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Purpose: To investigate the diagnostic accuracy of cascading convolutional neural network (CNN) for urinary stone detection on un-
enhanced CT images and to evaluate the performance of pretrained models enriched with labeled CT images across different scanners.

Materials and Methods: This HIPAA-compliant, institutional review board–approved, retrospective clinical study used unenhanced 
abdominopelvic CT scans from 535 adults suspected of having urolithiasis. The scans were obtained on two scanners (scanner 1 
[hereafter S1] and scanner 2 [hereafter S2]). A radiologist reviewed clinical reports and labeled cases for determination of reference 
standard. Stones were present on 279 (S1, 131; S2, 148) and absent on 256 (S1, 158; S2, 98) scans. One hundred scans (50 from 
each scanner) were randomly reserved as the test dataset, and the rest were used for developing a cascade of two CNNs: The first 
CNN identified the extent of the urinary tract, and the second CNN detected presence of stone. Nine variations of models were 
developed through the combination of different training data sources (S1, S2, or both [hereafter SB]) with (ImageNet, GrayNet) 
and without (Random) pretrained CNNs. First, models were compared for generalizability at the section level. Second, models 
were assessed by using area under the receiver operating characteristic curve (AUC) and accuracy at the patient level with test data-
set from both scanners (n = 100).

Results: The GrayNet-pretrained model showed higher classifier exactness than did ImageNet-pretrained or Random-initialized mod-
els when tested by using data from the same or different scanners at section level. At the patient level, the AUC for stone detection was 
0.92–0.95, depending on the model. Accuracy of GrayNet-SB (95%) was higher than that of ImageNet-SB (91%) and Random-SB 
(88%). For stones larger than 4 mm, all models showed similar performance (false-negative results: two of 34). For stones smaller than 
4 mm, the number of false-negative results for GrayNet-SB, ImageNet-SB, and Random-SB were one of 16, three of 16, and five of 
16, respectively. GrayNet-SB identified stones in all 22 test cases that had obstructive uropathy.

Conclusion: A cascading model of CNNs can detect urinary tract stones on unenhanced CT scans with a high accuracy (AUC, 0.954). 
Performance and generalization of CNNs across scanners can be enhanced by using transfer learning with datasets enriched with la-
beled medical images.

© RSNA, 2019

Supplemental material is available for this article.

The prevalence of urolithiasis is increasing. Almost 1.3 
million visits in the emergency setting are attribut-

able to suspected urinary stone disease (1,2). Although 
clinical history can suggest urinary stone disease, un-
enhanced CT allows accurate and timely diagnosis (3). 
These strengths have led to a continued increase in the 
use of CT for suspected urolithiasis (4,5) but have also 
contributed to a rise in imaging volume, longer turn-
around times, an increased burden on radiologists, and 
longer hospital stays (6).

Remarkable progress in machine learning algorithms 
for medical image analysis has been made for various 
tasks through use of different imaging modalities (7–9). 
The algorithms also have a promising role in triaging 
cases and improving workflow in the emergency de-
partment (ED) (10,11). Nevertheless, two important 

challenges need to be addressed to achieve satisfactory 
performance of deep-learning (DL) systems in medi-
cine. The first is access to large, well-annotated, bal-
anced datasets (12). The second is reliability of DL 
models across multiple scanners. High performance of 
DL algorithms from one scanner may not be reproduc-
ible when deployed at another. This poor generalization 
is due to differences in image features resulting from 
variation in acquisition and reconstruction protocols 
with use of different imaging systems (13–15).

To address the challenge of insufficient and imbal-
anced data, prior research has applied transfer learn-
ing with convolutional neural network (CNN) mod-
els pretrained on a large set of natural images (such 
as ImageNet) to biomedical applications despite 
substantial differences between natural and medical 
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protocol information by using Digital Imaging and Com-
munications in Medicine (DICOM) tags and secondarily 
serves as a repository for CT scans in a quaternary refer-
ral hospital was queried for CT examinations. A total of 
540 patients who underwent true non–contrast material–
enhanced abdominopelvic CT for suspected urolithiasis 
(complaints of flank pain, hematuria) between January and 
October 2016 were identified. Scans from two manufactur-
ers—scanner 1 (hereafter S1) (Discovery CT750 HD, GE 
Healthcare, Milwaukee, Wis) and scanner 2 (hereafter S2) 
(Somatom Definition Force, Siemens Healthcare, Erlangen, 
Germany)—were included. The acquisition parameters are 
tabulated in Table 1. On S1, scans were acquired by using 
single-energy CT, whereas acquisition on S2 was performed 
with dual-energy CT (dual-source platform). For S2, single-
energy CT equivalent blended image datasets (0.6 dual-en-
ergy decomposition) were used.

