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Purpose:  To determine if weakly supervised learning with surrogate metrics and active transfer learning can hasten clinical deployment 
of deep learning models.

Materials and Methods:  By leveraging Liver Tumor Segmentation (LiTS) challenge 2017 public data (n = 131 studies), natural language 
processing of reports, and an active learning method, a model was trained to segment livers on 239 retrospectively collected portal 
venous phase abdominal CT studies obtained between January 1, 2014, and December 31, 2016. Absolute volume differences be-
tween predicted and originally reported liver volumes were used to guide active learning and assess accuracy. Overall survival based on 
liver volumes predicted by this model (n = 34 patients) versus radiology reports and Model for End-Stage Liver Disease with sodium 
(MELD-Na) scores was assessed. Differences in absolute liver volume were compared by using the paired Student t test, Bland-Altman 
analysis, and intraclass correlation; survival analysis was performed with the Kaplan-Meier method and a Mantel-Cox test.

Results:  Data from patients with poor liver volume prediction (n = 10) with a model trained only with publicly available data were 
incorporated into an active learning method that trained a new model (LiTS data plus over- and underestimated active learning cases 
[LiTS-OU]) that performed significantly better on a held-out institutional test set (absolute volume difference of 231 vs 176 mL, P = 
.0005). In overall survival analysis, predicted liver volumes using the best active learning–trained model (LiTS-OU) were at least com-
parable with liver volumes extracted from radiology reports and MELD-Na scores in predicting survival. 

Conclusion:  Active transfer learning using surrogate metrics facilitated deployment of deep learning models for clinically meaningful 
liver segmentation at a major liver transplant center.
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Liver segmentation has an important role in clinical radi-
ology by aiding presurgical planning in transplant and 

hepatectomy candidates, by guiding dosing for radioem-
bolization of liver tumors, and by tracking liver volume 
in an array of hepatic diseases (1–3). Obtaining liver vol-
umes can be time-intensive, as segmentation typically re-
quires loading studies into third-party software followed 
by nontrivial user interaction (4). To encourage the devel-
opment of computational tools to assist with routine liver 
volumetry and tumor segmentation, there have been two 
major competitions (Liver Tumor Segmentation [LiTS] 
challenge; and Segmentation of the Liver 2007, or SLIV-
ER) to investigate the ability of machine learning models 
to automatically segment livers, as well as tumor lesions in 
LiTS (5,6). In both cases, standard metrics such as the Jac-
card score or Sørensen–Dice (hereafter, Dice) score were 
used to assess the ability of algorithms to segment livers 
compared with that of the reference standard of segmenta-
tion by trained radiologists.

Recent successes at abdominal organ and liver seg-
mentation have relied on deep learning techniques (7,8). 
Most notable of these is the convolutional neural network 

(CNN), which uses a framework analogous to human vi-
sion to automatically learn features associated with a given 
output (7). In the case of segmentation, this output is a 
segmentation mask, and CNN algorithms have achieved 
remarkable results measured by Dice score at several recent 
competitions (9,10). CNNs, however, are exquisitely sen-
sitive to input data, and without appropriate control, are 
even capable of fitting highly accurate models to random 
noise (11). Most deep learning studies with radiologic im-
ages do not validate on external datasets. How well CNNs 
generalize to external data remains an open question, with 
some initial results suggesting active transfer learning tech-
niques are required to ensure they do (12,13). The need for 
expert segmentations across both the internal training set 
and the external dataset further complicates this task.

