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Purpose:  To employ deep learning to predict genomic subtypes of lower-grade glioma (LLG) tumors based on their appearance at 
MRI.

Materials and Methods:  Imaging data from The Cancer Imaging Archive and genomic data from The Cancer Genome Atlas from 110 
patients from five institutions with lower-grade gliomas (World Health Organization grade II and III) were used in this study. A convo-
lutional neural network was trained to predict tumor genomic subtype based on the MRI of the tumor. Two different deep learning ap-
proaches were tested: training from random initialization and transfer learning. Deep learning models were pretrained on glioblastoma 
MRI, instead of natural images, to determine if performance was improved for the detection of LGGs. The models were evaluated us-
ing area under the receiver operating characteristic curve (AUC) with cross-validation. Imaging data and annotations used in this study 
are publicly available.

Results:  The best performing model was based on transfer learning from glioblastoma MRI. It achieved AUC of 0.730 (95% con-
fidence interval [CI]: 0.605, 0.844) for discriminating cluster-of-clusters 2 from others. For the same task, a network trained from 
scratch achieved an AUC of 0.680 (95% CI: 0.538, 0.811), whereas a model pretrained on natural images achieved an AUC of 0.640 
(95% CI: 0.521, 0.763).

Conclusion:  These findings show the potential of utilizing deep learning to identify relationships between cancer imaging and cancer 
genomics in LGGs. However, more accurate models are needed to justify clinical use of such tools, which might be obtained using 
substantially larger training datasets.

Supplemental material is available for this article.

© RSNA, 2020

Lower-grade gliomas (LGGs) are a diverse group of brain 
tumors classified as grade II and III using the World 

Health Organization grading system. Histopathologic 
analysis suffers from interobserver variability and can be 
inaccurate in predicting patient outcomes (1). Recently, a 
new tumor subtyping scheme was proposed which clusters 
LGGs based on DNA methylation, gene expression, DNA 
copy number, and microRNA expression (1). In particular, 
unsupervised analysis of tumors based on their molecu-
lar profiles derived from these four platforms resulted in 
a second-level cluster of clusters (CoC) partitioning into 
three distinctive biologic subsets (CoC1 to CoC3). It has 
been shown that the new subtypes are, to a large extent, 
in agreement with more basic subtyping utilizing isocitrate 
dehydrogenase (IDH1 and IDH2) mutation and 1p/19q 
codeletion (1,2). It has been determined that tumors from 
the different molecular groups substantially differ in terms 
of typical course of the disease and overall survival (3). Spe-
cifically, the CoC2 cluster was found to have a strong cor-
relation with wild-type IDH molecular subtype and had an 
overall survival rate similar to that of glioblastoma (GBM).

Radiogenomics is a new direction in cancer research 
that aims to identify relationships between tumor genomic 

characteristics and imaging phenotypes (ie, its presenta-
tion on radiologic images) (4). In addition to extending 
our understanding of the disease in general, radiogenom-
ics might provide actionable information if the genomic 
characteristics of tumors can be predicted prior to invasive 
tissue examination or in cases when resection is risky or im-
possible. Some radiogenomic studies of LGGs have discov-
ered an association of tumor shape features extracted from 
brain MRI with its genomic subtypes (5–7). A shortcom-
ing of the previously proposed method is that the features 
of the image used for the analysis need to be decided a 
priori without knowing which image characteristics might 
be most predictive of tumor genomics. Often a very large 
number of features are extracted, which increases the likeli-
hood of the noisy features obscuring the important ones. 
An alternative, more holistic approach, proposed in this 
study, is based on a supervised deep learning model that 
allows the algorithm to learn which imaging characteristics 
are the most helpful in making the prediction.

In recent years, progress in deep learning has allowed 
for the development of highly accurate models for various 
image-related tasks, even in the presence of limited train-
ing data (8,9). Although neural networks can be trained 
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Imaging Data
We obtained imaging data for our study from The Cancer Im-
aging Archive (TCIA) sponsored by the National Cancer Insti-
tute, which contains MR images for some of the patients from 
TCGA repository. All 110 patients included in our analysis 
had FLAIR sequences available, which we used for prediction 
of molecular subtypes. The number of slices in each sequence 
varied from 20 to 88. The size of images ranged from 256 3 
192 to 512 3 512 pixels. Voxel spatial dimensions ranged from 
0.39 to 1.02 mm and slice thickness was between 2 and 7.5 
mm. All images were saved in 8-bit gray-scale lossless tagged 
image file format (TIFF). The characteristics of the imaging 
data are summarized in Table 1. Additional imaging metadata 
for each patient is provided in Appendix E1 (supplement). 
The FLAIR abnormality for tumors on all images was manu-
ally outlined by a researcher in our laboratory who used an in-
house MATLAB tool developed for this task. The final annota-
tions were approved by a board-eligible radiologist. All imaging 
data (preprocessed and labeled images from the TCGA-LGG 
collection) and annotations used in this study were made avail-
able at the following link: https://www.kaggle.com/mateuszbuda/
lgg-mri-segmentation.