Axial reconstructions from all CT scans were manually 
reviewed by a radiologist (R1; A.P., 6 years of experience) 
for presence or absence of stones and to ensure diagnostic 
image quality. The findings of R1 were confirmed with orig-
inal radiology reports (by board-certified radiologists) and 
medical records from the urology consultation that were 
available on the hospital information system. CT scans (n 
= 5) with prominent beam hardening artifacts or substan-
tially altered postoperative anatomic features were excluded. 
A total of 535 unenhanced CT scans (S1: n = 289; S2: n 
= 246) were included (Fig 1). Patients with urinary stones 
were further categorized into three groups according to larg-
est stone size: group A (,4 mm), group B (4–9.9 mm), and 
group C (10 mm). A total of 435 scans (stone absent: n 
= 206; stone present: n = 229) were used for model devel-
opment. From the development dataset, 60 scans (n = 30 
from each scanner) were randomly reserved as the validation 
dataset for model hyperparameter tuning and best model 
selection. One hundred random scans (n = 50 from each 
scanner) were reserved as the test dataset for evaluation of 

images (9,16,17). Recent studies have demonstrated that 
for medical applications, models trained on datasets from 
the same imaging modality domain achieved better perfor-
mance than out-of-domain trained models (18,19). Because 
transfer learning improves when features between the source 
and target tasks are similar (20), we hypothesized that DL 
models for CT-related tasks, such as stone detection, that 
are pretrained on CT images may exhibit better generaliza-
tion, where generalization is defined as the accuracy of a 
model trained on images from one vendor and tested on 
images acquired from another vendor. The performance of 
a CNN model that has been pretrained with medical im-
ages has not yet been studied for its ability to handle class 
imbalance or images acquired from different sources, to our 
knowledge (21).

In this study, we aimed to investigate the diagnostic accuracy 
of a cascading DL system for urinary stone detection on unen-
hanced CT images. In addition, we evaluated the effect of trans-
fer learning by using pretrained 
models enriched with labeled CT 
images to assess whether the per-
formance of the pretrained model 
is consistent across scanners.

Materials and Methods
Our institutional review board 
approved this Health Insurance 
Portability and Accountabil-
ity Act–compliant retrospective 
study and waived the requirement 
for written informed consent.

Data Collection, 
Annotation, and 
Distribution
An online software tool (Radi-
metrics; Bayer Healthcare, 
Whippany, NJ) that extracts 

Abbreviations
AP = average precision; AUC = area under the receiver operat-
ing characteristic curve; CNN = convolutional neural network; 
DICOM = Digital Imaging and Communications in Medicine; DL 
= deep learning; ED = emergency department

Summary
A cascading convolutional neural network model, enriched with 
labeled CT images, detected the presence of urinary tract stones 
on unenhanced abdominopelvic CT scans with high accuracy (area 
under the receiver operating characteristic curve, 0.954).

Key Points
 n Convolutional neural networks can detect urolithiasis on unen-

hanced CT scans and potentially can be used to prioritize studies 
for interpretation by a radiologist.

 n A cascading convolutional neural network model detected urinary 
tract stones on unenhanced CT scans with an area under the re-
ceiver operating characteristic curve of 0.954.

Table 1: CT Acquisition Parameters 

Parameter Scanner 1 Scanner 2

Scanner name (manufacturer) Discovery 750HD  
(GE Healthcare)

Somatom Definition Force 
(Siemens Healthcare)

Tube voltage (kVp) 120 or 100 100/Sn150
Tube current (mA) Noise index 26 or 21  

(with mA modulation)
Reference: 120 (with mA 

modulation)
Rotation time (sec) 0.5 0.5
Pitch (mm) 1.375 0.95
Collimation 64 3 0.625 192 3 0.6
Scan field of view (cm) 50 50
Reconstruction algorithm/kernel Standard Bf36
Section thickness/increment (mm) 5/5 2/2
Iterative reconstruction ASIR: 80% ADMIRE: 3