We investigated the use of liver volumes included in 
clinical radiology reports, assessed with the aid of com-
mercial software at initial interpretation, as a surrogate for 
Dice score to evaluate liver segmentation quality. By using 
this scalable surrogate, we tested the adaptability of a CNN 
trained on the LiTS dataset to imaging from our institution 
with an active learning approach (13,14). By segmenting a 
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sion identifiers and reports were gathered with a retrospective 
query of the Mount Sinai Health System (MSHS) picture ar-
chiving and communication system (PACS) by using software 
(Montage; Nuance Communications, New York, NY). Inclu-
sion criteria included abdominal CT studies from January 1, 
2014, to December 31, 2016, containing the keyword “liver 
volume.” Exclusion criteria constituted studies without total 
liver volume measurements. Demographic and clinical data 
including age, sex, indication for imaging, prior surgeries or 
cancer treatment, comorbidities, laboratory values, and date of 
death or transplantation were obtained by a retrospective elec-
tronic medical record (Epic, Verona, Wis) review in patients 
with multiple imaging studies for the purpose of assessing cor-
relation between predicted liver volume and clinical outcomes.

Routine Liver Segmentation Methods
Liver volumetry plays a critical role in presurgical planning, 
for instance, for determining future liver remnant volume 
before major hepatectomy or portal vein embolization, for 
associating liver partition and portal vein ligation for staged 
hepatectomy procedure, and for living transplantation do-
nors (15). It is also relied on for dosing in radioemboliza-
tion of liver tumors (16). Liver volumes from the MSHS 
were calculated by using third-party segmentation soft-
ware (Vitrea Advanced Visualizations; Vital Images, Min-
netonka, Minn) that allows radiologists to delineate liver 
surface boundaries on evenly spaced key axial images. Au-
tomatic interpolation between axial images generates a re-
finable preliminary volume. However, these segmentations 
are not stored in PACS and were therefore not available for 
active learning. Liver segmentation in active learning pa-
tients (n = 10) was performed as part of this study by using 
3D Slicer (https://www.slicer.org/) and its GrowCut feature 
(17). On various evenly spaced key axial and sagittal images, 
on- and off-target regions were manually labeled before ini-
tiation of the GrowCut algorithm. Resulting preliminary 
volumes were smoothed by using a Gaussian filter (Fig E1 

[supplement]).

Natural Language Processing, Preprocessing, and 
Computer Vision Pipelines
Natural language processing (NLP)–based liver volume ex-
traction was performed with Python programming language 
(https://www.python.org/). Exported radiology reports were 
manually reviewed to identify how liver volume measure-
ments were described. A collection of regular expressions 
was designed and iteratively refined to automatically extract 
liver volume measurements from reports. This yielded vol-
umes for 270 of 283 reports, a selection of which was ran-
domly reviewed to confirm the correct term was extracted 
representing total liver volume. The remaining 13 reports 
were reviewed and determined to lack volume measure-
ments. These volumes were found subsequently by match-
ing unique study identifiers to their corresponding imaging 
studies. Of the 270 imaging studies with NLP-extracted 
liver volumes, portal venous phase CT series were success-
fully extracted from 249 (92%). Images from our MSHS 

small subset of institutional data to include in CNN training, we 
hypothesized predictions would improve globally for institutional 
imaging. We concluded by using the adapted CNN for segmenta-
tion in a series of patients from our institution and correlated the 
automated, serial liver volume measurements with Model for End-
Stage Liver Disease (MELD) score and outcomes to demonstrate 
potential for clinical translation.

Materials and Methods

Imaging Studies

LiTS challenge.—The LiTS dataset is composed of 131 CT 
studies with manual liver and tumor segmentations in pa-
tients with known liver lesions composed of either metastatic 
disease or primary hepatocellular carcinoma. Data were col-
lected from six different institutions with heterogeneous ac-
quisition parameters and liver segmentation techniques. A 
more detailed selection criteria is discussed in Appendix E1 
(supplement).

Institutional data from Mount Sinai Health System.—All rel-
evant ethical regulations were followed as part of image col-
lection for this cross-sectional study at a high-volume liver 
transplantation center. This study was part of an institutional 
review board–approved computer vision initiative within the 
radiology department and part of our institution’s AI Consor-
tium. The institutional review board granted a consent waiver 
for retrospective imaging data. This study is Health Insurance 
Portability and Accountability Act compliant. Study acces-

Abbreviations
CI = confidence interval, CNN = convolutional neural network, LiTS 
= Liver Tumor Segmentation, LiTS-O = LiTS plus overestimated active 
learning cases trained, LiTS-OU = LiTS plus over- and underestimated 
active learning cases trained, LiTS-U = LiTS plus underestimated 
active learning cases trained, MELD = Model for End-Stage Liver 
Disease, MELD-Na = Model for End-Stage Liver Disease with sodium, 
MSHS = Mount Sinai Health System, NLP = natural language pro-
cessing, PACS = picture archiving and communication system

Summary
Surrogate metrics and active transfer learning can facilitate the de-
ployment and validation of deep learning–based segmentation meth-
ods on clinical datasets.

