three methods from the literature were used to provide interpretability and qualitative 
validation of the learned network features.

Results:  The neural networks performed well on the four-organ classification task (F1 score: 96.3% for convolutional neural network 
and 96.7% for long short-term memory vs 89.9% for support vector machines, 93.9% for extreme gradient boosting, 82.8% for 
random forests, and 75.2% for simple string matching). Multiple methods were used to visualize the decision-making process of the 
network, verifying that the networks used similar heuristics to a human annotator. The neural networks were able to classify, with a 
high degree of accuracy, pathology reports written in unseen formats, suggesting the networks had learned a generalizable encoding of 
the salient features.

Conclusion:  Neural network–based approaches achieve high performance on organ-level pathology report classification, suggesting that 
it is feasible to use them within automated tracking systems.

© RSNA, 2019

Supplemental material is available for this article.

Our institution currently uses an automated radiology 
recommendation tracking engine to increase the like-

lihood of follow-up completion after findings of possible 
cancer are detected in the abdomen or pelvis. The system 
extracts structured organ-level information from radiol-
ogy reports, tracks follow-up within the health system, 
and automatically notifies the ordering physician of in-
complete follow-up (1). To fully monitor recommended 
follow-up, it is also necessary to review surgical pathol-
ogy reports, because some patients may proceed straight 
to biopsy rather than undergoing further imaging. An 
ideal automated system would identify when a pathol-
ogy report is relevant to a previously discovered abnormal 
imaging finding (eg, a liver biopsy in a patient with a 
hepatic lesion suspicious for cancer previously depicted 
at CT), allowing clinicians to quickly hone in on relevant 
pathology reports and relevant sections within those re-
ports. However, these reports often include large free-text 
segments and are structured differently due to interphysi-
cian and interinstitutional variability. Reports may often 
be relevant to multiple organs, or may describe multiple 
tissue samples, making it difficult to impose external 

structure from the top down. These limitations necessi-
tate sophisticated approaches for classification and infor-
mation extraction.

The field of natural language processing includes all 
algorithms designed to classify, cluster, or extract in-
formation from free text. The two general families of 
natural language processing algorithms are rule based 
and statistical (2). Many existing clinical systems rely on 
hand-engineered, rule-based approaches to process or 
preprocess text; under this paradigm, documents have 
to be split into sections, words have to be stemmed with 
specific algorithms, and external domain-specific lexi-
cons are leveraged (2). However, statistical approaches, 
including machine learning algorithms, use properties 
of the data to learn how to perform end-to-end clas-
sification and information extraction from the raw text 
input, without requiring domain-specific rules or algo-
rithms. Such approaches have become state of the art 
over the past few years in text classification and informa-
tion extraction tasks (3,4).

In radiology, prior work has extracted specific clinical 
entities from radiology reports (5), and modeled latent 
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report contained tissue from that organ, or if the biopsy was 
performed to further work up a pathology of that organ (eg, 
a distant metastasis). Many of the reports had multiple tis-
sue samples, so assigning each report a single label would not 
have been possible. For a separate experiment, reports were 
also labeled as being relevant to eight other organs—lungs, 
lymph nodes, peritoneum, ovaries, bladder, gallbladder, 
stomach, and small bowel—making 12 organs in total.

Model Evaluation
We treated the task as a multiclass and multilabel classifica-
tion problem (ie, each report can be relevant to any subset 
of all labeled abdominal organs, including none). We evalu-
ated the performance of different models on the four-organ 
classification task. Our simplest classifier used direct string 
matching; for example, a report was relevant to the liver 
if and only if it included some formulation of one of the 
strings “liver,” “hepato,” “hepatic,” et cetera (see Table 1 
for details).

We next tested various text classification algorithms based on 
n-gram term frequency–inverse document frequency features 
(10): support vector machines, extreme gradient boosting or 
XGBoost, and random forests. N-grams of size 1 to 6 were in-
cluded as features based on preliminary testing. See Appendix E1 
(supplement) for additional details about these algorithms and 
their implementation.