Genomic Data
We used genomic classifications developed in a recent pub-
lication (1) defining the molecular landscape of LGGs. Ge-
nomic data came from TCGA-LGG collection and were de-
rived based on DNA methylation, gene expression, DNA copy 
number, microRNA expression, and the measurement of IDH 
mutation and 1p/19q codeletion. Specifically, in our analysis 
we considered three CoC molecular subtypes: CoC1, CoC2, 
and CoC3. This subclassification has shown a strong correla-
tion with imaging data using handcrafted tumor shape features 
in a previous study (6). Our data contained 55 cases for cluster 
CoC1, 25 cases for CoC2, and 30 cases for CoC3.

Deep Learning for Prediction of Molecular Subtypes Based 
on MR Images

Preparation of the data for training of neural networks.—To 
obtain comparable results between all tested deep learning 
methods, we applied the same preprocessing of images across 
different methods. In a series of preliminary experiments, we 

from a random initialization of the weights, an approach that 
has shown promise is transfer learning, which allows for pre-
training of the network with a dataset different than the main 
training set. The performance of these methods depends on 
the task at hand, available data, and potentially other factors. 
Particularly, the type of dataset used for pretraining could be a 
factor influencing the final performance of the network. In this 
study, we tested whether a deep learning model with transfer 
learning from GBM MRI, instead of natural images, can pro-
vide improvement in performance over a model trained from 
scratch for predicting CoC molecular subtype based on MRI 
of LGG. The hypothesis was that a supervised deep learning 
approach based on MR images of LGGs would be predictive 
of the tumor genomics. We also determined whether a model 
pretrained on another MRI dataset showed better performance 
and generalization ability than other learning approaches.

Materials and Methods

Patient Population
In this institutional review board–exempt study, we analyzed pa-
tient data from The Cancer Genome Atlas (TCGA) LGG collec-
tion (10). First, we excluded patients who did not have preopera-
tive fluid-attenuated inversion recovery (FLAIR) imaging data 
available. From the 120 cases that remained, we further excluded 
10 patients for whom the relevant genomic data were not avail-
able. The final analyzed cohort of 110 patients contained data 
from the following five institutions: Thomas Jefferson University 
(TCGA-CS, 16 patients), Henry Ford Hospital (TCGA-DU, 
45 patients), University of North Carolina (TCGA-EZ, one pa-
tient), Case Western (TCGA-FG, 14 patients), Case Western–
St. Joseph’s (TCGA-HT, 34 patients). These 110 patients were 
used for the development of classification networks and in the 
radiogenomic analysis. The full list of patients included in our 
analysis is available in Appendix E1 (supplement).

Abbreviations
AUC = area under the receiver operating characteristic curve, CoC 
= cluster of clusters, CI = confidence interval, CNN = convolutional 
neural network, FLAIR = fluid-attenuated inversion recovery, GBM 
= glioblastoma, IDH = isocitrate dehydrogenase, LGG = lower-grade 
glioma, TCGA = The Cancer Genome Atlas, TCIA = The Cancer 
Imaging Archive

Summary
Deep learning algorithms, especially those utilizing transfer learn-
ing, were able to find the association between imaging and genom-
ics of lower grade gliomas.

Key Points
	n While deep learning cannot yet replace genomic testing, it shows 

promise in aiding clinical decisions of lower grade gliomas.
	n A convolutional neural network pretrained with brain MRI of glio-

blastoma tumors achieved the best performance as compared with 
networks trained from scratch or pretrained on natural images.

	n For discriminating cluster-of-clusters 2 from others, we achieved 
area under the receiver operating characteristic curve of 0.730 
(95% confidence interval: 0.605, 0.844).