Key Points
nn By leveraging Liver Tumor Segmentation challenge 2017 public 

data, natural language processing of radiology reports, and an ac-
tive learning method, a model was trained to segment livers on 
239 retrospective portal venous phase abdominal CT studies in 
187 patients.

nn Two newly created active learning datasets (Liver Tumor 
Segmentation plus overestimated cases and Liver Tumor 
Segmentation plus both over- and underestimated cases) per-
formed significantly better on a held-out institutional test set than 
did the Liver Tumor Segmentation–only trained model.

nn Predicted liver volumes using the best active learning–trained 
model (Liver Tumor Segmentation plus both over- and underesti-
mated cases) were at least comparable with liver volumes extracted 
from radiology reports and Model for End-Stage Liver Disease 
with sodium scores in predicting survival.

https://pubs.rsna.org/journal/ai
https://www.slicer.org/
https://www.python.org/
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Figure 2:  Training models using active learning. Four liver segmentation models were trained using 
a 3D U-Net convolutional neural network. After training with, A, only Liver Tumor Segmentation (LiTS) 
CT data, Mount Sinai Health System (MSHS) test cases that overestimated or underestimated liver 
volume compared with standard volumetry measurements were then segmented manually and added 
to the LiTS dataset to produce three new active learning training datasets with the following inclusions: 
B, six copies of five overestimated cases, C, six copies of five underestimated cases, and, D, six cop-
ies of both sets of five over- and underestimated cases. All data were sorted randomly before training, 
then tested on an MSHS hold-out dataset excluding cases used for active learning. LiTS-O = LiTS plus 
overestimated active learning cases trained, LiTS-OU = LiTS plus over- and underestimated active 
learning cases trained, LiTS-U = LiTS plus underestimated active learning cases trained.

Figure 1:  Predicted liver volumes without active learning in a Liver Tumor Segmentation (LiTS)–
only trained three-dimensional model. Representative (first and third columns) axial and (second 
and fourth columns) coronal images for standard liver volumetry and LiTS-only trained prediction 
model where liver volumes are concordant, overestimated, and underestimated. 

active learning training sets were then used to create new 
weights for our 3D U-Net model. Studies used for active 
learning were removed from the test set. Only seven stud-
ies from patients with a study used for active learning re-
mained. By using differences between predicted and liver 
volumes from radiology reports as a surrogate metric, we 
were able to easily select outlier cases for active learning. 
This iterative active learning approach has led to improved 
results with increased data efficiency in several computer vi-
sion trials (19–21).

PACS and the LiTS dataset (n 
= 131) were then preprocessed 
using a standard pipeline (see 
Appendix E1 [supplement] for 
details) yielding 128 × 128 × 
128 image arrays per patient. 
A well-described 3D U-Net (8) 
with four resolution steps and 
skip connections at identical 
resolution layers was used for 
each training with an 80/20 
training/validation split.