Last, we evaluated two neural network–based architec-
tures—convolutional neural networks (CNNs) and long 
short-term memory (LSTM) networks (a common type of 
recurrent neural network used for processing sequential 
data, such as text or audio) (11)—both of which have shown 
promise in text classification (3,4). In both neural network 
models, documents were tokenized based on whitespace (we 
treated punctuation and other special characters such as pa-
rentheses as separate tokens, because they contain useful se-
mantic content within reports), and tokens were embedded 
in a vector space by using pretrained Global Vectors for Word 
Representation, or GloVe (12). Parameters of the models, 
including network depth, units per layer, pretrained versus 
continually trained word vector embeddings, and convolu-
tional filter size, were evaluated and compared to select the 
optimal models (13). Models were trained with the adaptive 
moment estimation (Adam) optimization algorithm (14) 
with binary cross-entropy as the loss function. Training both 

topics in reports through unstructured clustering algorithms 
(6). Other approaches aim to extract follow-up recommen-
dations from reports (7). Machine learning approaches, in-
cluding support vector machines and deep neural network 
architectures, have also been used in other pathology report 
classification tasks (8,9).

We hypothesized that machine learning approaches, in par-
ticular neural networks, can outperform other approaches on 
organ-level pathology report classification with no domain-
specific feature engineering. We present such a system, demon-
strate its feasibility, and compare it to other approaches.

Materials and Methods

Data Collection
This was a retrospective study repurposing data collected for 
nonresearch purposes, approved by our institutional review 
board. A total of 2013 surgical pathology reports acquired be-
tween 2012 and 2018 were taken from our institution’s data-
base. All of the patients in these reports had previously had an 
abnormal finding depicted at abdominal imaging that, in the 
reading radiologist’s opinion, required follow-up. The pathol-
ogy had been obtained from adult patients of all sexes, came 
from multiple hospitals within a single health system, and were 
formatted with different structures, including entirely free-text 
reports. The reports included all major organ systems, includ-
ing those not relevant to the abdomen (eg, brain biopsy, bone 
marrow biopsy, etc). The study was compliant with the Health 
Insurance Portability and Accountability Act.

Data Annotation
These reports were labeled by two annotators—one 4th-
year medical student (J.M.S.) and one attending radiologist 
(T.S.C.)—as being relevant to any subset of the following 
abdominal organs: liver, pancreas, kidneys and/or adrenal 
glands, or none of the above. These organs were chosen be-
cause they represent the major categories of abnormal imag-
ing findings followed by our tracking system. Reports were 
labeled as relevant to an organ if any tissue sample in the 

Abbreviations
CI = confidence interval, CNN = convolutional neural network, 
LSTM = long short-term memory

Summary
Neural network–based algorithms perform well in organ-level clas-
sification of multi-institution free-text pathology reports and learn 
features familiar to and understandable by humans.

Key Points
nn Neural network–based approaches achieve high performance on 

organ-level classification of free-text pathology reports.
nn The system qualitatively learned features similar to human annota-

tors.
nn Similar approaches are likely feasible for use in a wide variety of 

clinical settings.

Table 1: List of Search Terms Used for the String-Match-
ing Algorithm with Each of the Four Major Organs

Organ String Matching Terms

Liver “ liver,” “hepato,” ”hepatic”
Kidney “kidney,” “ renal”
Pancreas “pancreas,” “pancreatic”
Adrenals “adrenal,” “adreno”

Note.—The space before “renal” and “liver” indicates any 
whitespace character.

https://pubs.rsna.org/journal/ai


Radiology: Artificial Intelligence Volume 1: Number 5—2019  n  radiology-ai.rsna.org� 3

Steinkamp et al

fication task, the annotators agreed on 1815 of 2013 reports 
(90.2%). Conflicts were resolved through discussion between 
the two annotators to achieve consensus. In most cases, the 
conflicts were secondary to keystroke data entry errors rather 
than disagreement regarding the content of the pathology 
reports.

Of the 2013 pathology reports, 552 (27.4%) were labeled 
as being relevant to the liver, 531 (26.3%) to the kidneys, 250 
(12.4%) to the pancreas, and 53 (2.6%) to the adrenal glands 
(Table 2). Most reports were relevant to exactly one (1290, 
64.1%) or zero (676, 33.6%) of the four included abdominal 
organs. Some reports were relevant to two organs (45, 2.2%), 
whereas only two were relevant to three organs and none in-
cluded all four. A more granular organ-level depiction of the pa-
thology reports is shown in Table 2.