Note.—All scans were acquired in true unenhanced phase. ADMIRE = advanced modeled iterative 
reconstruction; ASIR = adaptive statistical iterative reconstruction.

https://pubs.rsna.org/journal/ai
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Figure 1: Flowchart of the study process depicting patient selection and study design. The “Random” model was initialized by using 
the method described by He et al (26). Performance analysis for assessment of model generalization was evaluated at section level 
(convolutional neural networks 1 [CNN-1] and 2 [CNN-2]). Patient-level prediction for diagnostic accuracy was performed with train-
ing and testing dataset from both scanners. SB = data from both scanners (scanner 1 plus scanner 2); val = validation datasets.

Details on GrayNet data distribution and GrayNet pretrained 
model generation can be viewed in Appendix E1 (supplement).

Cascading Model for Urinary Stone Detection
The cascading model (Fig 2) consisted of two CNNs. The 
first (CNN-1) identified the CT sections containing the 
urinary tract (top of the kidneys to base of urinary blad-
der). The sections within the urinary tract, as identified by 
CNN-1, were then presented to the second CNN (CNN-2) 
for classification into presence or absence of stones. The two 
CNNs were developed by training the Inception-v3 mod-
els on two-dimensional sections of the development dataset 
(Appendix E2 [supplement]). Inception-v3 models with or 
without pretrained models were trained on each training 
dataset after the last fully connected layers were replaced 
with a sigmoid classification layer for binary output (within 
or outside urinary tract for CNN-1; presence or absence of 
stones for CNN-2).

Image Preprocessing
All DICOM images went through a pipeline of preprocess-
ing functions before being used as input to CNN models. 
First, body regions were segmented by Hounsfield unit 
thresholding at −300 HU (25). Images were then normal-

model performance. Test cases were discrete from the devel-
opment dataset. Patient and data distributions are described 
in Table 2.

CNN Architecture and Generation of Pretrained 
Model (GrayNet)
Inception-v3 (22) CNN architecture was selected to de-
velop the cascading urinary stone detection system because it 
achieved excellent classification performance in the ImageNet 
Large Scale Visual Recognition Challenge (23). This CNN was 
pretrained with ImageNet that contains 1.2 million natural 
images from 1000 categories (24). The ImageNet pretrained 
model was fine-tuned on GrayNet, an in-house–built dataset 
that contains labeled CT images for human anatomy recog-
nition to generate a pretrained model (GrayNet pretrained 
model). The GrayNet pretrained model was then used for 
weight initialization of CNN models for urinary tract identifi-
cation and stone detection.

The goal for creating GrayNet was to build a pretrained 
model that would potentially be generalizable to all CT ap-
plications. GrayNet includes heterogeneous data (ie, images 
varying in acquisition protocol, vendor, sex, window settings, 
and contrast enhancement from 322 CT examinations of head, 
neck, chest, abdomen, and pelvis scanned on two vendors). 

https://pubs.rsna.org/journal/ai
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Network Training
For models trained without weight initialization (“ran-
dom”), CNNs were trained on datasets from scratch by us-
ing a method described by He et al (26), wherein samples 
are drawn from a normal distribution with a range that de-

ized such that all scans were oriented in the supine position. 
Full-resolution (512 3 512 pixels) CT images were con-
verted into grayscale and encoded into a multiwindow RGB 
image by using three different window widths and levels 
(Fig 2, Appendix E3 [supplement]).

Table 2: Patient and Data Distribution of 535 Scans Used for Development and Testing 

Variable

Scanner 1 Scanner 2

Development Test Total Development Test Total

Stone absent
 No. of patients 133/535 (24.8) 25/535 (4.6) 158/535 (29.5) 73/535 (13.6) 25/535 (4.6) 98/535 (18.3)
 Patient sex 
  Female 53 8 61 41 14 55
  Male 80 17 97 32 11 43

 Mean patient age 6 SD (y) 60 6 15 61 6 15 61 6 15 52 6 18 47 6 17 51 6 18
Stone present
 No. of patients 106/535 (19.8) 25/535 (4.6) 131/535 (24.4) 123/535 (22.9) 25/535 (4.6) 148/535 (27.6)
 Patient sex 
  Female 43 9 52 48 14 62
  Male 63 16 79 75 11 86

