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Purpose: To compare sensitivity in the detection of lung nodules between the deep learning (DL) model and radiologists using various 
patient population and scanning parameters and to assess whether the radiologists’ detection performance could be enhanced when us-
ing the DL model for assistance.

Materials and Methods: A total of 12 754 thin-section chest CT scans from January 2012 to June 2017 were retrospectively collected 
for DL model training, validation, and testing. Pulmonary nodules from these scans were categorized into four types: solid, subsolid, 
calcified, and pleural. The testing dataset was divided into three cohorts based on radiation dose, patient age, and CT manufacturer. 
Detection performance of the DL model was analyzed by using a free-response receiver operating characteristic curve. Sensitivities of 
the DL model and radiologists were compared by using exploratory data analysis. False-positive detection rates of the DL model were 
compared within each cohort. Detection performance of the same radiologist with and without the DL model were compared by using 
nodule-level sensitivity and patient-level localization receiver operating characteristic curves.

Results: The DL model showed elevated overall sensitivity compared with manual review of pulmonary nodules. No significant de-
pendence regarding radiation dose, patient age range, or CT manufacturer was observed. The sensitivity of the junior radiologist was 
significantly dependent on patient age. When radiologists used the DL model for assistance, their performance improved and reading 
time was reduced.

Conclusion: DL shows promise to enhance the identification of pulmonary nodules and benefit nodule management.

© RSNA, 2019

Supplemental material is available for this article.

Lung cancer continued to have the highest incidence and 
mortality rates worldwide in 2018 (1). Because of its ag-

gressive and heterogeneous nature, detection and interven-
tion at an early stage when the cancer manifests as pul-
monary nodules are vital to improve the survival rate (2). 
Currently, low-dose CT is widely used in early stage lung 
cancer screening, as extensive studies have shown that the 
mortality rate can be significantly reduced (3–6).

Although detection of pulmonary nodules has been 
improved by using new-generation CT scanners, certain 
nodules may still be overlooked due to nodule appearance, 
image quality, or perception error by the radiologist, which 
could be caused by inappropriate reading conditions, fa-
tigue, or distraction (7,8). In a frequently used dataset (a 
subset of the lung cancer screening program from 1996 
to 1999 in Nagano, Japan [9]), the original manual mis-
detection rate was 76% (38 of 50 nodules were missed) 
(10). All missed nodules were later proven to be cancer-
ous, and some were missed repeatedly for up to 3 years. 
Computer-aided detection systems have been developed 

to improve the nodule detection rate (10–13). However, 
on the basis of conventional image processing techniques, 
these systems typically require convoluted image process-
ing steps and may not be robust across various data sources 
and nodule types.

The deep learning (DL) technique using convolutional 
neural networks (CNNs) takes advantage of the most re-
cent development in artificial intelligence and has shown 
promise in assisting lung nodule detection and manage-
ment (14–17). The DL model is fundamentally different 
from conventional computer-aided detection systems and 
can be easily optimized and readily applied to read a large 
amount of data. However, fully automated nodule detec-
tion with high sensitivity, which would be the precondi-
tion for reliable nodule management, remains a challenge.

In this study, we developed a fully automated DL 
model using DenseNet (18) as the backbone and a Faster 
R-CNN (19) model as the detector. The performance of 
the DL model was compared with that of the radiolo-
gists regarding various data attributes, including radiation 
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Figure 1: Schematic shows preparation procedures for the, A, training-validation and, B, testing datasets. Qualified 
profiles were selected based on four steps: First, profiles with no clinical reports were excluded. Next, postoperative 
scans were excluded. Then, profiles indicating diffuse pulmonary nodules were excluded. Finally, patients with other lung 
diseases, such as pneumonia and tuberculosis, were excluded. The testing dataset was further divided into different cohorts 
based on the factors to be investigated.

