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Purpose: To determine the feasibility of using deep learning with a multiview approach, similar to how a human radiologist reviews 
multiple images, for binomial classification of acute pediatric elbow radiographic abnormalities.

Materials and Methods: A total of 21 456 radiographic studies containing 58 817 images of the elbow and associated radiology reports 
over the course of a 4-year period from January 2014 through December 2017 at a dedicated children’s hospital were retrospectively 
retrieved. Mean age was 7.2 years, and 43% were female patients. The studies were binomially classified, based on the reports, as either 
positive or negative for acute or subacute traumatic abnormality. The studies were randomly divided into a training set containing 
20 350 studies and a validation set containing the remaining 1106 studies. A multiview approach was used for the model by combining 
both a convolutional neural network and recurrent neural network to interpret an entire series of three radiographs together. Sensitivity, 
specificity, positive predictive value, negative predictive value, area under the receiver operating characteristic curve (AUC), and their 
95% confidence intervals were calculated. 

Results:  AUC was 0.95, and accuracy was 88% for the model on the studied dataset. Sensitivity for the model was 91% (536 of 590), 
while the specificity for the model was 84% (434 of 516). Of 241 supracondylar fractures, one was missed. Of 88 lateral condylar frac-
tures, one was missed. Of 77 elbow effusions without fracture, 15 were missed. Of 184 other abnormalities, 37 were missed.

Conclusion: Deep learning can effectively classify acute and nonacute pediatric elbow abnormalities on radiographs in the setting of 
trauma. A recurrent neural network was used to classify an entire radiographic series, arrive at a decision based on all views, and iden-
tify fractures in pediatric patients with variable skeletal immaturity.

Supplemental material is available for this article.
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Pediatric elbow radiographs are diagnostically challeng-
ing compared with those of adult elbows because of the 

presence of ossification centers, unossified cartilage, and 
fracture patterns that change based on skeletal matura-
tion (1). The complexity of these findings is further com-
pounded by normal developmental variants, presenting 
an increased challenge for nonpediatric radiologists and 
nonradiologists who are often the first clinicians to review 
radiographs after trauma (2). In high-volume emergency 
departments or urgent care centers without trained on-site 
pediatric radiologists, there is a strong need for quick and 
correct triage of the patient for either orthopedic evalua-
tion or discharge (3). Binomial identification of elbow ab-
normality has the potential to simplify point-of-care triage 
in settings lacking immediate access to a trained pediatric 
radiologist.

Recently, convolutional neural networks (CNNs) have 
been shown to be successful in radiologic image classifi-
cation (4–7), as well as with various applications in auto-
mated detection of findings, image quality analytics, image 
segmentation, and postprocessing (8). Use of CNNs in the 

triage of radiologic studies has been suggested (8,9), but 
few studies have in fact studied their feasibility for such 
a task (10). To our knowledge, no studies to date have 
experimented with CNN application in pediatric elbow 
examinations and tested the ability for differentiating ab-
normalities from normal growth centers.

The purpose of our study was to determine the feasi-
bility of using deep learning with a multiview approach, 
similar to how radiologists review multiple images, for bi-
nomial classification of acute pediatric elbow radiographic 
abnormalities.

Materials and Methods

Dataset Generation
All studies were conducted under a protocol approved 
by the institutional review board. This study was Health 
Insurance Portability and Accountability Act compliant. 
We retrospectively reviewed 21 456 anonymized pediat-
ric elbow studies spanning a 4-year period from January 
2014 through December 2017 at a tertiary care children’s 

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Binomial Classification of Pediatric Elbow Fractures 
Using a Deep Learning Multiview Approach 
Emulating Radiologist Decision Making

Jesse C. Rayan, MD1 • Nakul Reddy, MD2 • J. Herman Kan, MD • Wei Zhang, PhD • Ananth Annapragada, PhD

From E.B. Singleton Department of Pediatric Radiology (J.C.R., N.R., J.H.K., A.A.) and Outcomes and Impact Services (W.Z.), Texas Children’s Hospital, Baylor College 
of Medicine, 6701 Fannin St, Suite 470, Houston, TX 77030. Received July 29, 2018; revision requested September 17; revision received November 8; accepted December 
21. Address correspondence to J.C.R. (e-mail: jcrayan@gmail.com).