Table 1: Imaging Data for 110 Patients Used in this 
Study

Parameter Value

No. of patients 110
No. of slices per patient* 35.7 6 15.2
No. of tumor slices per patient* 12.3 6 6.2
Image width† 192–512
Image height† 224–512

* Data are means 6 standard deviations.
† Data are minimum to maximum pixel measurement. 

http://radiology-ai.rsna.org
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
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Figure 1:  Example patches for tumors from cluster CoC1 (top), cluster CoC2 (middle), and cluster CoC3 (bottom) before applying rotation and shift augmentation. 
CoC = cluster of clusters.

ters. A detailed description of the architecture and the training 
hyperparameters are provided in Appendix E2 (supplement).

Transfer learning.—It has been shown that deep convolutional 
neural networks (CNNs) trained on large datasets learn general 
feature representations (18,19). Shallow filters detect simple 
shapes (eg, edges) whereas deeper layers are responsible for rec-
ognizing more complex structures and objects (20). The most 
common transfer learning method is fine-tuning of a model 
trained on another dataset. It involves training the final clas-
sification layer from random initialization and adjustment of 
weights in early layers using  a small learning rate. In our exper-
iments, we fine-tuned GoogLeNet (21) network pretrained on 
ImageNet dataset of natural images (22). We also fine-tuned a 
CNN developed for classification of patches extracted from an-
other brain MRI dataset of patients with GBM. The network 
was trained to distinguish different parts of the tumor and 
normal brain tissue with the ultimate goal of segmenting the 
images (23). For both of the fine-tuned models, the fully con-
nected layers were replaced and randomly initialized. To match 
the number of input channels, we repeated FLAIR sequence 
three times. Detailed description of the network pretrained on 
GBM MRI data and the training hyperparameters are provided 
in Appendix E2 (supplement).

Model Evaluation and Statistical Analysis
We performed the evaluation using 22-fold cross-validation. 
Specifically, we split the data by patients into 22 folds with 
five cases each. Then we trained the model using 21 folds 
(105 cases) and tested it using one fold (five cases). We re-
peated the process 22 times such that each fold was used as 
the test set once. Because each patient had several slices con-

identified the following transformations and data preparation 
steps to be essential to achieve satisfactory results for classifica-
tion of genomic subtypes. All slices were first padded to square 
aspect ratio, resized to 256 3 256 pixels, and were contrast-
normalized by stretching pixel values between 1st and 99th 
percentile in the histogram. Then, we applied a mask from 
manual segmentation of tumors to guide network and provide 
shape information. Finally, image patches used for training and 
inference were cropped to 80 3 80 pixels centered in the mid-
dle of the tumor. Only the slices that contained some tumor 
were considered. The optimal patch size was chosen based on a 
series of preliminary experiments.

The total number of extracted patches was 1648. Example 
patches for each cluster are shown in Figure 1. In addition, we 
performed data augmentation to generate extra training exam-
ples, a common technique in deep learning (11). Specifically, 
each patch was repeated five times with random rotation by 
610 degrees and random shift by 616 pixels in horizontal and 
vertical direction, then sampled independently. This procedure 
resulted in 8240 examples in total. To alleviate the problem of 
imbalance, we applied random minority oversampling to make 
class distribution uniform (12).

Training custom network from random initialization.—The 
first tested approach was training a custom network from ran-
dom initialization of weights (aka from scratch). The architec-
ture of our trained-from-scratch network consisted of three 
standard blocks with convolutional layer, rectified linear unit, 
activation, max-pooling layer, and batch normalization (13–
16). After that, we added two fully connected layers followed 
by dropout layers with 50% dropout ratio (17). The last layer 
contained three output units corresponding to predicted clus-

http://radiology-ai.rsna.org
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operating characteristic curves are presented in Figure 2. The best 
performing method was transfer learning utilizing GBM MRI 
for pretraining with AUC of 0.730 (95% CI: 0.605, 0.844). In 
comparison, for the network trained from scratch, AUC was 
0.680 (95% CI: 0.538, 0.811) and for GoogLeNet pretrained 
on natural images, it was 0.640 (95% CI: 0.521, 0.763). The 

taining tumor and we trained classifiers to predict molecular 
subtype of a single image, we averaged the predicted scores 
across tumor slices, independently for each class, to arrive at 
the final prediction.

