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Purpose:  To examine the prognostic value of a machine learning model trained with pretreatment MRI radiomic features in the as-
sessment of patients with nonmetastatic nasopharyngeal carcinoma (NPC) who are at risk for 3-year disease progression after intensity-
modulated radiation therapy and to explain the radiomics features in the model.

Materials and Methods:  A total of 277 patients with nonmetastatic NPC admitted between March 2008 and December 2014 at two 
imaging centers were retrospectively reviewed. Patients were allocated to a discovery or validation cohort based on where they under-
went MRI (discovery cohort, n = 217; validation cohort, n = 60). A total of 525 radiomics features extracted from contrast material–
enhanced T1- or T2-weighted MRI studies and five clinical features were subjected to radiomic machine learning modeling to predict 
3-year disease progression. Feature selection was performed by analyzing robustness to resampling, reproducibility between observers, 
and redundancy. Features for the final model were selected with Kaplan-Meier analysis and the log-rank test. A support vector machine 
was used as the classifier for the model. To interpret the pattern learned from the model, Shapley additive explanations (SHAP) was 
applied.

Results:  The final model yielded an area under the receiver operating characteristic curve of 0.80 in both the discovery (95% boot-
strap confidence interval: 0.80, 0.81) and independent validation (95% bootstrap confidence interval: 0.73, 0.89) cohorts. Analysis 
with SHAP revealed that tumor shape sphericity, first-order mean absolute deviation, T stage, and overall stage were important factors 
in 3-year disease progression.

Conclusion:  These results add to the growing evidence of the role of radiomics in the assessment of NPC. By using explanatory tech-
niques, such as SHAP, the complex interaction of features learned by the model may be understood.

© RSNA, 2019

Supplemental material is available for this article.

Nasopharyngeal carcinoma (NPC) is endemic in south-
east Asia (1). Despite good overall survival after treat-

ment, approximately one-third of patients still experience 
relapse (2,3). Current treatment stratification is primarily 
based on TNM staging of the disease. With the advent of 
intensity-modulated radiation therapy (IMRT), studies 
have shown that this technique can yield excellent local-
regional control (.90%) and can enable better sparing of 
adjacent organs from unnecessary radiation (4–8). This led 
to pretreatment T stage becoming less predictive of local 
control and survival after IMRT (9). Alternative pretreat-
ment strategies for prognosis of NPC after treatment are 
needed to provide better risk stratification for NPC.

Commonly used imaging modalities in the staging of 
NPC are MRI, CT, and PET/CT. Many studies found 

an association between clinical outcomes and quantitative 
measurement based on MRI and PET/CT findings with 
parameters such as primary tumor volume, nodal volume, 
and standard uptake values (9–13). To enable a more 
quantitative approach in prediction, several groups have 
studied the role of quantitative analysis of medical images, 
which led to the development of radiomics. Radiomics is 
the process of extracting large amounts of image-based fea-
tures, known as radiomic features, from routine diagnostic 
scans. The underlying hypothesis is that radiomic features 
that quantify tumor shape, image intensity, and texture 
may reflect the characteristics of disease that are important 
in clinical decision making (14–16). Recent studies have 
shown that pretreatment radiomic features are prognostic 
of survival in patients with NPC (17–19). Despite evidence 
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nostic importance of MRI-based morphologic parameters 
and PET/CT-based parameters of the primary tumor and 
lymph nodes, whereas in the current study we analyzed MRI 
radiomics of primary tumors. The results may not be directly 
comparable, as there were more patients in this cohort, with 
longer median follow-up and updated survival data.

Patient Cohort
A total of 277 patients were eligible for and were included in 
this study based on the following criteria: (a) They had histo-
logically confirmed NPC. (b) They had no evidence of distant 
metastases at diagnosis. (c) They underwent pretreatment con-
trast material–enhanced T1- and T2-weighted MRI. (d) They 
underwent a standard treatment regimen that consisted of 
IMRT and concurrent or adjuvant chemotherapy with or with-
out induction based on the TNM classification (7th edition 
American Joint Committee on Cancer/Union for International 
Cancer Control). (e) They had at least 3 years of follow-up data 
for survival analysis. A total of 217 patients were examined at 
H1, and 60 patients were examined at H2. Patients from H1 
served as the discovery cohort, and patients from H2 served as 
the validation cohort. Patient characteristics for both cohorts 
are summarized in Table 1. Significant differences between the 
cohorts were found for patient age, overall stage, and N stage. 
No significant differences were found for the other parameters.