had control of data and information submitted for publica-
tion. Institutional review board approval from all hospitals was 
received, and written informed consent was waived since the 
study had minimal risk and would not adversely affect the sub-
jects’ rights or welfare. A total of 13 159 thin-section chest CT 
scans from January 2012 to June 2017 from multiple hospi-
tals in China were retrospectively collected with convenience 
sampling. The dataset comprised both screening and in-patient 
scans, and patient age (18 years) was the one eligibility cri-
terion. Scans were excluded from the study if (a) not all lung 
lobes were fully visible in the field of view, (b) the image had 
motion artifacts, (c) the image did not comply with Digital 
Imaging and Communications in Medicine standards, or (d) 
the radiologists who were responsible for ground truth labeling 
were unable to annotate the images confidently. After the selec-
tion procedure shown in Figure 1, 12 754 scans were included 
in our study. A total of 11 625 scans (91.1%) from three top-
tier hospitals were selected for model training and validation, 
and 1129 scans (8.9%) from more than 10 other hospitals were 
used for testing. The split ratio between training and valida-
tion scans was approximately nine to one, and the model was 
tuned based on the fixed validation set. For the training and 
validation dataset, 5777 scans (approximately 49.7%) were 
obtained in male subjects (mean age, 54 years ± 15 [standard 
deviation]), and 5848 (approximately 50.3%) were obtained 
in female subjects (mean age, 55 years ± 15). In the testing 
dataset, mean patient age was 57 years ± 20. All acquired axial 
images had a matrix size of 512 × 512, and section thickness 
ranged from 0.8 to 2.0 mm.

To generate ground truth for the entire dataset, two radiolo-
gists (radiologists A and B), each with approximately 10 years of 
experience reviewing chest CT images, independently reviewed 

dose, patient age, and CT manufacturer. Next, to assess whether 
manual review could be enhanced when using the DL model 
as a first-pass reader, radiologist detection accuracies with and 
without the DL model were compared while mimicking the real-
world clinical reading environment.

Materials and Methods

Data Preparation and Categorization
Infervision (Beijing, China) provided software and hardware 
support. Authors who were not affiliated with Infervision 

Abbreviations
CNN = convolutional neural network, DL = deep learning, FPDR = 
false-positive detection rate, FROC = free-response receiver operat-
ing characteristic, LROC = localization receiver operating charac-
teristic

Summary
A deep learning model showed improved overall sensitivity com-
pared with manual identification of pulmonary nodules and was 
insensitive to radiation dose, patient age, or CT manufacturer; the 
model also enhanced manual review by increasing sensitivity and re-
ducing reading time.

Key Points
 n Detection performance (both sensitivity and false-positive detec-

tion rate) of a deep learning (DL) model to depict pulmonary 
nodules did not depend on the radiation dose level, patient age, or 
device manufacturer, indicating that the DL model can be broadly 
applied under different imaging conditions with no restrictions. 

 n As shown by a two-way tabulation test, performance of the less-
experienced radiologist could be significantly dependent on patient 
age.
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Figure 2: Framework of the proposed model. N successive sections before and after the center section are col-
lected together as the input. Convolution is performed on each image, and feature maps are extracted using the 
DenseNet model. The features are fed into a regional proposal network (RPN) to obtain potential regions first, then 
features inside the proposed regions are further processed to obtain both nodule classification and nodule location. 
ROI = region of interest.

and consensus was reached by the three radiologists. For the 
entire dataset, 65 821 nodules were annotated, with an average 
occurrence of 5.2 nodules per patient, and the distribution was 
shown in Table 1. Since the focus of this study was on nodule 
detection, to reduce manual annotation cost, different types of 
ground-glass nodules were generally categorized as subsolid nod-
ules, and no further diagnosis or pathologic details about nod-
ules were studied.

DL Model Development
The DL model in our study consists of two CNN models: a 
DenseNet model as the feature map extractor and a Faster R-
CNN–based model as the detector. The original implementa-
tion of Faster R-CNN takes only one image as input then feeds 
the extracted features into a regional proposal network to pro-
pose potential regions of interest, which are further processed 
to generate potential objects’ classification and their bounding 
boxes. Given that the CT scan is a three-dimensional image 
volume, we modified the Faster R-CNN network to take suc-
cessive sections as input, thus forming a multichannel 2.5D 
CNN (21). Here, 2.5D simply means the model could take 
successive sections as input but does not use three-dimensional 
convolution, since the third dimension (axial) was not con-
tinuous and resolution was not consistent.