Neural Network Model Selection
Models were trained and validated on the four-organ classifi-
cation task by using a grid search to identify optimal param-
eters of the architecture (see Appendix E1 [supplement]). The 
best-performing CNN used one convolutional layer, consist-
ing of 200 filters of size 7, with rectified linear unit activa-
tion. This convolutional layer was followed by a global max-
pooling layer, meant to identify the most salient location in 
the text for each learned feature. The output of this layer then 
projected through dense connections to a layer of size 4—one 
unit for each organ of interest. A sigmoid threshold function 
was applied to each of these four units, resulting in a prob-
ability between 0 and 1 for each organ. Deeper CNNs with 
two or more convolutional layers did not provide any benefit 
(see Appendix E1 [supplement]). The best LSTM used one 
bidirectional layer of 150 standard LSTM units in each direc-
tion. Use of more units resulted in overfitting to the train-
ing data (see Appendix E1 [supplement]). GloVe word em-
beddings pretrained on the Common Crawl dataset of web 

neural network models took approximately 15 minutes on a 
machine with one Nvidia GTX 1070 (Nvidia, Santa Clara, 
Calif ) graphics processing unit, or GPU, and 2 hours on a 
machine with no GPUs. See Appendix E1 (supplement) for 
further details on model design decisions.

Optimal model parameters were selected by using 10-
fold cross-validation on 1814 of the reports. The best mod-
els from each class were compared by using a test set of 199 
unseen reports. Micro- and macro-averaged precision, recall, 
and F1 score (the harmonic mean of precision and recall; see 
Appendix E2 [supplement]) (14), as well as subset accuracy 
(the percentage of reports for which the exact set of relevant 
organs was correctly predicted) were calculated for each organ 
and averaged over all 10 runs. All software was written by 
using Python (version 3.6; https://www.python.org/). Publicly 
available machine learning packages (Keras, version 2.2.2; 
XGBoost, version 0.9; and scikit-learn, version 0.19.2) were 
used.

In a final experiment, we evaluated the performance of 
our best model on the more complex 12-organ classification 
task to demonstrate feasibility on a larger number of organ 
classes. Because there were many organs with few labeled 
examples, we felt that a full performance comparison of all 
models would be highly subject to the noise in this particular 
small dataset and thus be uninformative about the true per-
formance of the models.

Interpretability
To confirm our system was learning to classify based on “true” 
generalizable features, and to ultimately improve user trust in 
the system, we conducted various experiments on interpret-
ability. First, we identified the phrases in the report corpus 
that produced the maximal output from each of the convo-
lutional filters of the CNN, which represent low-level features 
the system has learned are useful in classification (15). Second, 
we conducted gradient-weighted class activation mapping, or 
Grad-CAM (16), which uses networks gradients to identify in-
put features that have the greatest effect on the classification 
outcome. In this way, we visualized words that influenced the 
network to make its decision. Third, for both networks, we 
performed word type–based occlusion sensitivity tests (15). 
We deleted all instances of various words from a given report 
and rechecked the prediction of the machine. Comparing oc-
clusion of words with intuitively useful semantic content (eg, 
“liver,” “hepatic”) versus random word occlusion provides a 
coarse metric of word importance. Although it is difficult to 
provide quantitative measurements of interpretability, we do 
provide examples and qualitative interpretation of these meth-
ods on a subset of reports.

Results

Labeled Data
With regard to the four-organ classification task, the two hu-
man annotators agreed on the exact subset of organs on 1957 
of 2013 pathology reports (97.2%). On the 12-organ classi-

Table 2: Number of Pathology Reports Labeled as Rel-
evant to Each Organ

Organ No. of Relevant Reports

Liver 552
Kidney 531
Pancreas 250
Adrenals 53
Lungs 71
Lymph nodes 169
Peritoneum 78
Ovaries 11
Bladder 123
Gallbladder 121
Stomach 89
Small bowel 133
Other (eg, brain, bone marrow, 

muscle)
124

https://www.python.org/
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sparser (eg, only 11 reports were relevant to the ovaries). The 
LSTM achieves recall of 85.0% (95% CI: 80.2%, 89.8%), 
precision of 98.3% (95% CI: 96.6%, 100%), and F1 score of 
91.1% (95% CI: 87.3%, 94.9%), with a subset accuracy of 
85.6% (95% CI: 81.0%, 90.6%) on this task.

Interpretability
Neural network interpretability is an open and complex 
problem, but many methods have been developed to address 
the issue.

First, we examined the text spans in the documents that 
produced maximal output on each of the convolutional filters 
in the CNN. These loosely represent the learned features the 
network has found to be useful to solve the ultimate task. 
Table 5 shows the top five maximally activating phrases in the 
corpus for five randomly selected convolutional filters (note 
that whitespace and new line characters have been removed in 
this table for readability, so the spans may not be exactly seven 
“tokens” long). One can see that the features correspond to 
human-understandable clusters, which might reasonably be 
useful in classifying the documents. In a similar way, one can 
analyze the hidden states of the LSTM at each time step to 
interpret its learned features.