Current addresses:
1Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Boston, Mass
2Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Tex
Conflicts of interest are listed at the end of this article.

Radiology: Artificial Intelligence  2019; 1(1):e180015 • https://doi.org/10.1148/ryai.2019180015 • Content codes:   



2 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 1: Number 1—2019

Binomial Classification of Pediatric Elbow Fractures

center. Demographic data were not readily available for the 
studies in 2014. Mean age for the group from January 2015 
through December 2017 was 7.2 years (age range, 0–85 years; 
99.3% were younger than age 18). This group comprised 
17 909 studies, of which 9630 (57%) were in male patients 
and 8279 (43%) were in female patients. The 21 456 studies 
contained 58 817 images (ie, two to three images per study de-
fined as a minimum of anteroposterior and lateral views, with 
possible oblique view). We used the fastText algorithm (11) 
(Appendix E1 [supplement]) to categorize in a binary fashion 
the 21 456 studies according to the text of the official radiology 
report generated by certificate of added qualification pediatric 
radiologists. Examples of positive and negative reports are pro-
vided in Table 1.

Validation Set Generation
We selected 516 normal and 590 abnormal studies, encompass-
ing a total of 3096 images at random from our dataset, and made 
this our validation (test) set. This represented 5% of our entire 
dataset. Two senior radiology residents (J.C.R. and N.R.) then 
reviewed these images for integrity. This validation set was never 
provided to the model during training phases. In addition, a 
senior pediatric musculoskeletal radiologist (J.H.K.) reviewed 
14 equivocal reports in the validation set at a standard picture 
archiving and communication system workstation to classify 
as either an acute or not acute abnormality. Equivocality was 
determined as reports where “possible,” “indeterminate,” and 
synonyms thereof were used as qualifiers for positive findings. 
Of the 590 positive studies, 241 were supracondylar fractures 
and 88 were lateral condylar fractures; the remaining fracture 
patterns or relevant acute abnormalities are specified in Table 2.

Training Set Generation
The remaining 20 350 cases served as the training dataset, of 
which 4966 cases were considered negative and 15 384 cases 
were considered positive for acute or subacute abnormality. 
Equivocality was not assessed in these reports.

Abbreviations
AUC = area under the receiver operating characteristic curve, CNN 
= convolutional neural network, GRU = gated recurrent unit 

Summary
Deep learning using a multiview approach combining a recurrent 
neural network and a convolutional neural network can distinguish 
elbow abnormality from normal growth centers of the pediatric 
elbow and emulates a radiologist’s method of binomial decision mak-
ing when presented with multiple images.

Key Points
 n A convolutional neural network and a recurrent neural network 

were used in conjunction to interpret an entire series of three ra-
diographs together.

 n This multiview approach to deep learning can effectively classify a 
pediatric elbow radiograph series with an accuracy rate of 88%.

 n Fractures were successfully identified with deep learning in skel-
etally immature patients with open growth plates, and these open 
growth plates were distinguished from true abnormality.

Table 1: Elbow Report Classification Examples

Classification Sample Report Impression

No acute abnormality (negative)
 Normal with or without soft-

tissue abnormality
Overlying cast. No fracture. 

Normal joint alignment. 
Soft-tissue swelling.

 Remote fracture Remote supracondylar frac-
ture with mild residual 
deformity. No acute 
fracture.

 Other (osteochondroma, etc) No acute fracture. Chronic 
radial head subluxation. 
Radioulnar synostosis.

Acute or subacute abnormality 
(positive)

 Elbow joint effusion Elbow joint effusion. Oc-
cult supracondylar type 1 
fracture is not excluded.

 Fracture (acute or subacute) Gartland type 2 supracon-
dylar fracture.