The DenseNet model was used for feature extraction and 
back propagation in our model. Different from regular CNN, 
in which feature maps are mostly connected once, in DenseNet 
all maps are directly linked, thus forming a densely connected 
network. Such a network could reduce the number of layers, 
maintain feature density during propagation, and improve over-
all expressive power of the model. Detailed model structure is 
shown in Figure 2.

DL Model Training and Testing
To improve learning efficiency of the model, nearly all input 
for model training was in the form of nodule-positive sections. 
Each training step consisted of nine successive sections, which 
typically covered an entire nodule, given our thin-section 

all 12 754 scans in the original radiology report. The studies were 
reviewed by using RadiAnt DICOM Viewer (version 4.2.0; Me-
dixant, Poznan, Poland). Window level and window width were 
typically set at 2600 and 1500 HU, respectively. To guarantee 
the best reading, the radiologists were able to make preferential 
adjustments based on scan-specific properties and were allotted 
unlimited reading time. The detected nodule was marked by a 
square bounding box, with the nodule at the center. On the ba-
sis of the National Comprehensive Cancer Network guidelines 
for lung cancer screening (version 2.2019) (20), nodules in our 
dataset were categorized into four types: solid nodule (6 or .6 
mm), subsolid nodule (5 or .5 mm), calcified nodule, and 
pleural nodule. The size standards for solid and subsolid nod-
ules were different because they had different follow-up manage-
ment. These ground truth nodule types were later used to assess 
differences in detection rate across all nodule types.

There was a significant overlap between the two radiologists’ 
annotations, and nodule size was determined by taking the aver-
age of their measurements. Samples that were differently anno-
tated by radiologists A and B were checked by a third radiologist 
(radiologist C) who had approximately 15 years of experience, 

Table 1: Categorization and Number of Retrospec-
tively Detected Pulmonary Nodules

Nodule Type

Training Set Testing Set

No. of 
Nodules

No. of 
Patients

No. of 
Nodules

No. of 
Patients

Solid 18 554 7636 4734 1036
 6 mm 15 225 5456 4406 848
 .6 mm 3329 2180 328 188
Subsolid 31 275 6680 1716 583
 5 mm 17 850 3487 1252 343
 .5 mm 13 425 3193 464 240
Calcified 6262 991 496 256
Pleural 1987 1050 797 355
  Total 58 078 11 625 7743 1129
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original radiology reports as a reference, and the nodule type 
was not required to be reported. For both the DL model and 
the testing radiologists, nodule types from the ground truth 
analysis were used to assess their detection variance across all 
types. Detection sensitivities of all nodule types were cross-tab-
ulated with the reading subjects and data attributes. For each 
reading subject (the DL model, radiologists 1 and 2), two-way 
tabulation x2 tests were individually conducted to examine the 
dependence of their detection sensitivities on dose level, age 
range, and manufacturer. For each attribute, three-way tabula-
tion tests were conducted to compare sensitivity between the 
DL model and the averaged performance of the radiologists. 
Dependence of the DL model false-positive detection rate 
(FPDR) (the number of false-positive detections divided by a 
model’s total number of detections) on the three attributes was 
also tested. Note that the conventional false-positive rate (the 
number of false-positive detections divided by total number of 
negatives) was not used because the true-negatives of the DL 
model were difficult to quantify. Since there were three varia-
tions, Bonferroni correction was used for the critical signifi-
cance level (ie, a = .05/3, so approximately .0167).

To verify that the DL model could enhance manual 
detection in clinical situations, two smaller data batches 
(batches 1 and 2) containing 123 and 148 scans, respec-
tively, were examined by two additional radiologists (radi-
ologists 3 [W.T.] and 4 [Y.W.], each with approximately 10 
years of experience) with and without the DL model. Batch 
1 was used to test the nodule-level detection enhancement, 
while batch 2 was used to test the patient-level detection 
enhancement. The radiologists first read the scans alone 
without using the DL model, then they would use the DL 
model for assistance during their second reading. A wash-
out period of 1 week was used between the two readings, 
and the scans within each batch were shuffled. Such data 
amounts were selected by approximating the radiologists’ 
2-day clinical workload, and their reading time was limited 
for each scan (up to approximately 20 minutes, a typical 
reading period for radiologists at a top-tier hospital). The 
nodule type and confidence level (range, 0–1 with a step 
of 0.1) were required to be reported for each detection. In 
consideration of the clinical significance, only solid nodules 
larger than 3 mm were included in this analysis.