Second, we used the Grad-CAM algorithm, which uses 
model gradients to calculate the impact of specific words and 
text subsections on the ultimate classification decision of the 

pages were used as input 
to both networks; no per-
formance benefit was ob-
served from continuing 
to train word embeddings 
during the experiments. 
A dropout rate of 0.5 
was empirically found to 
perform well on both the 
CNN convolutional layer 
as well as the LSTM layer.

Performance 
Comparison
Table 3 displays the rela-
tive performance of the 
evaluated models on the four-organ classification task on the 
unseen test set of 199 reports, and Table 4 displays specific 
organ-level performance. The neural network approaches 
perform well on the task (F1 score: 96.3% [95% confi-
dence interval {CI}: 93.0%, 99.6%] for CNN and 96.7% 
[95% CI: 93.6%, 99.8%] for LSTM, vs 89.9% [95% CI: 
84.6%, 95.1%] for the support vector machine, 93.9% [95% 
CI: 89.7%, 98.0%] for XGBoost, 82.8% [95% CI: 76.2%, 
89.4%] for random forests, and 75.2% [95% CI: 67.7%, 
82.7%] for simple string matching). Subset accuracy scores 
(predicting the exact subset of relevant organs for a given pa-
thology report) were 96.0% (95% CI: 93.3%, 98.7%) for 
LSTM and 96.0% (95% CI: 88.9%, 96.1%) for CNN versus 
88.9% (95% CI: 84.6%, 93.2%) for the support vector ma-
chine, 92.5% (95% CI: 88.9%, 96.1%) for XGBoost, 83.4% 
(95% CI: 78.3%, 88.5%) for random forests, and 61.8% 
(95% CI: 55.1%, 68.4%) for simple string matching. Given 
the small volume of errors made by the best-performing mod-
els, we were unable to discern any qualitative or quantitative 
differences between the types of errors made by the LSTM 
and the CNN.

Last, we evaluated the performance of our best-perform-
ing model, the LSTM, on the more complex 12-organ classi-
fication task by changing the final dense layer from four to 12 
output units, each representing a single organ, and retraining 
on the fully labeled data. The data for certain classes were far 

Table 3: Relative Performance of the Final Evaluated Models on Test Data

Model Recall Precision F1 Score (Micro) F1 Score (Macro) Subset Accuracy

CNN 95.1 (91.4, 98.9) 97.5 (94.8, 100) 96.3 (93.0, 99.6) 95.0 (91.2, 98.8) 96.0 (93.3, 98.7)
LSTM 94.3 (90.2, 98.3) 99.1 (97.5, 100) 96.7 (93.6, 99.8) 94.1 (90.0, 98.2) 96.0 (93.3, 98.7)
TF-IDF and SVM 82.9 (76.4, 89.4) 98.0 (95.5, 100) 89.9 (84.6, 95.1) 83.0 (76.4, 89.5) 88.9 (84.6, 93.2)
TF-IDF and XGBoost 93.5 (89.2, 97.8) 94.3 (90.2, 98.3) 93.9 (89.7, 98.0) 93.7 (89.5–97.9) 92.5 (88.9, 96.1)
TF-IDF and random forest 72.4 (64.6, 80.1) 95.1 (91.3, 98.8) 82.8 (76.2, 89.4) 66.7 (58.8–74.9) 83.4 (78.3, 88.5)
Simple string matching 99.1 (97.5, 100) 60.3 (51.8, 68.8) 75.2 (67.7, 82.7) 69.5 (61.5–77.5) 61.8 (55.1, 68.4)

Note.—Data are percentages, with 95% confidence intervals in parentheses. CNN = convolutional neural network, LSTM = long short-
term memory, SVM = support vector machine, TF-IDF = term frequency–inverse document frequency, XGBoost = extreme gradient 
boosting.