Active Learning Set 
Creation
For the active transfer learning 
approach, a two-step training 
process was used. First, our 3D 
U-Net model was trained us-
ing images and segmentations 
available in the LiTS dataset 
and then was used for inference 
on the MSHS dataset. Model-
predicted liver volumes were 
compared with NLP-extracted 
liver volumes from radiologist 
reports (Fig 1). Five patients 
with the greatest positive and 
negative differences between 
predicted and measured liver 
volumes were selected. These 
groups demonstrated dis-
crepancy relative to the mean 
cohort volume difference be-
tween predicted and measured 
volumes of 4025 mL/45 mL 
(8944%) and −1190 mL/45mL 
(2644%), respectively, which 
suggests critical feature dif-
ferences exist between MSHS 
and LiTS populations not ac-
counted for in the LiTS-only 
trained CNN. These 10 CT 
studies were annotated by us-
ing the semiautomated Grow-
Cut method from Slicer 3D 
(18) and replicated six times to 
enable creation of active learn-
ing sets. Next, active learning sets were combined with the 
original LiTS dataset to create three new additional train-
ing sets (Fig 2). Six identical copies of each active learning 
image were made to sufficiently weight our model toward 
accommodating these outliers sufficiently relative to re-
maining LiTS data. Three new active datasets were as fol-
lows: LiTS plus overestimated active learning cases trained 
(LiTS-O), LiTS plus underestimated active learning cases 
trained (LiTS-U), and LiTS plus both over- and underesti-
mated active learning cases trained (LiTS-OU). These new 

https://pubs.rsna.org/journal/ai
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Clinical Applicability of Active Learning for Liver 
Volume Prediction
To investigate clinical applicability of our active learning–based 
model for liver volume prediction, average liver volumes nor-
malized to ideal body weight (calculated by using the Devine 
formula [22]) from the best performing active learning model, 
LiTS-OU, and NLP-extracted liver volumes were calculated 
along with the MELD with sodium (MELD-Na) scores. In-
clusion criteria included patients with more than one imag-
ing study from the MSHS dataset. Patients were excluded if 
they had a history of hepatectomy or living donor transplant 
or if they had local-regional interventions after the initial scan. 
Major events were defined as time to death or transplantation. 
Date of last available clinic note in the absence of a major event 
was used for censorship.

Statistical Analysis
Statistical analysis was performed with Prism 7 software 
(GraphPad Software, La Jolla, Calif ). Differences in absolute 
liver volume between active learning prediction models and 
those extracted from radiology reports were compared with the 
paired Student t test, intraclass correlation, and Bland-Altman 
analysis. Differences in Dice score distributions were assessed 
by using the Student t test. Model comparison was assessed by 
using two-way analysis of variance tests. Survival analysis was 
performed by using the Kaplan-Meier method and a Mantel-
Cox test for significance. A P value less than .05 indicated a 
statistically significant difference.

Results

Imaging Studies
After retrospective collection, the MSHS test dataset contained 
239 studies from 187 patients after removing images that were 
used as active learning training sets. Within the MSHS test set, 
the average age was 59.3 years (age range, 30–82 years) and 
94 studies (39%) were in women. Indications for imaging in-
cluded 143 (60%) cases of cirrhosis, 135 (57%) pretransplant 
evaluations, 79 (33%) hepatocellular carcinomas, eight (3.4%) 
hepatobiliary surgery evaluations, and 16 (6.7%) living liver 
donor evaluations (Table 1).

Active Learning Improves Performance
Liver volumes for overestimated and underestimated outliers 
that were used for active learning training had average differ-
ences with NLP-extracted volumes of 1983 mL ± 797 and 
−508 mL ± 76, respectively, with representative cases shown 
in Figure 2. After training with added active learning sets, Dice 
scores on the LiTS validation dataset decreased from 0.903 for 
LiTS-only to 0.866 for LiTS-U, 0.841 for LiTS-O, and 0.812 
for LiTS-OU (Table 2) (P < .0001), which reflects the shift in 
CT variation away from the LiTS dataset alone.

By contrast, in the MSHS hold-out test set (n = 239) using 
our surrogate performance metric (absolute volume difference 
between NLP-extracted and model-predicted liver volumes), 
there was a significant difference between the LiTS-only trained 
model (231 mL ± 14) and LiTS-O (183 mL ± 12, P = .0018) 

and LiTS-OU (176 mL ± 11, P = .0005) and a trend toward 
improvement for LiTS-U (216 mL ± 16) (Fig 3). Improved per-
formance of active learning compared with the LiTS-only model 
was also demonstrated with intraclass correlation analysis with 
coefficients of 0.87 (95% confidence interval [CI]: 0.82, 0.90), 
0.83 (95% CI: 0.78, 0.86), and 0.88 (95% CI: 0.82, 0.92) for 
LiTS-O, LiTS-U, and LiTS-OU, respectively. Visualized Bland-
Altman plots (Fig 4) of percentage volume difference between 
NLP-extracted and model-predicted volumes demonstrated 
fewer overall overestimated cases for the active learning trained 
models, in particular for LiTS-O and LiTS-OU models.