Radar plots and localization receiver operating characteristic 
(LROC) curves were used to show the results of the nodule- and 
patient-level analyses, respectively (26,27). For patient-level 
analysis, the true-positive, false-positive, true-negative, and false-
negative findings were defined as follows: at a certain confidence 
threshold, a patient would be counted as having true-positive 
findings only if all nodules were correctly detected (location 
and type). Likewise, a patient would be counted as having true-
negative findings only if no nodules were detected in a patient 
with no nodules. On the other hand, if the scan was partially 
correctly annotated (nodules may be missed or incorrectly cat-
egorized or located), the patient was counted as having false-
negative findings. Finally, if lesions were detected in a patient 
with no nodules, the patient was counted as having false-positive 
findings. The true-positive and false-positive rates were then 

scans. For every 100 nodule-positive sections, one nodule-neg-
ative section randomly selected from all the lung regions was 
inserted for model training to avoid bias. The training process 
was monitored by using the validation dataset to prevent over-
fitting or to determine whether additional training was needed.

Although the training data were nearly all nodule-positive 
sections, the DL model was evaluated using the testing data, 
including all sections of each test patient’s scan. Similar to the 
training process, nine successive sections were loaded into the 
DL model for each computation step (ie, sections 1–9 for the 
first step, sections 2–10 for the second step, etc) until the entire 
scan was inferred. The CT images were not downsized. Output 
of the model was the detection marked with a square bounding 
box. The nodule type and the model’s confidence in its predic-
tion were also included.

Testing Data Differentiation
Radiation dose, patient age, and CT manufacturer were in-
vestigated in our study. Ohno et al concluded that there was 
no significant difference between radiologists’ detection with 
low-dose CT and that with standard-dose CT (22). They did 
not compare DL model detection performance for scans using 
different doses. On the basis of national lung cancer screening 
guidelines used in China (23), a scan was deemed low dose if 
the x-ray tube current was less than 60 mAs; otherwise, scans 
were considered to have been obtained with a conventional 
dose. For all scans, the peak voltage was not differentiated and 
was typically 120 kVp.

Since pulmonary structure and texture are age dependent, 
which might affect lung nodule detection (24,25), the test data 
were empirically stratified into three groups based on patient 
age: younger than 30 years, 31–60 years, and older than 61 
years. Although a smaller age interval or even regression with age 
could be used, such analysis was not performed in our study in 
consideration of clinical necessity and the relatively slow change 
of pulmonary structures with age.

The third variation was made regarding the CT manufac-
turer, as different machines might use different image acquisi-
tion techniques and image reconstruction algorithms that affect 
detection performance of the DL model. Our dataset included 
scans from devices manufactured by Canon Medical Systems 
(Otawara, Japan), GE Healthcare (Chicago, Ill), Philips (Am-
sterdam, Netherlands), and Siemens (Erlangen, Germany).

Experimental Design and Data Analysis
Performance of the DL model was first demonstrated using the 
free-response receiver operating characteristic (FROC) curve, 
in which sensitivity was plotted versus the number of false-
positive findings per scan. To compare sensitivity between the 
DL model and radiologists, the testing data were also inde-
pendently examined by two testing radiologists (radiologists 1 
[K.L.] and 2 [Q.L.], 5 and 10 years of experience, respectively; 
note that these were not the radiologists determining ground 
truth), and exploratory data analysis was conducted.

Radiologists 1 and 2 were given similar instructions and a 
similar reading environment as the radiologists who established 
the reference set. However, they did not have access to the 
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calculated accordingly to generate 
the LROC data points. Area un-
der the patient-level LROC curve 
was calculated for both radiolo-
gists as well.