Table 4: F1 Scores of the Different Models by Organ

Model Liver F1 Score Kidney F1 Score Pancreas F1 Score Adrenal F1 Score

CNN 96.8 (91.9, 100) 97.1 (92.7, 1.00) 92.9 (81.3, 100) 93.3 (79.2, 100)
LSTM 97.8 (93.8, 100) 98.1 (94.6, 100) 87.6 (72.8, 100) 93.3 (79.2, 100)
TF-IDF and SVM 92.1 (84.6, 99.5) 93.1 (86.5, 99.7) 80.0 (62.0, 98.0) 66.7 (40.0, 93.4)
TF-IDF and XGBoost 95.5 (89.8, 100) 92.7 (85.9, 99.5) 93.3 (82.1, 100) 93.3 (79.2, 100)
TF-IDF and random 

forest
88.6 (79.9, 97.3) 86.3 (77.4, 95.2) 69.6 (48.9, 90.2) 22.2 (0, 45.7)

Simple string matching 79.3 (68.1, 90.4) 79.1 (68.5, 89.7) 71.4 (51.1, 91.7) 48.5 (20.2, 76.8)

Note.—Data are percentages, with 95% confidence intervals in parentheses. CNN = convolutional neural 
network, LSTM = long short-term memory, SVM = support vector machine, TF-IDF = term frequency–
inverse document frequency, XGBoost = extreme gradient boosting.

https://pubs.rsna.org/journal/ai
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are easily scalable to much larger corpora of labeled reports 
with no modifications.

We anticipate that this system will be useful within the 
context of the broader tracking engine, which aims to re-
duce missed follow-up of abnormal imaging findings. It is 
important to note that the use of the findings of this study 
within the broader tracking engine is designed to augment, 
rather than to replace, human monitors, by providing an-
other independent “checker” to improve joint accuracy of 
the human-machine system and increase the overall effi-
ciency of the human reviewer. Toward this end, one might 
incorporate the overall interpretability algorithms into the 
overall system by auto-populating the most salient word 

model. Figures 1 and 2 show randomly selected 
representative examples of this type of visualiza-
tion. The colors, along a gradient from white to 
yellow, represent the impact each token in the 
document has on the ultimate decision of the net-
work to assign a particular organ relevance to the 
document, normalized between zero and one over 
all tokens in entire pathology report. For ease of 
visualizing high-saliency tokens, normalized values 
less than 0.5 have been rounded to 0 in the figure. 
Although quantitative evaluation of interpretabil-
ity is difficult, one can see qualitatively from these 
visualizations that the decision of the network is 
influenced by sensible parts of the document, and 
it is able to handle divergent document structures 
effectively.

Third, results of occlusion experiments showed 
that removing all occurrences of the words used 
in the simple string-matching algorithm within 
a particular document often led to considerable 
changes in the prediction confidence of the models 
(eg, removing all occurrences of the words “liver,” 
“hepatic,” etc, led to frequent changes in model 
prediction). For instance, in one test run, 35 of 
the 53 instances classified as liver relevant would 
no longer be classified as such after the occlusion 
of liver-related words; similarly, the model changed 
its prediction on 18 of 21 pancreas reports, two of 
four adrenal reports, and two of 49 kidney reports 
after occlusion of relevant sets of words. We com-
pared this with trials of occlusion of random words 
that occurred with similar frequency; the network 
did not change any of its predictions. This method, 
although coarse and based on imperfect occlusion, 
provides further evidence that the network is detect-
ing human-understandable features and can be ap-
plied to either neural network–based model.

Discussion
We aimed to develop a system for organ-level pa-
thology report classification, for use in a larger 
system of automated radiology recommendation 
follow-up tracking. We hypothesized that neural 
network–based algorithms would perform well 
on the task with minimal rule-based preprocessing of raw 
texts. We found that our hypothesis was correct, with both 
LSTM- and CNN-based neural network algorithms achiev-
ing approximately 95% accuracy and F1 scores on a highly 
varied corpus of multi-institution multiformat reports. Fur-
thermore, we used methods for interpretability from the 
literature to evaluate the sensibility of our models’ learned 
parameters and found that the system qualitatively learned 
features similar to human annotators. Lastly, both neural net-
work models were small enough to be trained and deployed 
within hours on machines without GPUs, making them fea-
sible to use in a wide variety of clinical settings, even those 
without significant computational resources. These models 

Figure 1:  Image shows pathology report colored by normalized gradient-
weighted class activation map for class Pancreas, representing salient text 
spans for classification of neural network.
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spans from new reports into the user interface 
along with the prediction, allowing readers to 
quickly judge whether the prediction of the ma-
chine was correct or incorrect. This would signifi-
cantly decrease time spent opening and reading 
full pathology reports (the current procedure at 
our institution).