Table 2: Multiview Convolutional Neural Network 
Identification of Specific Pediatric Elbow Abnormality

Abnormality
Total No.  
of Studies

No. of  
Missed (False-
Negative) 
Studies

No. of  
Identified 
(True-Positive) 
Studies*

Supracondylar 
fracture

241 1 240 (99.6)

Lateral condylar 
fracture

88 1 87 (98.9)

Effusion without 
fracture

77 15 62 (80.5)

Proximal ulna 
fracture

54 12 42 (77.8)

Proximal radius 
fracture

78 13 65 (83.3)

  Radial neck   
  fracture

63 8 55

  Radial head  
  fracture

8 2 6

  Radial  
  diaphysis  
  fracture

7 3 4

Medial epicondyle 
avulsion

21 5 16 (76.2)

Osteochondral 
lesion

2 2 0 (0)

Miscellaneous or 
complex  
condition

29 5 24 (82.8)

Total 590 54 536

* Data in parentheses are percentages. 
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Figure 1: Phase 1 of training involved training the convolutional neural network 
(CNN). Single images were provided at random from the training set, with the 
ground truth for the image represented by the corresponding report from its respec-
tive radiographic series.

Figure 2: Phase 2 of training, which represents the final model that was ultimately used to pro-
duce results from the validation set. The use of a recurrent neural network (RNN) with the gated 
recurrent unit (GRU) allows the three radiographs to be processed in series prior to the final out-
put of whether the study is positive or negative for abnormality. The results from this model were 
reported and analyzed in the results section. CNN = convolutional neural network.

optimizer was initialized to 0.001 and was reduced by 90% if 
the loss did not reduce over the course of 10 epochs to a mini-
mum of 0.00001 (two reductions in total).

Phase 2 of Training
For the second phase of training, we used the trained CNN 
(vision model) as a high-level feature extractor within a larger 
model (Fig 2) encompassing a recurrent neural network. Pa-
rameters for the trained CNN were locked during this phase 
of training. A 512-unit dense fully connected layer served as 
the bridge between the CNN and the 512-unit gated recur-
rent unit (GRU) (17). The GRU was followed by a two-unit 
dense layer that output floating point values. This model 
processed three images in series and made its decision only 
after viewing all three images. In studies in which only two 

Images were preprocessed and underwent data augmentation 
as specified in Appendix E1 (supplement).

Phase 1 of Training
We performed training in a two-phase fashion. For phase 1, as 
the image classifier, we modified the Xception (12) architec-
ture to accept single-channel gray-scale input. This model was 
trained without pretrained weights. We refer to this as the vi-
sion model (Fig 1), to distinguish it from the final model used 
in phase 2. We modified the input dimensions of the vision 
model to be 500 × 500 × 1 (as represented by single-channel 
floating point values in the range of 0 to 1).

After the final feature extraction layer of our model with adap-
tive global average pooling, where high-level image features are 
extracted upon forward pass through the model, we added a two-
unit dense layer, following a scaled exponential 
linear units activation function (13). Activation 
functions such as scaled exponential linear units 
provide the nonlinearity necessary for our mod-
el’s artificial neuron layers and are analogous to 
thresholding of synapses in the biological neu-
ron where a neuron only fires after meeting a 
certain amount of activation (14).

Loss is defined as the amount of error the 
model generates. The model starts off training 
with a high loss value, and accuracy at the start 
is no better than random chance (50%). Op-
timizers such as Adam (name based on adap-
tive moment estimation) (15) are commonly 
used to reduce the loss of a neural 
network by slowly changing the 
weights (parameters) of the net-
work toward a minimum. The en-
tire process of training can there-
fore be thought of as a process 
of loss optimization. Our model 
specifically optimized a cross-
entropy loss with the AMSGrad 
variant of the Adam optimizer 
(16). Cross-entropy is a way to 
define the error between multiple 
categories and the ground truth 
(14), and in our case, represented 
the model’s confidence that a par-
ticular image is either positive or 
negative and whether the study 
was actually positive or negative.

With the definition of a single 
epoch as one pass through the 
number of studies in the training 
set (20 350 studies), the model 
was trained for 100 epochs, with 
the best model from the entire 
training run chosen to be used in 
phase 2. In this study, the lowest 
validation loss occurred at ep-
och 83. The learning rate of the 
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respectively; specifically, of the 13 radius fractures, eight were 
radial neck fractures.

Examples of false-negative studies below diagnostic resolu-
tion (eg, nondisplaced radial neck fractures) and rare abnormali-
ties underrepresented in the dataset (eg, osteochondral lesions) 
are shown in Figure 6.