Results

Detection Performance of 
the DL Model
Nodule detection performance 
of the DL model was demon-
strated using the FROC curve. 
On average, when there was one 
false-positive detection per scan, 
sensitivity was 0.74. Sensitivity 
improved at the cost of speci-
ficity and reached a maximum 
of 0.86 when there were eight 
false-positive detections per 
scan. The FROC curve is shown 
in Figure 3.

Next, we showed the perfor-
mance of the DL model across 
radiation dose, patient age, 
and CT manufacturer. Since 
the dose, age, and CT manu-
facturer information might not 
have been complete for certain 
scans, the total number of nod-
ules in each cohort might not be 
consistent.

Effect of Radiation Dose
The two-way x2 test showed that 
for the DL model there was no 
dose-level dependence of detec-
tion sensitivity (x2 = 1.1036, P 
= .9538). The same result was 
observed for the radiologists, 
which was consistent with re-
sults reported in the literature 
(21) (radiologist 1: x2 = 1.6562, 
P = .8944; radiologist 2: x2 = 
1.5293, P = .9097). The results 
are summarized in Table 2.

Effect of Patient Age
Different patient age dependence 
between the DL model and the ra-
diologists was observed. While de-
tection sensitivity of the DL model 
was independent of patient age (x2 
= 6.1676, P = .8010), the less-ex-
perienced radiologist showed a sig-
nificant association (x2 = 46.0263, 

Figure 3: Free-response receiver operating characteristic (FROC) curve shows detection perfor-
mance of the deep learning model.

Table 2: Dose-related Detection Sensitivity of the Deep Learning Model and Radi-
ologists

Dose and Nodule Type
Reference 
Standard

Detected Nodules

Deep Learning 
Model Radiologist 1 Radiologist 2

Low dose
 Solid nodule 6 mm 719 517 (71.9) 300 (41.7) 358 (49.8)

 Solid nodule .6 mm 44 39 (88.6) 41 (93.2) 36 (81.8)
 Subsolid nodule 5 

mm
333 204 (61.3) 75 (22.5) 187 (56.2)

 Subsolid nodule .5 mm 61 52 (85.2) 41 (67.2) 50 (82.0)
 Calcified nodule 59 51 (86.4) 28 (47.5) 39 (66.1)
 Pleural nodule 223 168 (75.3) 137 (61.4) 162 (71.7)
 Overall true positive 1439 1031 (71.6) 622 (43.2) 832 (57.8)
 False positive* … 653 (38.8) … …
Conventional dose
 Solid nodule 6 mm 2680 1727 (64.4) 968 (36.1) 1347 (50.3)
 Solid nodule .6 mm 215 189 (87.9) 166 (77.2) 149 (69.3)
 Subsolid nodule 5 

mm
993 676 (68.1) 260 (26.2) 565 (56.9)

 Subsolid nodule .5 mm 371 301 (81.1) 216 (58.2) 316 (85.2)
 Calcified nodule 265 244 (92.1) 127 (47.9) 147 (55.5)
 Pleural nodule 400 313 (78.3) 203 (50.8) 261 (65.3)
 Overall true positive 4924 3450 (70.1) 1940 (39.4) 2785 (56.6)
 False positive* … 3241 (48.4) … …

Note.—Data are number of nodules. Unless otherwise indicated, data in parentheses are the sensi-
tivity.
* Data in parentheses are the false discovery rate and are percentages.

https://pubs.rsna.org/journal/ai
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P < .0001). The more expe-
rienced radiologist showed 
no significant dependence 
(x2 = 20.6033, P = .0240), 
but the P value was only 
slightly higher than the 
corrected critical level. The 
results are summarized in 
Table 3.

Effect of Scanner 
Manufacturer
As expected, sensitivities 
of the DL model and both 
radiologists showed no as-
sociation with the device 
manufacturer (DL model: 
x2 = 10.5136, P = .7862; 
radiologist 1: x2 = 9.0240, 
P = .8763; radiologist 2: 
x2 = 14.6075, P = .4800). 
The results are summa-
rized in Table 4.