 Mean patient age 6 SD (y) 60 6 14 63 ± 13 60 6 14 54 6 17 55 6 17 54 6 17
 Stone size 
  Group A (,4 mm) 24 8 32 40 8 48
  Group B (4–9.9 mm) 58 8 66 71 14 85
  Group C (10 mm) 24 9 33 12 3 15
 Stone location 
  Renal 94 21 115 85 20 105
  Ureteric 41 8 49 73 12 85
  Bladder 10 3 13 18 3 21
   Total 239/535 (44.6) 50/535 (9.3) 289/535 (54.0) 196/535 (36.6) 50/535 (9.3) 246/535 (45.9)

Note.—Test cases were discrete from development dataset. Unless indicated, data are numbers of patients with percentages in parentheses. 
SD = standard deviation. 

Figure 2: Schematic representation of the image preprocessing steps and cascading convolutional neural network 
(CNN) model for urinary tract region (CNN model 1 [CNN-1]) and stone (CNN model 2 [CNN-2]) identification.

https://pubs.rsna.org/journal/ai
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(Fig 2). The test dataset from both scanners was used for 
evaluation of performance at the patient level (overall and 
in subanalysis according to size, location, and presence of 
phleboliths).

Statistical Analysis
Statistical evaluation for assessing categorical and continu-
ous demographic and patient data were performed using x2 
and t tests on SPSS software, version 25 (IBM, Chicago, 
Ill) (29). Average precision (AP) was used as the evaluation 
metric for comparing the generalization of models at section 
level. It is a fair performance metric when a binary classifier 
has class imbalance, such as our data (30). AP summarizes 
the relationship between precision (ratio of true-positives to 
the sum of true- and false-positives [ie, positive predictive 
value]) and recall (ratio of true-positives to the sum of true-
positives and false-negatives [ie, sensitivity]). Area under the 
receiver operating characteristic curve (AUC) was used to 
evaluate the cascading model for patient-level prediction for 
the presence of stones, and the Delong method was used to 
compare the AUCs. Sensitivity, specificity, negative predic-
tive value, positive predictive value, and accuracy were de-
termined for the models from the optimal threshold that was 
selected on the basis of the sum of sensitivity and specificity 
on the validation dataset. McNemar and Pearson x2 tests 
were used to compare the models for these metrics. Mean 
of intersection over union was used as the evaluation metric 
for measuring the accuracy of CNN-1 for identification of 
the urinary tract. AP and AUC values were computed by 
using Scikit-learn, version 0.19.1 (31), a machine learning 
library available in Python 2.7.12. We calculated 95% con-
fidence intervals (CIs) by using a nonparametric bootstrap 
approach for AP and differences in AP between paired mod-
els and AUC; a binomial proportion CI method was used 
for sensitivity, specificity, negative and positive predictive 
values, and accuracy. Post hoc power analysis revealed that 
this study’s 100-case (data from both scanners) test sample 
size had a 64.9% power to detect a significant difference be-
tween Random-SB and GrayNet-SB and 37.0% power for 
ImageNet-SB versus GrayNet-SB at a two-sided significance 
level of .05.

Results
Among the 535 patients, stones were present in 279 patients 
(165 men and 114 women) and absent in 256 (140 men and 
116 women). The mean age ± standard deviation in both co-
horts were 56 years 6 15 and 56 years 6 16, respectively. Age 
and sex did not significantly differ between patients with and 
without stones (P . .05). Mean stone size was 6 mm (range, 
1–32 mm). Stones were in the kidney alone (n = 133), ureter 
alone (n = 40), bladder alone (n = 35), or in more than one 
location (n = 75). Baseline patient characteristics (age, sex, 
stone size, location, presence of stent or phleboliths) did not 
significantly differ between training and testing datasets (P 
. .05). Across scanners, in patients with stones, a signifi-
cant difference was found in stone size and location between 
scanners 1 and 2 (P , .05). Distribution of patients with 