There were a total of 82 false-positive studies representing 
7.4% of cases. An example of a false-positive study related to 
suboptimal patient positioning is shown in Figure 7.

Discussion
We demonstrated that a deep learning model trained on a ro-
bust elbow dataset exhibits an AUC of 0.95 and an accuracy 
of 88% in identifying acute elbow abnormality in the pedi-
atric population at our institution. Our model achieved both 
a relatively high sensitivity and specificity at this task. To our 
knowledge, this study is the first to present use of a recurrent 

images were present, one of two views 
was randomly chosen as padding with 
separate data augmentation.

We interpreted the output values 
of the model after passing it through a 
softmax layer (14) (Appendix E1 [sup-
plement]) by examining the scores in 
the positive category. We accordingly 
used a simple scoring system where val-
ues in the range of 0.0 to 0.5 were de-
fined as normal, and values in the range 
of 0.5 to 1.0 were defined as abnormal. 
Values in the range of 0.25 to 0.75 were 
considered low confidence, and those 
outside this range as high confidence. The distribution of 
output probabilities from the training and validation sets 
are presented in Appendix E1 (supplement) for reference.

Statistical Analysis
We evaluated the performance of the classification algo-
rithm on the validation set by calculating the sensitivity, 
specificity, positive predictive value, negative predictive 
value, and area under the receiver operating characteristic 
curve (AUC), as well as their 95% confidence intervals.

Results
The time to curate the training set was approximately 16 
person-hours. Training time for phase 1 on the graphics 
processing unit was approximately 96 hours trained from 
randomly initialized weights. Training time for phase 2 on 
the graphics processing unit was approximately 37 hours. 
Evaluation time for the entire validation set of 1106 stud-
ies (3906 images) took approximately 66 seconds, with 
average inference speed of 21 milliseconds per image and 
63 milliseconds per study.

The sensitivity, specificity, positive predictive value, neg-
ative predictive value, and their 95% confidence intervals 
for the validation set are detailed in Figure 3. The AUC is 
shown in Figure 4.

There were a total of 54 false-negative studies, represent-
ing 4.9% of cases. Retrospective review of these false-negative 
studies was performed, with breakdown and further subcategori-
zation of false-negative studies detailed in Table 2.

After appropriate manual cropping and magnification of 
the only missed cases (one each) of supracondylar and lateral 
condylar fractures, scores changed from negative to positive for 
abnormality. This was performed retrospectively and not in-
cluded in our aforementioned statistics. We used guided back-
propagation (18) to generate saliency maps that allowed us to 
further examine areas the model was attending to on the man-
ually cropped and magnified images, and these demonstrated 
that the model was attentive to the specific areas of abnormal-
ity in both cases (Fig 5).

Of the 15 missed joint effusions, all were qualified as either 
“small” or synonyms thereof in the original radiology report. 
Proximal ulna and proximal radius fractures were the next largest 
contributor to misses, representing 12 and 13 of the 54 misses, 

Figure 3: Contingency table shows multiview convolutional neural network (CNN) radio-
graphic evaluation of pediatric elbow fractures. CI = confidence interval, NPV = negative 
predictive value, PPV = positive predictive value. 

Figure 4: Graph shows area under the receiver operating charac-
teristic (ROC) curve for the model was 0.95 (95% confidence interval: 
0.93, 0.960).
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prior to generating their final interpretation in a report. This 
method is extensible to any radiologic study where information 
from multiple images is synthesized into one report, such as 
posteroanterior and lateral views from a chest radiograph. We 
think that recurrent networks will likely have continued suc-
cess in various problem domains within radiology.