In addition to the two-
way tabulation tests, the 
three-way tests were also 
performed within each 
data attribute (dose: x2 = 
14.3354, P = .5737; age 
range: x2 = 47.3468, P = 
.0091; manufacturer: x2 
= 39.8508, P = .3877). 
Thus, except for the pa-
tient age cohort, there 
was no significant asso-
ciation of sensitivity be-
tween the DL model and 
the averaged performance 
of the radiologists across all nodule types. Nonetheless, on 
average, the DL model showed improved overall sensitivity 
for each attribute.

False-Positive Nodule Detections
Besides sensitivity, false-positive results for the DL model 
were also counted for the three aspects and are reported in 
the Tables 2–4. Since there were no true-negative nodules, 
we calculated the FPDR. The x2 independence test was 
performed for the FPDR of the DL model, and no depen-
dence on the three factors was observed (dose: x2 = 0.5640, 
P =.4527; age: x2 = 0.4734, P =.7892; CT manufacturer: x2 
= 3.7270, P =.2925).

Radiologist Performance Using the DL Model
Detection performance of radiologists 3 and 4 using the DL 
model is shown in Figure 4. For batch 1, the radiologists’ de-
tection sensitivity improved across all nodule types. For batch 
2, the patient-level detection also improved, with area under 

the patient-level LROC curve increasing from 0.67 to 0.77 
for radiologist 3 and from 0.65 to 0.78 for radiologist 4. Both 
radiologists experienced shorter reading time with the model, 
with a reduction from approximately 15 minutes per patient to 
approximately 5–10 minutes per patient.

Extra LROC plots using different nodule size cutoffs are 
shown in Figure E1 (supplement).

Discussion
The FROC curve showed that the DL model could detect most 
of the nodules when choosing a relatively low specificity stan-
dard. Success of this model relied on the combination of two 
CNN structures. When considering the nonhomogeneous fea-
tures of pulmonary nodules, the DenseNet model played a crit-
ical role in sufficiently extracting the features and maintaining 
their density through model propagation. Meanwhile, capabil-
ity of Faster R-CNN to yield nodule location makes the LROC 
available for more reliable model performance assessment. Ro-
bustness of the model was also considered by constructing the 

Table 3: Age-related Detection Sensitivity of the Deep Learning Model and Radiologists

Age Group and  
Nodule Type

Reference 
Standard

Detected Nodules

Deep Learning Model Radiologist 1 Radiologist 2

Group A
 Solid nodule 6 mm 340 218 (64.1) 141 (41.5) 181 (53.2)
 Solid nodule .6 mm 30 28 (93.3) 23 (76.7) 23 (76.7)
 Subsolid nodule 5 mm 24 13 (54.2) 15 (62.5) 18 (75.0)
 Subsolid nodule .5 mm 12 11 (91.7) 11 (91.7) 12 (100)
 Calcified nodule 15 12 (80.0) 11 (73.3) 12 (80.0)
 Pleural nodule 39 33 (84.6) 12 (30.8) 16 (41.0)
 Overall true positive 460 315 (68.5) 213 (46.3) 262 (57.0)
 False positive* … 238 (43.0) … …
Group B
 Solid nodule 6 mm 1706 1146 (67.2) 645 (37.8) 879 (51.5)
 Solid nodule .6 mm 130 114 (87.7) 112 (86.2) 104 (80.0)
 Subsolid nodule  5 mm 650 456 (70.2) 206 (31.7) 355 (54.6)
 Subsolid nodule . 5 mm 247 221 (89.5) 166 (67.2) 206 (83.4)
 Calcified nodule 154 143 (92.9) 72 (46.8) 89 (57.8)
 Pleural nodule 297 241 (81.1) 158 (53.2) 197 (66.3)
 Overall true positive 3184 2321 (72.9) 1359 (42.7) 1830 (57.5)
 False positive* … 1921 (45.3) … …
Group C
 Solid nodule  6 mm 1310 855 (65.3) 511 (39.0) 679 (51.8)
 Solid nodule . 6 mm 99 86 (86.9) 82 (82.3) 74 (74.7)
 Subsolid nodule  5 mm 510 329 (64.5) 119 (23.3) 304 (59.6)
 Subsolid nodule . 5 mm 159 111 (69.8) 60 (37.7) 118 (74.2)
 Calcified nodule 142 127 (89.4) 71 (50.0) 78 (54.9)
 Pleural nodule 259 190 (73.4) 140 (54.1) 189 (73.0)
 Overall true positive 2479 1698 (68.5) 983 (39.7) 1442 (58.2)
 False positive* … 1693 (50.1) … …

Note.—Data are number of nodules. Unless otherwise indicated, data in parentheses are the sensitivity.
* Data in parentheses are the false discovery rate and are percentages.
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data from multiple 
hospitals. The test-
ing data were never 
exposed to the 
model until train-
ing was finished, 
and decent sensi-
tivity could still be 
achieved.