pends on the number of neurons in the previous layer to ef-
ficiently find minimum global training loss. For ImageNet- 
and GrayNet-pretrained models, weights were initialized 
according to the pretrained model (ImageNet or GrayNet, 
respectively) and further fine-tuned on the training data-
set for both CNN-1 and CNN-2. All models (CNN-1 and 
CNN-2) were trained for 30 epochs with a minibatch sto-
chastic gradient descent with 0.9 Nesterov (27) momentum, 
64 batch size, and 5 3 10−5 weight decay. Three different 
base learning rates (0.001, 0.005, and 0.01) were used for 
model hyperparameter tuning, and each was decayed by 10 
every 10 epochs to obtain a stable convergence of training 
cost function. The best models were selected on the basis 
of validation losses. To improve model generalization, data 
were augmented for training by applying geometric trans-
formations, such as horizontal flipping, scaling (80%–100% 
at 1% interval), rotation (−30° to 30° at 1° interval), and 
translation (−15 to 15 pixels in x and y directions at an in-
terval of 1 pixel). These parameters were randomly selected 
on the fly during training. To address class imbalance, the 
minority class (“outside urinary tract” for CNN-1; “stone 
present” for CNN-2) was oversampled to the same num-
bers of the majority class: “within urinary tract” for CNN-1; 
“stone absent” for CNN-2) and augmented in every batch 
(28). All DL models were implemented by using Keras (ver-
sion 2.1.1) with a TensorFlow backend (version 1.3.0), and 
all experiments were performed on an NVIDIA Devbox 
(Santa Clara, Calif ) equipped with four Titan X graphical 
processing units (GPUs) with 12 GB of memory per GPU.

Experiment Setting
The first experiment was performed to evaluate the generaliza-
tion of models. This was studied by using models that (a) var-
ied in network initialization and (b) were trained on images ac-
quired with different acquisition and reconstruction protocols. 
Thus, nine different models were defined: GrayNet pretrained 
model fine-tuned with training datasets from S1 (GrayNet-S1), 
S2 (GrayNet-S2), and both (hereafter SB) (GrayNet-SB); Ima-
geNet pretrained model fine-tuned with training datasets from 
S1 (ImageNet-S1), S2 (ImageNet-S2), and both (ImageNet-
SB); and randomly initialized model trained from scratch, 
using He et al initialization (26), with training datasets from 
S1 (Random-S1), S2 (Random-S2), and both (Random-SB). 
These nine models were then evaluated at section level by us-
ing the test dataset from S1, S2, or both. This experiment was 
conducted by developing CNN-2 models to predict presence 
or absence of stone at section level.

The second experiment was to evaluate the diagnostic 
accuracy of the cascading model for urinary stone detection 
at the patient level. Three models from the above experi-
ment (Random-SB, ImageNet-SB, and GrayNet-SB) were 
assessed in this setup to evaluate overall diagnostic accuracy 
on the patient level. For this, each patient’s entire CT scan 
was passed through the cascade of CNN-1 that identified 
the sections from the top of the kidney to the base of the 
urinary bladder; the identified sections were then presented 
to CNN-2 to detect the presence of a stone on any section 

https://pubs.rsna.org/journal/ai
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phleboliths is presented in Appendix E4 (supplement). Test 
performance of CNN-1 models (Random-SB, ImageNet-SB, 
and GrayNet-SB) for identifying the extent of urinary tract 
were mean of intersection over union of 0.982, 0.985, and 
0.987, respectively.

Evaluation of Model Generalization across Scanners 
(Section-Level Analysis)
The APs for detecting urinary stone by the nine models on 
a per-section level are shown in Figure 3. GrayNet-pretrained 
models showed higher classifier performance with use of test 
data from the same or different scanner. This was significant 
for all iterations except for GrayNet-S2 versus Random-S2 
and GrayNet-S2 versus ImageNet-S2 when S1 was used as the 
test dataset (Table 3). For all test datasets, highest AP was seen 
when training data consisted of images from both scanners, 
irrespective of the method of network initialization. Cross-
scanner testing showed higher AP with training data from S2 
compared with S1.