Application to Pediatric Musculoskeletal Radiology
To our knowledge, no studies exist demonstrating efficacy of 
deep learning models in pediatric musculoskeletal radiology. 
Chung et al demonstrated sensitivity and specificity of 99% 
and 97%, respectively, for binary classification of adult proxi-
mal humeral fractures from a single frontal radiograph (6). Kim 
and MacKinnon demonstrated distal radius fracture detection 
based on a lateral view only, with a sensitivity and specificity 
of 90% and 88%, respectively, in adult patients and excluded 
any patient with open growth plates (7). Unlike these studies, 
we chose to tackle a more complex problem by not targeting a 
specific type of fracture. We decided to curate our data with ex-
isting radiology reports, rather than individual image curation 
by an expert radiologist. The latter is both time-consuming 

neural network in conjunction 
with a CNN to classify an entire 
radiographic series, rather than 
a single image. We found that 
labor-intensive data curation and 
annotation is not necessary for 
large datasets if efficient natural 
language processing tools are 
used to parse and classify exist-
ing radiology reports.

To our knowledge, our study 
is the first to show that ma-
chine learning has the potential 
to screen for elbow trauma and 
differentiate abnormality from 
normal growth centers, and this 
will continue to improve with 
further modifications of the 
model. We observed that the 
model was most accurate with 
the most common fracture pat-
terns (supracondylar and lateral 
condylar fractures), which was to 
be expected given the large num-
ber of such studies in our train-
ing set. Proximal radius and ulna 
fractures were the next largest 
contributor to misses, represent-
ing 12 and 13 of the 54 misses, 
respectively. We did not make 
any attempts to augment these 
cohorts, as we thought the un-
derlying problem with these frac-
ture patterns was their subtlety 
of findings, requiring zooming 
in to identify the buckle, rather 
than an insufficient sample. However, for relatively rarer ab-
normalities such as osteochondral fractures and medial epicon-
dyle avulsions (19), augmentation methods may be beneficial.

Multiview Approach to Radiographic Series 
Classification
Our model interpreted all radiographs of a case and combined 
salient features prior to making an interpretation with the use 
of a GRU, introduced by Cho et al in 2014 (17). This is anal-
ogous to how radiologists take into account all views before 
arriving at a diagnosis. Recurrent neural networks, and spe-
cifically the long short-term memory (20) and GRU variants, 
are extensively used in text sequence classification (21–23) and 
more recently in video classification and captioning (24–26). 
However, their use has been limited within radiology, with 
only a single paper exploring use of a long short-term memory 
in CT hemorrhage classification (4), and to our knowledge, 
none studying their use on radiographs with multiple views 
from a single series. This approach of synthesizing image infor-
mation from multiple views is important, as it is analogous to 
how radiologists synthesize information from multiple views 

Figure 5: False-negative supracondylar and lateral condylar fractures. These cases represented 
the only misses of each fracture type in our test set. A, Source anteroposterior view shows too 
large of a field of view to identify the supracondylar fracture line. B, Image cropped and magni-
fied to the area of interest shows the fracture line. Reinterpretation with the magnified image 
increases the positivity score from 0.14 (negative, high confidence) to 0.90 (positive, high confi-
dence). C, Saliency map based on guided backpropagation of the magnified area demonstrates 
the model is attentive to the healing fracture line in the lateral cortex (red arrow) and trabecular 
changes in the medial supracondylar region (blue arrow). D, Source anteroposterior view shows 
too large of a field of view to identify the lateral condylar fracture line. E, Image cropped and 
magnified to the area of interest shows the fracture line. Reinterpretation with the magnified 
image increases the positivity score from 0.44 (negative, low confidence) to 0.67 (positive, low 
confidence). F, Saliency map of the magnified area demonstrates that the model is attentive to the 
fracture line in the lateral condyle (yellow arrow).
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and costly, whereas the former 
allowed us to leverage a larger 
dataset with the aid of recently 
published natural language pro-
cessing tools (11) to minimize 
errors of classification. In ad-
dition, our dataset contained 
more complex data because we 
had both normal and abnormal 
radiographs in patients of vary-
ing ages and skeletal maturation, 
which led to a more heteroge-
neous dataset. Our resultant 
error rate of 12% falls within 
range of other published error 
rates of radiologist discrepancies 
with clinicians, peers, and sec-
ond opinion radiologist metrics, 
which range from a low of 1.6% 
to a high of 41.8% (27–29).