The contingency 
test using all listed 
nodule types showed 
that detection per-
formance of the DL 
model (both sensitiv-
ity and FPDR) does 
not depend on the 
radiation dose level, 
patient age, or de-
vice manufacturer, 
indicating that the 
DL model can be 
broadly applied un-
der different imaging 
conditions with no 
restrictions. How-
ever, as shown by the 
two-way tabulation 
test, performance of 
the less-experienced 
radiologist could be 
significantly depen-
dent on patient age. 
Such a result might 
be caused by the 
structure and tex-
ture variation of the 
lungs in an elderly 
patient. Scans should 
be more carefully in-
ferred by the junior 
radiologist when 
screening the elderly 
population. Mean-
while, the DL model 
might be used by the 
junior radiologist as 
a training tool to ac-
cumulate experience.

Although the model was insensitive to the investigated 
attributes, it showed different sensitivities across nodule 
types. The model had relatively higher sensitivity for the 
solid nodule larger than 6 mm and the calcified nodule 
and lower sensitivity for the smaller nodules. Such results 
were consistent with expectations: larger nodules had more 
abundant features, and the calcified nodules typically had 
higher signal intensity on CT images. Adjusting detection 

layer resolution of the model may improve the detection of 
smaller nodules.

It was also interesting to note that when using the DL model 
for assistance, the pattern of the patient-level LROC curves 
was largely different between radiologists 3 and 4. The differ-
ence could be caused by how the radiologists interpreted the DL 
model detection. When using the model, radiologist 3 annotated 
some nodules that were indeed true-positive nodules with 100% 

Table 4: Manufacturer-related Detection Sensitivity of the Deep Learning Model and Radiologists

Manufacturer and  
Nodule Type

Reference 
Standard

No. of Detected Nodules

Deep Learning Model Radiologist 1 Radiologist 2

Manufacturer A
 Solid nodule 6 mm 321 194 (60.4) 119 (37.1) 194 (60.4)
 Solid nodule .6 mm 39 33 (84.6) 32 (82.1) 33 (84.6)
 Subsolid nodule 5 mm 146 60 (41.1) 42 (28.8) 92 (63.0)
 Subsolid nodule .5 mm 82 53 (64.6) 57 (69.5) 62 (75.6)
 Calcified nodule 42 36 (85.7) 27 (64.3) 30 (71.4)
 Pleural nodule 45 32 (71.1) 19 (42.2) 26 (57.8)
 Overall true positive 675 408 (60.4) 296 (43.9) 437 (64.7)
 False positive* 545 (57.2) … …
Manufacturer B
 Solid nodule 6 mm 1214 890 (73.3) 505 (41.6) 477 (39.3)
 Solid nodule .6 mm 56 51 (91.1) 44 (78.6) 38 (67.9)
 Subsolid nodule 5 mm 603 433 (71.8) 176 (29.2) 292 (48.4)
 Subsolid nodule .5 mm 125 114 (91.2) 80 (64.0) 95 (76.0)
 Calcified nodule 80 75 (93.8) 46 (57.5) 51 (67.5)
 Pleural nodule 284 235 (82.7) 165 (58.1) 184 (64.8)
 Overall true positive 2362 1798 (76.1) 1016 (43.0) 1137 (48.1)
 False positive* 1461 (44.8) … …
Manufacturer C
 Solid nodule 6 mm 1311 786 (60.0) 554 (42.3) 775 (59.1)
 Solid nodule .6 mm 105 92 (87.6) 90 (85.7) 83 (79.0)
 Subsolid nodule 5 mm 245 176 (71.8) 83 (33.9) 141 (57.6)
 Subsolid nodule .5 mm 102 92 (90.2) 63 (61.8) 93 (91.2)
 Calcified nodule 145 129 (89.0) 63 (43.4) 75 (51.7)
 Pleural nodule 195 138 (70.8) 105 (53.8) 147 (75.4)
 Overall true positive 2092 1413 (67.5) 958 (45.8) 1314 (62.8)
 False positive* 1115 (44.1) … …
Manufacturer D
 Solid nodule 6 mm 380 254 (66.8) 146 (38.4) 246 (64.7)
 Solid nodule .6 mm 34 31 (91.2) 30 (88.2) 30 (88.2)
 Subsolid nodule 5 mm 137 82 (59.9) 42 (30.7) 90 (65.7)
 Subsolid nodule .5 mm 93 69 (74.2) 59 (63.4) 82 (88.2)
 Calcified nodule 34 32 (94.1) 20 (58.8) 23 (67.6)
 Pleural nodule 75 56 (74.7) 37 (49.3) 47 (62.7)
 Overall true positive 753 524 (69.6) 334 (44.4) 518 (68.8)
 False positive* 605 (53.6) … …