NLP-derived Liver Volumes as Surrogate Metric to 
Guide Active Learning
Use of NLP-extracted volumes to provide a surrogate metric 
for guiding our active learning method relies on its ability to 
recapitulate the Dice loss function value that compares pre-
dicted and ground-truth segmentations during training. When 
examining predicted absolute volume difference values and 
Dice values across all models in segmented outlier patients (n = 
10), there was a clear inverse correlation with average absolute 
volume differences of 1185 mL, 1059 mL, 292 mL, and 211 
mL (F = 6.98, P = .023) and Dice values of 0.61, 0.70, 0.78, 
and 0.85 (F = 8.54, P = .006) for LiTS-only, LiTS-U, LiTS-O, 
and LiTS-OU models, respectively (Fig 5a). Pearson correla-
tion of absolute volume difference and Dice values across all 
models in segmented outlier patients (n = 40) was strong (R2 = 
0.67, P < .0001) (Fig 5b).

Table 1: Demographic Data of Mount Sinai Health 
System Abdominal CT Studies with Known Standard 
Liver Volumetry Values

Parameter Value

Patients (n = 187)
  Mean age (y) 59.3 (30–82)*
  More than one scan 36 (19)
Scans (n = 239)
  No. of female patients 94 (39)
  Pretransplantation 135 (57)
  Posttransplantation 33 (14)
  Hepatocellular carcinoma 79 (33)
  Cirrhosis 143 (60)
  Nonalcoholic steatohepatitis 28 (12)
  Ethanol 47 (20)
  Hepatitis C virus 46 (19)
  Hepatobiliary surgery 8 (3.3)
  Donor 16 (6.7)

Note.—Unless otherwise indicated, data are numbers, with 
percentages in parentheses. Using commercial software (Mon-
tage) and natural language processing methods, standard liver 
volumetry values were extracted from 249 study reports among 
187 patients, then used as a surrogate marker for a Dice score 
to guide active learning set creation for model training. Patient 
diagnoses are representative of a high-volume liver transplant 
center. 
*Age range is in parentheses. 

https://pubs.rsna.org/journal/ai
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Figure 3:  Liver volume prediction using active learning training 
models. Graph shows absolute difference (95% confidence interval 
[CI]) in liver volume prediction relative to standard volumetry in a 
239 portal venous abdominal CT image test set. Liver Tumor Seg-
mentation (LiTS)–only trained (131 labeled portal venous abdominal 
CT images) model achieved a mean 231 mL (95% CI: 202, 260) 
absolute volume difference. Top five overestimated and underesti-
mated cases were then selected, annotated, and used as LiTS plus 
overestimated active learning cases trained (LiTS-O) and LiTS plus 
underestimated active learning cases trained (LiTS-U) active learning 
sets, respectively. Both sets of five over- and underestimated cases 
were used for the LiTS plus over- and underestimated active learning 
cases trained (LiTS-OU) dataset. LiTS-O, LiTS-U, and LiTS-OU dem-
onstrated improved absolute volume differences of 183 mL (95% 
CI: 160, 206), 216 mL (95% CI: 186, 247), and 176 mL (95% 
CI: 154,198), respectively. There was a significant improvement 
between LiTS and the LiTS-O (P = .0018) and LiTS-OU (P = .0005) 
models. cc = milliliters.