Evaluation of Diagnostic Accuracy (Patient-Level 
Analysis)
With images from both scanners used as the test cohort at the 
patient level, the AUC (Fig 4) for GrayNet-SB (0.954) was 
higher, but not statistically significantly different, than the 
AUCs for ImageNet-SB (0.936) and Random-SB (0.925). Sen-
sitivity, specificity, accuracy, and negative and positive predic-
tive values are presented in Table 4. Accuracy of GrayNet-SB 
(95%) was higher than that of ImageNet-SB (91%) and Ran-
dom-SB (88%). For smaller (group A) stones, false-negative 

findings for GrayNet-SB, ImageNet-SB, and Random-SB were 
one of 16, three of 16, and five of 16, respectively. All three 
models demonstrated equivalent performance for groups B 
(false-negative, two of 22) and C (false negative, 0 of 12). The 
number of false-negative scans for GrayNet-SB, ImageNet-SB, 
and Random-SB were as follows: for renal stones, one of 41, 
three of 41, and five of 41; for ureteric stones, one of 20, two 
of 20, and two of 20; and for bladder stones, two of six, one 
of six, and one of six, respectively. Twenty-two of 50 patients 
in the test dataset had obstructive uropathy secondary to stone 
disease, and GrayNet-SB identified stones in all 22 patients 
with obstructive uropathy. However, both ImageNet-SB and 
Random-SB had one false-negative scan each. The presence of 
phleboliths did not influence GrayNet-SB.

With GrayNet-SB, the two false-positive examinations 
(Fig 5) were from both S1 and S2. In one examination, CNN 
predicted calcific speck along the bladder wall as stone. This, 
however, was part of focal nodular thickening and cytologically 
proven as transitional cell carcinoma. The second examination 
contained bilateral nephrostomy tubes that were erroneously 
predicted by CNN as “stone.” All three false-negative exam-
inations (Fig 6) were from S1, two had stones smaller than 
5 mm in size, and one had layered stones within a bladder 
diverticulum.

Discussion
In this study, we have developed a cascading CNN model, 
enriched with modality-specific (CT) radiology images, that 
detects stone within the urinary tract at unenhanced abdomi-
nopelvic CT with a high accuracy (AUC, 0.954).

Figure 3: Evaluation of generalization (section-level analysis) for urinary stone detection by convolutional neural networks 1 and 2. 
Models were developed by using different datasets (indicated on x-axis: scanner 1, scanner 2, and both scanners) and used differ-
ent pretrained models: Random (blue), ImageNet (green), and GrayNet (red). In each plot, average precision and 95% confidence 
intervals (represented by error bars) of the nine models are shown when tested on test datasets from, A, scanner 1, B, scanner 2, and, 
C, both scanners. Statistical significance between average precision of GrayNet and ImageNet or Random models are also denoted. 
n.s. = not statistically significantly different, s. = statistically significantly different.

https://pubs.rsna.org/journal/ai
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In the realm of emergency ra-
diology, high sensitivity is neces-
sary and turnaround time or lack 
of resources may pose challenges. 
On a patient level, the current 
model achieved a 94% sensitivity 
and 96% specificity for stone de-
tection where two of three false-
negative examinations comprised 
small-sized stones. On the basis of 
stone location, the performance 
was high for all locations, with 
one scan false-negative for kidney 
and ureter and two scans false-
negative for bladder. Unenhanced 
CT has 96.6% sensitivity and 
94.9% specificity, with superior 
performance of thin-section and 
coronal CT reformats for evalu-
ation of small stones (32–35). 
One false-positive examination in 
our study did have focal tumor-
associated bladder wall thicken-
ing and calcification, which, de-
spite being a “false” scan, would 
warrant radiologist review. Our 
proposed model thus has the po-
tential to accelerate triage in an 
urgent setting, allowing for rapid 
prioritization of examinations for 
review by radiologists and refer-
ring physicians.

In our study, when training 
and test data were from the same 
scanner, the section-level perfor-
mance was similar (AP, 0.87). 
Model generalization improved 
with GrayNet-SB upon using disparate training data (ie, from 
both scanners) in the section-level experiment. In addition, 
models trained with data from both scanners showed a trend for 
better or similar performance than when test and training data 
were from the same scanner. This can be attributed to more im-
ages in the training dataset.

The purpose of performing section-level analysis was to eval-
uate the performance across different scanners and pretrained 
models. A recent investigation by AlBadawy et al (13) found 
reduced model performance (Dice coefficient decreased from 
0.72–0.76 to 0.68) for segmenting brain tumors on MRI with 
cross-institution test datasets. Similar conclusions have also been 
drawn from other modalities (15). The high cross-vendor per-
formance in the current investigation was statistically significant 
for all test scenarios, except with S2-trained models tested on S1 
test datasets. This high cross-vendor performance was obtained 
despite differences in section thickness, acquisition parameters, 
reconstruction techniques, and vendors. Our results can partly 
be attributed to presence of a standardized grayscale calibration 
(Hounsfield units) across CT platforms, unlike in other imaging 

Figure 4: Receiver operating characteristic curves of the three 
models (GrayNet-SB, ImageNet-SB, and Random-SB) for patient-
level analysis. SB = data from both scanners (scanner 1 plus 
scanner 2).