Limitations
Limitations of our study in-
cluded the fact that all cases were 
retrieved from a single institu-
tion, which may limit the gener-
alizability of this study. Another 
limitation was the resolution to 
our model (500 × 500 pixels) 
was below the standard resolu-
tion of a radiograph viewed at a 
picture archiving and communi-
cation system workstation. This 
accordingly affected our model’s 
sensitivity to subtle abnormal-
ity. We theorize that a larger in-
put image size to the model may address this problem. 
Another approach may be an attention mechanism if 
hardware limitations are to be considered, as described in 
recent works within the video classification and caption-
ing literature (30–33). Improved preprocessing to better 
standardize images will also likely address these edge cases.

Object detection methods, which include the regions 
with CNNs (or R-CNN) (34) and derived variations 
such as the more recently published RetinaNet (35), may 
be useful in maximizing the areas of interest by reducing 
the field of view prior to classification. Our technique as 
implemented also cannot specify the exact location of 
abnormality. Subdomain decomposition methods may 
be necessary for solving this problem if bounding-box 
annotated datasets are not readily available. The use of a 
CNN for diagnosis is also not approved by the U.S. Food 
and Drug Administration or other regulatory bodies.

Another limitation was with rare abnormalities and unlikely 
(“zebra”) diagnoses. Certain abnormalities may only be seen a 
few times in the career of a radiologist, despite being known 
clinically and provided to the interpreting radiologist as an 

indication for the study. These diseases or abnormalities may 
only be diagnosed after a literature search and correlation with 
case reports and will likely continue to prove a unique chal-
lenge in applying deep learning within medicine.

Because of the anonymized nature of our dataset, we also 
did not account for the number of studies in the dataset that 

Figure 6: False-negative examples of, A–C, rare abnormality (osteochondral lesion) and, D–F, 
subtle abnormality (nondisplaced radial neck fracture). A, Source anteroposterior view is sufficient 
to identify the osteochondral lesion (red arrow). B, Image cropped and magnified to the area of 
interest shows the abnormality more clearly. Reinterpretation with the magnified image has no 
meaningful change in positivity score from 0.25 (negative, high confidence) to 0.24 (negative, 
high confidence). C, Saliency map demonstrates the model is not attentive to the abnormality and 
is examining the cortices around the joint, ultimately concluding (falsely) that this is a negative study 
for abnormality. D, Source anteroposterior view shows resolution detail is insufficient to identify the 
radial neck fracture. E, Image cropped and magnified to the area of interest shows the radial neck 
fracture (blue arrow). Reinterpretation with the magnified image has no meaningful change in posi-
tivity score from 0.19 (negative, high confidence) to 0.21 (negative, high confidence). F, Saliency 
map demonstrates the model is not sufficiently attentive to the abnormality, focusing elsewhere and 
ultimately concluding (falsely) this is a negative study for abnormality.

Figure 7: Suboptimal positioning false-positive example. A, The 
anteroposterior source image demonstrates no specific findings of frac-
ture or malalignment, although the image is noted to be suboptimally 
positioned and collimated. B, Saliency map demonstrates the model’s 
attention is scattered throughout the image without sufficient focus on 
any particular area. The radiographic series was ultimately scored as 
0.69 (positive, low confidence).
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represented follow-ups in the same patient. Thus, perfor-
mance on the validation set may be higher with studies rep-
resented as follow-ups of a prior fracture in the same patient. 
Last, our study was not powered to evaluate the degree to 
which age-related changes affect test performance, and this 
might be an area of future investigation. This would be espe-
cially interesting with common abnormalities found at un-
common ages, resulting in a relatively rarer appearance of the 
conventionally expected abnormality. We theorize that given 
the amount of information and complexity involved with the 
maturation of the pediatric elbow, age-related changes can 
also be a separate area of study with adjunct investigational 
potential from calculating bone age using an elbow radio-
graph alone.

Conclusion
Our data demonstrate that deep learning can effectively bi-
nomially classify acute and nonacute findings on pediatric el-
bow radiographs in the setting of trauma. To our knowledge, 
to date, this is the first study that has successfully identified 
fractures with deep learning in skeletally immature patients 
with open growth plates and distinguished these open growth 
plates from true abnormality. Uniquely, we have also applied 
a recurrent neural network to classify an entire radiographic 
series rather than single radiographic images and to arrive at 
a decision based on all views, as a human radiologist would.
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