Automated Liver Volume Assessments Predict 
Clinical Outcomes
Thirty-four (18%) patients from the MSHS dataset had un-
dergone serial imaging and met inclusion criteria for survival 
analysis (Fig E2 [supplement]). Average liver volumes for each 
patient was calculated over an average of 11.6 months (range, 
1.8–31.5 months) including a mean of 2.5 scans (two to five 
scans) per patient. Included among these diagnoses were he-
patocellular carcinoma in eight (24%), cirrhosis in 24 (71%), 
and nonalcoholic steatohepatitis in five (15%) patients. The 

median liver volume was 1584 mL (range, 591–3194 mL). 
Patients were stratified according to being over or under the 
median liver volume per ideal body weight, calculated with the 
Devine formula, for predicted and manual segmentations, and 
also according to MELD-Na score for survival analysis. For pa-
tients with an average predicted liver volume per ideal body 
weight below the median, there was a significantly elevated 
event occurrence rate (odds ratio = 4.15; 95% CI: 1.1, 15.7; P 
= .036) (Fig 6). Notably, average MELD score across this time 
was not associated with a difference in event occurrence (odds 
ratio = 1.27; 95% CI: 0.34, 4.70; P = .724). There was a higher 
event occurrence in patients with average manual liver volume 
per ideal body weight below the median, but this did not rise 
to the level of statistical significance (odds ratio = 2.96; 95% 
CI: 0.80, 11.0; P = .104).

Discussion
We found that NLP-extracted liver volumes from the radiology 
report could be used to create a surrogate metric for assess-
ing segmentation performance instead of Dice scores. These 
volumes, measured by using a heuristic technique as part of 
the standard practice of care for patients with hepatic disease 
undergoing abdominal imaging at our institution, provided a 
scalable alternative to measuring Dice score from manual seg-
mentations. By using this surrogate loss, we were able to iden-
tify institutional images with poorly predicted liver volumes 
that could be used for model training with an active learning 
method. This demonstrated significantly improved perfor-
mance of our model, and in serial volume measurements using 
this model, we were able to show how liver volumes predicted by 
our model were comparable with radiologist-reported volumes 
in showing an association between decreased liver volumes and 
diminished overall survival. We selected those with multiple 
studies, as repeated segmentation is particularly tedious, yet 
also the most valuable for these patients, and represent a best 
use case group. Indeed, liver volumes are a known prognostic 
indicator and are crucial for surveillance of patients awaiting 
liver transplant (1,2,23). Our development of an automated 
method of assessing liver volume is a step toward making liver 
volume a standard metric for abdominal imaging. Just as hepa-

Table 2: Summary Statistics of Trained Liver Volume Prediction Models

Training Model
Total Training  

Set Size
No. of Unique Active 

Learning Studies
No. of Total Active 
Learning Studies

Validation* Set  
Dice Score

Absolute Volume  
Difference (mL)†

LiTS 104 0 0 0.903 231 ± 14
LiTS-O 134 5 30 0.841 183 ± 12
LiTS-U 134 5 30 0.866 216 ± 16
LiTS-OU 164 10 60 0.812 176 ± 11

Note.—Summary of Dice scores for four training models in over- and underestimated cases used for active learning and in a subset of LiTS 
data that was used for tuning during model training. Summary of absolute liver volume differences across training models between pre-
dicted and standard liver volumetry values in the Mount Sinai Health System test set, with interquartile range and percentage of successful 
segmentations defined as predictions where absolute percentage of liver volume difference is less than 10%. LiTS = Liver Tumor Segmenta-
tion challenge data; LiTS-O = LiTS plus overestimated active learning cases trained; LiTS-U = LiTS plus underestimated active learning 
cases trained; LiTS-OU = LiTS plus over- and underestimated active learning cases trained.
* Validation performed exclusively on LiTS data.
† Data are means ± standard error.