Table 3: Comparison of Model Generalization 

Source of Test Dataset 

Source of Model Development and 
Models Analyzed Scanner 1 Scanner 2 Both Scanners

AP Values
Scanner 1
 GrayNet-S1 0.876 0.773 0.812
 ImageNet-S1 0.815 0.726 0.754
 Random-S1 0.795 0.713 0.712
Scanner 2
 GrayNet-S2 0.871 0.870 0.869
 ImageNet-S2 0.864 0.803 0.809
 Random-S2 0.817 0.736 0.765

Both scanners
 GrayNet-SB 0.904 0.869 0.873

 ImageNet-SB 0.882 0.836 0.839
 Random-SB 0.853 0.814 0.821

Comparison of GrayNet versus ImageNet and Random 
Models (95% CI of AP)

Scanner 1
 GrayNet-S1 vs Random-S1 0.025, 0.197 0.019, 0.100 0.042, 0.114
 GrayNet-S1 vs ImageNet-S1 0.028, 0.136 0.017, 0.076 0.032, 0.086
Scanner 2
 GrayNet-S2 vs Random-S2 −0.057, 0.104* 0.097, 0.172 0.080, 0.150
 GrayNet-S2 vs ImageNet-S2 −0.020, 0.092* 0.040, 0.094 0.041, 0.093
Both scanners
 GrayNet-SB vs Random-SB 0.041, 0.171 0.031, 0.080 0.041, 0.086
 GrayNet-SB vs ImageNet-SB 0.001, 0.082 0.011, 0.053 0.017, 0.053

Note.—Average precision and 95% confidence intervals for different pretrained models. AP = aver-
age precision; CI = confidence interval.
* No significant difference.
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modalities (36). However, Hounsfield unit 
is influenced by tube voltage and may affect 
the performance in CT. Our training data-
set consisted of scans with varying kilovolt-
age peaks. Interestingly, in the current study, 
cross-scanner performance was higher with 
training data from S2 versus S1 (AP, 0.87 vs 
0.77). A possible reason for the higher metric 
is the larger number of training images from 
S2 because thinner sections were used for S2 
(2 mm) compared with S1 (5 mm). Another 
difference, although not specifically evaluated 
in this study, is that images from S2 were virtu-
ally generated from a dual-energy acquisition, 
whereas those from S1 were acquired with a 
single kilovoltage peak.

Our stone dataset is relatively small (,600 cases) and im-
balanced, with approximately 14 times more sections without 
stone than with. Therefore, we created a GrayNet-pretrained 
model, which is an ImageNet-pretrained CNN model en-
riched with CT images labeled according to human anatomy. 
This approach was inspired by the standard medical educa-
tion wherein students learn human anatomy before learning 
pathology. Images in GrayNet vary in terms of acquisition pa-
rameters, window settings, contrast enhancement, and patient 
demographic characteristics. Our results for the patient-level 
experiment show a trend of better performance with use of 
GrayNet-pretrained models in all test scenarios compared with 
the other two pretrained models, irrespective of stone location, 
particularly for smaller stones (,4 mm). The patient-level re-
sults followed the trend of section-level point estimates, and 
a possible cause of its low statistical significance is a small test 
size. Nevertheless, the trend implies that transfer learning with 
medical images such as GrayNet-pretrained models can be an 
effective baseline for biomedical DL applications. Such an ap-
proach has also been applied in other modalities where use of 
modality- and body part–specific training data, in tandem with 
transfer learning from natural images, improved task perfor-
mance and generalization (37). In our study, GrayNet differs 

in that it contains CT images annotated to denote the extent 
of different anatomic regions.