We used the area under the receiver operating characteris-
tic curve (AUC) (24) computed by pooling predictions from 
all folds, as the evaluation metric. We evaluated how well the 
classifier can distinguish each given subtype (CoC1, CoC2, 
CoC3) from all other subtypes combined (eg, CoC1 vs CoC2 
and CoC3) as well as all possible pairs for clusters (ie, CoC1 vs 
CoC2, CoC1 vs CoC3, CoC2 vs CoC3). For evaluation of all 
these binary tasks we trained a single multiclass neural network 
with three outputs corresponding to probabilities of three CoC 
clusters. In each case, we took the score from the CNN for a 
given class, averaged across slices as the score for computing re-
ceiver operating characteristic curves. Our particular focus was 
on cluster CoC2 which has been shown to be associated with a 
lower survival (1). Statistical tests for comparison of models and 
computation of confidence intervals (CIs) was performed using 
a bootstrapping tool implemented in Python.

Results
The characteristics of our patient population are shown in 
Table 2. The average age was 47 years (one unknown). Fifty-
six patients were women and 53 were men (one unknown). 
Among 109 patients with histologic data present, 47 were oli-
godendrogliomas, 29 were oligoastrocytomas, and 33 were as-
trocytomas. In terms of tumor grade, 51 tumors were of grade 
II and 58 were of grade III.

The results of testing our methods for the task of discrimi-
nating cluster CoC2 from all other clusters in terms of receiver 

Table 2: Patient and Tumor Characteristic

Characteristic
Age and No. of Patients 
(n = 110)

Age (y)
  Median 47
  Range 20–75
Sex
  Female 56
  Male 53
  Not available 1
Histologic type and grade
  Astrocytoma
    Grade II 8
    Grade III 25
  Oligoastrocytoma
    Grade II 14
    Grade III 15
  Oligodendroglioma
    Grade II 29
    Grade III 18
    Not available 1

Note.—Age for one patient was missing and was ignored in the 
calculation.

Figure 2:  Receiver operating characteristic curves for the task of discriminating 
cluster CoC2 from all other clusters (CoC1 and CoC3) combined for (a) training 
from scratch, (b) transfer learning from ImageNet, and (c) transfer learning from 
glioblastoma MRI. AUC = area under the receiver operating characteristic curve, 
CoC= cluster of clusters.

http://radiology-ai.rsna.org
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are very expensive and are rarely acquired in the clinical set-
ting. Therefore, even an imprecise prediction of a sophisticated 
genomics subtype could be of value in deciding the course of 
treatment. Second, even if a sophisticated genomic analysis is 
planned, it requires extraction of tumor tissue and additional 
time for analysis. This step means that genomic information is 
delayed, particularly for patients who do not undergo immediate 
surgery. The approximate information provided by already avail-
able imaging could immediately help with the decision process 
during the time when genomic information is absent. Third, an 
imperfect, but sufficiently accurate, model could stratify patients 
for genomic testing and limit the testing only to the patients 
where the imaging-based surrogate is not confident about the 
prediction. Finally, in addition to the potential clinical uses just 
described, the ability of deep learning to identify some character-
istics of images that represent the underlying genomics could be 
of high value in further understanding of genotype-phenotype 
relationships in cancer.

The imaging-based approach to identifying the underlying 
tumor genomics has some very clear strengths. In addition to 
the low cost (MRI is already available) and immediate access 
to the information, imaging offers a way to analyze the tumor 
as a whole rather than individual tissue samples. This allows 
for visualizing the tumor in its surrounding and the ability to 
assess tumor shape, which reflects the growth pattern as well 
as tumor enhancement which illustrates its vascular structure. 
Finally, the overall look at a tumor is of utmost importance 
given the intratumor genomic heterogeneity of cancer. While 
the results of a genomic test can differ based on which part of 

differences between GBM pretrained model and other models 
were not statistically significant (P .1). All deep learning meth-
ods showed performance statistically significantly higher than 
chance (ie, none of the CIs overlap with AUC = 0.5).

For the transfer learning method using GBM data for pre-
training, Table 3 shows the ability of the deep learning method 
to classify different subtypes. The classifier showed the highest 
predictive ability for distinguishing between CoC2 and CoC3 
and the lowest for distinguishing CoC1 and CoC3. Figure 3 of-
fers a visual representation of these results. In Figure 4, we show 
network attention heatmaps, which indicate parts of the image 
responsible for prediction. Increased response by the network 
was for tumor margin regions of high irregularity which pro-
vides additional validation of results from previous studies (6). 
Additional results for discriminating between all possible combi-
nations of CoC clusters for the two other deep learning methods 
tested in the study are provided in Appendix E3 (supplement).