Large volumes of unstructured clinical text rep-
resent a huge store of information—not only for 
basic science usages, but also for clinical workflow 
optimization and quality improvement. Effective 
summarization and presentation of information 
contained within the chart holds great potential for 
improving care efficiency and quality. In general, 
end-to-end machine learning systems that take raw 
text as input often have significant advantages not 
only in performance, but also in algorithm deploy-
ment time over complex rule-based pipelines by 
minimizing time spent feature engineering or writ-
ing task-specific algorithms.

The “black box” nature of certain machine 
learning algorithms has become a popular topic 
of discussion as of late. In the clinical domain, 
where such algorithms will be used frequently by 
humans, interpretability is critical for system trust. 
Much study in the machine learning community 
has gone into improving the interpretability of 
these systems with methods such as Grad-CAM 
and occlusion sensitivity mapping. These systems, 
which have primarily been used in image-analysis 
systems, are equally applicable to natural language 
processing systems. In general, interpretability and 
so-called explainability are important concerns to 
keep in mind from the very beginning of the de-
velopment process.

It is interesting to note that the string-match-
ing algorithm performed relatively poorly, mostly 
due to false-positive classifications; it was not ob-
vious to the authors that this would be the case 
a priori. From looking at misclassified examples, 
the most common errors resulted from reports in 
which patients’ clinical history was included in 
the note (eg, “patient with history of hepatocellu-
lar carcinoma” included as a summary statement 
in a bone marrow biopsy report). LSTM and CNN appear 
able to compensate for this effectively. The seven-word  
“receptive field” of the CNN likely allows it to detect sur-
rounding context for words such as “liver,” which suggest 
whether the mention of “liver” is in the context of an unre-
lated clinical history or a specific tissue sample, whereas the 
LSTM can use its memory cells to perform the same task. 
Furthermore, CNNs and LSTMs may be more robust to 
individual heuristic failures than are rule-based approaches 
because they rely on the integration of information from 
hundreds of separate low-level features.

One limitation of our study was the small number of ad-
renal pathology reports in our sample. It is well known that 

datasets of a certain critical mass are necessary for machine 
learning algorithms to generalize effectively. Furthermore, 
any given 10-fold partition of our dataset may only include 
three or four adrenal reports, making it difficult to quantify 
and compare performance on this specific subtask. Another 
limitation was related to the use of noncontextual word 
embeddings. It has been shown that adding word vectors 
that incorporate character-level information or surrounding 
word context, such as Embeddings from Language Models 
(17), often improves performance on natural language pro-
cessing tasks; this represents another avenue of future work. 
Lastly, all of these supervised learning algorithms require 
manually labeled training data, and thus each additional 

Figure 2:  Image shows pathology report colored by normalized gradient-
weighted class activation map for class Kidney, representing salient text spans 
for classification of neural network.

https://pubs.rsna.org/journal/ai
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label categorization incurs a time and human labor cost to 
produce.

In summary, we provide evidence that end-to-end neural 
network architectures perform well on a clinical text-classifica-
tion task with high levels of human interpretability. Such sys-
tems have the potential to improve information extraction and 
summarization in a wide variety of clinical contexts, toward the 
ultimate end of improving care quality and efficiency.
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Table 5: Maximally Activating Text Spans for Ran-
domly Selected Features in the Convolutional Neural 
Network

Filter and Top Five Feature-Activating Text Spans

  Filter 1
    “-Renal parenchyma, no carcinoma”
    “Renal parenchyma, no tumor”
    “1A. Renal parenchyma, no tumor”
    “remaining renal parenchyma appears uninvolved by”
    “remaining renal parenchyma appears grossly  

unremarkable”
  Filter 2
    “of renal cell carcinoma status post left”
    “papillary renal cell carcinoma status post left”
    “endstage renal disease, status post deceased”
    “of renal cell carcinoma (2013)”
    “Papillary renal cell carcinoma HISTOLOGIC GRADE”
  Filter 3
    “The endoscopic report and photographs”
    “The endoscopic report and photograph”
    “The endoscopic report and photograph”
    “The endoscopic report and photograph”
    “The endoscopic report and photograph”
  Filter 4
    “carcinoma LYMPH-VASCULAR INVASION:”
    “presents with pancreatic tail mass suggestive of”
    “biopsy: - Moderately differentiated carcinoma”
    “Biopsy: - Poorly differentiated adenocarcinoma”
    “mass, pancreatic tail mass, epigastric”
  Filter 5
    “grossly normal adrenal gland”
    “GERD, HTN, adrenal adenoma”
    “2A-2C: Representative adrenal gland”
    “Representative sections of potential adrenal gland,”
    “Final Interpretation: Adrenal, left”
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