CT is commonly used for renal colic in the ED. Schoenfeld 
et al (38) found that up to 82.6% patients with symptoms of 
renal colic undergo CT. Processes are being studied to reduce 
diagnostic delay and improve patient flow in the ED (39). Stud-
ies have implicated imaging as a prominent cause of longer ED 
length of stay (40). Although a recent publication demonstrated 
that CT interpretation time accounted for only 32% of the CT 
workflow and 9.4% of ED length of stay, the use of initial in-
terpretations may be a reason for the low CT turnaround time 
percentages in Wang et al (6). As use of imaging continues to 
increase, artificial intelligence–assisted workflow may help tri-
age and streamline patients. CNN models such as ours have the 
potential to aid in this task by identifying positive examinations 
to prioritize patient care.

This preliminary, pilot, proof-of-concept study had a few 
limitations. First, the sample size was underpowered, particularly 
for subanalysis according to stone site and size. However, low 
numbers of falsely predicted scans with use of the GrayNet-pre-
trained model indicated an efficient way to streamline CT scans 
for stone detection, irrespective of size, location, obstruction, and 
presence of phleboliths. Future direction would include dedi-
cated analysis for ureteric stones, especially when small, because 

Table 4: Statistical Analysis of Three Models Developed with Datasets from Both Scanners (Patient Level) Depicting 
Diagnostic Accuracy for Stone Detection 

Statistic Random-SB ImageNet-SB GrayNet-SB P Value

Sensitivity 86.0 (43/50) [76.4, 95.6] 90.0 (45/50) [81.7, 98.3] 94.0 (47/50) [87.4, 100] .103* .317†

Specificity 90.0 (45/50) [81.7, 98.3] 92.0 (46/50) [84.5, 99.5] 96.0 (48/50) [90.6, 100] .083* .157†

Positive predictive value 89.6 (43/48) [80.9, 98.2] 91.8 (45/49) [84.1, 99.6] 95.9 (47/49) [90.3, 100] .228* .399†

Negative predictive value 86.5 (45/52) [77.3, 95.8] 90.2 (46/51) [82.1, 98.3] 94.1 (48/51) [87.7, 100] .194* .461†

Accuracy 88.0 (88/100) [81.6, 94.4] 91.0 (91/100) [85.4, 96.6] 95.0 (95/100) [90.7, 99.3] .020* .103†

AUC 0.925 [0.87, 0.97] 0.936 [0.88, 0.98] 0.954 [0.89, 0.99] .253* .221†

Note.—Data are expressed as percentages, with numbers in parentheses the numerators and denominators for each proportional perfor-
mance; numbers in brackets represent 95% confidence intervals for the percentages. AUCs were compared by using Delong method. The 
McNemar test was used to compare sensitivity, specificity, and accuracy. Pearson x2 was used to compare positive and negative predictive 
values. AUC = area under receiver operating characteristic curve.
* P values represent comparison of Random-SB with GrayNet-SB.
† P values represent comparison of ImageNet-SB with GrayNet-SB.

Figure 5: False-positive examination results in two patients. A, Heat map overlaid 
on axial CT image in one patient shows calcific speck within focal nodular thicken-
ing proven as transitional cell carcinoma. B, Heat map in second patient shows 
bilateral nephrostomy tubes predicted as “stone-positive” areas.
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they often pose a problem in a busy practice as a result of partial 
volume averaging, image noise, and mimic vascular calcifica-
tions. Second, the pretraining for development of GrayNet did 
not involve dedicated annotation of ureters, and the cascading 
model was limited to detection. It would be interesting to use 
DL for comprehensive evaluation by comparing prior imaging 
and determining stone volume and composition that would aid 
in guiding management. Training with a larger number of scans 
containing anatomic variants, calyceal and bladder diverticula, 
ureteric stents, and percutaneous nephrolithotomy tubes in this 
scenario would also be clinically relevant. Third, this was a ret-
rospective study, and data for model development were obtained 
on two scanners from a single institution. However, between the 
two scanners, the acquisition parameters and section thickness 
were dissimilar. Prospective validation of the model should be 
pursued to evaluate reproducibility of this work on data from 
different institutions and scanners. Fourth, the Inception-v3 
model used in this study may not be ideal, and performance of 
CNN in the biomedical arena may be enhanced by creating a 
customized neural network architecture.

In conclusion, DL with cascading model of CNNs is feasible 
for accurately detecting urinary tract stones on unenhanced CT 
scans. The performance and generalization of neural networks 
can be enhanced by using transfer learning with datasets en-
riched with medical images.
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