Discussion
In this study, we demonstrated that deep learning–based algo-
rithms are capable of classifying molecular subtypes of LGG 
tumors with a moderate performance. The model that showed 
the highest AUC utilized previous GBM imaging data for 
model pretraining.

Although at this stage of the development, the imaging-
based models could not be used as a one-to-one replacement 
for genomic testing, the correlations between genomics and 
imaging data are important to identify and can be applied in 
various ways. First, the genomic assays described in this article 

Table 3: AUC with 95% Confidence Intervals for the Transfer Learning from GBM MRI Experiment

Output Cluster 2 3 One versus All
1 0.698 (0.554, 0.823) 0.613 (0.486, 0.736) 0.650 (0.540, 0.751)
2 … 0.731 (0.591, 0.859) 0.730 (0.605, 0.844)
3 … … 0.584 (0.449, 0.710)

Note.—AUC = area under the receiver operating characteristic curve, GBM = glioblastoma.

Figure 3:  Receiver operating characteristic curves for transfer learning from glioblastoma MRI experiment for the task of discriminating (a) cluster CoC1 versus CoC2 
and (b) cluster CoC2 versus CoC3. AUC = area under the receiver operating characteristic curve, CoC = cluster of clusters.

http://radiology-ai.rsna.org
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the tumor was analyzed, the im-
aging offers a global view that is 
free of this limitation. It is noted 
that the intratumor heterogene-
ity is likely a part of the reason 
imaging cannot predict tumor 
genomics with a 100% accuracy. 
Because the reference standard 
may depend on the tissue sam-
pling strategy, it is unlikely that 
any predictive model can achieve 
perfect prediction. This limita-
tion, caused by intratumor ge-
nomic heterogeneity, affects all 
studies using genomics data.

Our findings may translate 
to the prognosis of outcomes 
for patients with LGG. Specifi-
cally, we found that imaging can 
predict, with moderate perfor-
mance, whether the tumor be-
longs to the CoC2 cluster or to 
one of the remaining genomic 
subtypes. The CoC2 cluster has 
also been shown to be highly 
associated with dramatically 
poorer survival. For example, 
the hazard ratio between groups 
CoC2 and CoC3 was 9.2 (95% 
CI: 4.2, 20.0), while the risk 
in groups CoC1 and CoC3 is 
similar (hazard ratio = 1.7) (1). 
This shows the potential utility of the imaging-based tools 
to predict patient outcomes and guide treatment decisions. 
In addition, the task of classifying CoC2 cluster performed 
better than for other clusters. This could be attributed to the 
aggressiveness of the CoC2 cluster which is revealed in the 
imaging features that can be captured by a CNN model (eg, 
angular standard deviation of tumor shape) (6).

An interesting finding of our study was that the deep neu-
ral network that performed best was the one that utilized im-
ages of GBMs in the pretraining stage which was followed by 
additional training specific to LGGs. This finding illustrates 
that given a small set of cases such as the one used in this 
study, it is beneficial to allow the network to acquire general 
concepts of head MRIs and brain tumors even if there are 
some differences in the specifics of the task. It might be pos-
sible to achieve even better performance if more LGG data 
are available. Other recent studies have explored prediction 
of different relevant genomic subtypes for LGG using various 
methods and datasets (25–27).

Our study had some limitations, which included the limited 
size of the dataset as well as the fact that it was retrospectively 
and observationally collected. This is a common limitation in 
studies using comprehensive genomic analysis. While the da-
taset was small, it was encouraging that we were able to find 
meaningful relationships between genomic and imaging data. 

Furthermore, to extract patches for prediction, we still needed 
manual segmentation masks of the tumor on each slice. There-
fore, the system was not fully automatic. However, with recent 
advances in deep learning segmentation techniques, automatic 
segmentation is capable of achieving performance of an expert 
human reader. This implies that this step can be automated in 
the future, making the entire process presented in this article 
fully automatic.

To conclude, we were able to demonstrate that deep learning 
algorithms, especially those that utilize transfer learning, are able 
to find the association between imaging and genomics of LGGs. 
While the developed tool cannot yet serve as a direct replace-
ment for genomic testing, it shows promise in aiding clinical 
decisions and science of lower grade gliomas.
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Figure 4:  Attention heatmaps from the network pretrained on glioblastoma dataset that indicate the parts of an image 
responsible for prediction. CoC = cluster of clusters.
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