https://pubs.rsna.org/journal/ai
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Figure 4:  Bland-Altman plots across active learning training models. Bland-Altman analysis was cal-
culated across all training models on the Mount Sinai Health System test set (n = 239) and excluded 
any training images. For, A, Liver Tumor Segmentation (LiTS), B, LiTS plus overestimated active learning 
cases trained (LiTS-O), C, LiTS plus underestimated active learning cases trained (LiTS-U), and, D, LiTS plus 
over- and underestimated active learning cases trained (LiTS-OU) datasets, intraclass correlation was 0.81 
(95% confidence interval [CI]: 0.74, 0.86), 0.87 (95% CI: 0.82, 0.90), 0.83 (95% CI: 0.78, 0.86), and 
0.88 (95% CI: 0.82, 0.92), respectively. cc = milliliters.

tomegaly is a routine part of 
the physical examination, au-
tomated liver volumetry could 
be a standard parameter that is 
calculated in patients and used 
for surveillance and screening 
purposes. Even after a model 
has been trained, testing CNN 
segmentation by measuring 
Dice score or Jaccard metric 
requires further expert seg-
mentations that can take up 
to 5–10 minutes, which makes 
the present system valuable for 
the purposes of routine quality 
control (23). By demonstrat-
ing the feasibility of assessing 
segmentation quality by using 
volume alone, we showed that 
developing machine learning 
approaches for clinical applica-
tions can become less resource 
intensive.

To improve on our results, 
which are dependent on train-
ing on a publicly available data-
set, LiTS, by testing on images 
from our local institution, we 
implemented an active learn-
ing–based scheme whereby we 
selected edge cases, manually segmented them, and included 
them in our training set. This strategy of including hard cases, 
often referred to as active learning, has been shown to improve 
data efficiency in nonmedical cases (21). Because of our inclu-
sion of cases from our local institution into the training set, this 
inclusion of out-of-sample data also served as a form of transfer 
learning similar to Ghafoorian et al (14), although rather than 
fine-tuning on the new domain, we incorporated it directly into 
our training set. Our results showed significant gains in predic-
tive accuracy and demonstrate how few active learning cases can 
lead to meaningful adaptation.

An interesting point of consideration becomes the suscepti-
bility of such models in production to the concept of drift be-
cause of the initial training happening on a fixed set of segmen-
tations while ongoing evaluation is performed with surrogate 
metrics. While the anatomic boundaries of the liver are relatively 
consistent across individual patients, changes in patient popula-
tion over time can lead to a shift in the underlying distribution 
of liver features across populations with deep learning models 
being particularly susceptible to differences in populations (24). 
To properly handle this, it is our belief that such models will 
require serial retraining or fine-tuning on new fully segmented 
cases to reflect the current clinical population. The timing and 
necessity of this remain open and are interesting avenues for fur-
ther research.

There were several limitations worth mentioning. Our 
ground-truth assessment for segmentation of MSHS data was 
routinely recorded liver volumes extracted by simple NLP from 

radiology reports. As is common at most institutions, raw seg-
mentation labels were not stored and would have served as 
ideal reference standards for performance. These volumes were 
also obtained by a wide range of individuals, across a variety of 
pathologic conditions, and used volume averaging across several 
sections, all but guaranteeing a certain degree of deviation from 
the underlying liver volume. Ground-truth LiTS segmentations 
were similarly performed by a number of individuals and are 
only estimates of true liver volume. We note that one of the ad-
vantages of this, however, is that we were able to report real-
world results of how well our research model translated into 
practice at our present institution—and did so in a way that we 
easily assessed by using the NLP-extracted volumes. We analyzed 
only the adaptability of a liver segmentation model trained on 
the LiTS dataset to our own local institution. It is possible that 
other institutions could have different acquisition protocols that 
require extensive adaptation of LiTS-trained models.

One of the most substantial barriers toward developing deep 
learning–based techniques for use in clinical practice is the need 
for manually segmented ground-truth data to assess how well 
techniques generalize to a given practice. Our experience devel-
oping an automated liver volumetry tool for use at our MSHS 
demonstrated that NLP-extracted liver volumes are a viable sur-
rogate for out-of-sample Dice and allowed implementation of a 
simple active learning method that led to significantly improved 
liver volume prediction that could predict overall survival in a 
group of patients with advanced liver disease at a major tertiary 
care medical center.

https://pubs.rsna.org/journal/ai
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