Note.—Data are number of nodules. Unless otherwise indicated, data in parentheses are the sensitivity.
* Data in parentheses are the false discovery rate and are percentages.
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confidence; thus, the 
curve started above 
the (0, 0) point, 
where the confi-
dence threshold was 
highest. However, 
since the DL model 
could have low spec-
ificity, overreliance 
on the model might 
cost the radiologist 
specificity as well. At 
the high-specificity 
region (close to the 0 
point), the curve of 
the DL model was 
shifted to the right, 
with no benefit for 
sensitivity. On the 
other hand, radi-
ologist 4 might have 
cautiously referred 
to the model’s de-
tection and her sen-
sitivity was steadily 
improved without 
negatively affecting 
specificity.

Limitations of 
this study do exist. 
The first limitation 
was the relatively high FPDR of the model, which is ap-
proximately 49% for the entire testing data. Although false-
negatives have more severe consequences than false-positive 
detection, a high FPDR may mislead and add burden to ra-
diologists (like radiologist 3 in our study). To reduce FPDR 
in the future, we may inject more nodule-negative sections 
for training. Another approach may be to use maximum in-
tensity projection image volumes for model training and test-
ing. Since maximum intensity projection has been shown to 
improve manual detection (28), it may help achieve a similar 
effect for the DL model.

Another limitation lies in data collection. Although patient 
age was examined, patients’ smoking history (number of pack-
years) was not investigated. This was because smoking history 
was stored separately from the Digital Imaging and Communi-
cations in Medicine information and could not be accessed. Be-
sides, nodule biopsy information was not collected since this was 
a CT image–based retrospective study using numerous samples, 
and no diagnosis or grading was involved. However, this would 
be critical to further verify efficacy of the DL model. Biopsy con-
firmation of the nodules may be performed in the future using 
certain testing samples.

For the patient-level LROC analysis, sensitivity and spec-
ificity might appear to be not quite satisfactory. This might 
be because we chose a strict nodule size cutoff, where solid 
nodules larger than 3 mm and all subsolid nodules were 

considered in the analysis. However, for baseline screening, 
nodules 6 mm or smaller usually do not require immedi-
ate investigation. Extra LROC plots using adjusted cutoff 
size are shown in Figure E1 (supplement), and detection 
enhancement can be observed.

In conclusion, the automatic DL model achieved decent 
pulmonary nodule detection sensitivity with high robustness. 
The performance of this model did not depend on multi-
ple external factors and can be used with no restrictions. It 
could also potentially enhance the manual identification of 
pulmonary nodules and reduce reading time when used for 
assistance. Performance of the model may be improved by 
fine-tuning the model and by using different data curations 
in the future.
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Figure 4:  Nodule-level detection sensitivity comparison for, A, radiologist 3 and, B, radiologist 4 without 
and with the assistance of the deep learning (DL) model. Patient-level detection localization receiver operating 
characteristic curve comparison for, C, radiologist 3 and, D, radiologist 4 without and with the assistance of 
the DL model.
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