All patients underwent a standard treatment that has been 
described in a previous study (24). In general, stage I disease was 
treated with IMRT alone, while stage II disease was treated with 
IMRT with or without concurrent chemotherapy. Stage III or 
IV disease was treated with concurrent chemoradiotherapy with 
adjuvant chemotherapy. The clinical outcome of this study was 
progression-free survival (PFS), which was defined as the time 
(in months) from the first day of treatment to the date of disease 
progression (local-regional recurrences or distant metastases), 
death, or last follow-up.

For imaging, all patients underwent diagnostic head and neck 
contrast-enhanced T1- and T2-weighted MRI with a 3-T im-
ager. Detailed description of acquisition and imaging parameters 
used in both centers is given in Table E1 (supplement).

To ensure there is no bias in the model toward the validation 
cohort, all feature selection and modeling were performed in the 
discovery cohort only. The validation cohort was used for valida-
tion of the final selected models only.

Feature Extraction
The study workflow is summarized in Figure 1. The volume of 
interest of this study was the primary NPC tumor. Tumor seg-
mentation of the primary tumor was performed and reviewed 
by two board-certified radiologists in consensus (H.Y., V.V.; 5 
and 11 years of experience, respectively). When retropharyn-
geal lymph node was inseparable from the primary tumor, it 
was included in the region of interest because a clear distinction 
between the two structures is difficult, as has been previously 
documented (25,26). Segmentation was conducted separately 
on the contrast-enhanced T1- and T2-weighted MR images.

To ensure spatial consistency in texture analysis across the 
images, all images were resampled spatially into 1 3 1 3 4 mm 

of the benefit of radiomics in the assessment of NPC, the clini-
cal utility of radiomic-based prediction models remains unclear. 
This is mainly due to the lack of validation of this model outside 
the discovery cohort and the reliance on complex machine learn-
ing to yield accurate predictions. The lack of understanding of 
predictions made by the models led to skepticism about its clini-
cal application. In recent years, much effort has been made in 
explanatory machine learning to improve the interpretability of 
traditional complex black box machine learning models (20,21). 
In a recent study, Lundberg et al (22) explained predictions 
made by a clinical machine learning model by using the Shapley 
additive explanations (SHAP) framework, potentially increasing 
understanding and usability of their model.

The purpose of this study was to investigate the prognostic 
value of radiomics in the assessment of patients with nonmeta-
static NPC. We hypothesized that radiomic features from pre-
treatment MRI were associated with the survival of NPC and, 
when modeled with machine learning and SHAP, could yield 
accurate and explainable prediction of disease progression in pa-
tients with NPC.

Materials and Methods
This study is a multicenter retrospective study of patients with 
newly diagnosed NPC who were admitted between March 1, 
2008, and December 31, 2014, at the University of Hong 
Kong (H1) and Queen Mary Hospital (H2). Institutional 
ethics review board approval was obtained for this study, and 
informed consent was waived owing to the retrospective na-
ture of the study. Data from 122 patients in this study were 
previously reported (23). This prior study examined the prog-

Abbreviations
AUC = area under the receiver operating characteristic curve, 
GLCM = gray level co-occurrence matrix, GLRLM = gray level run 
length matrix, ICC = intraclass correlation coefficient, IMRT = 
intensity-modulated radiation therapy, NPC = nasopharyngeal car-
cinoma, PCC = Pearson correlation coefficient, PFS = progression-
free survival, SHAP = Shapley additive explanations

Summary
A machine-learning radiomic model based on pretreatment MRI 
findings has potential in the identification of patients with nonmeta-
static nasopharyngeal carcinoma who are at risk for early disease pro-
gression after primary treatment.

Key Points
nn We trained and developed a machine-learning model based on 

pretreatment MRI radiomic features to predict 3-year disease pro-
gression in patients with nonmetastatic nasopharyngeal carcinoma 
after primary treatment.

nn The radiomic model achieved an area under the receiver operating 
characteristic curve of 0.80 in discriminating patients with disease 
progression within 3 years in both the discovery cohort and the 
independent validation cohort.

nn By using the explanatory machine learning framework Shapley 
additive explanations, we identified tumor shape sphericity and 
first-order mean absolute deviation as important factors in driving 
the risk of 3-year disease progression in patients.

https://pubs.rsna.org/journal/ai
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features were standardized prior to clustering analysis. Once 
the cluster groups were identified, univariate Kaplan-Meier 
analysis was performed for each feature in each group. The me-
dian was used as the cutoff for survival groups. The feature that 
was the most significant based on the log-rank test was selected 
as the representative feature of the group (lowest P value). In 
addition to the radiomic features, five clinical features, includ-
ing patient age, sex, T stage, N stage, and overall stage, were 
also analyzed. In consideration of sample size of staging clas-
sification subgroups, the best groupings of staging classification 
based on the log-rank test were used. Radiomic and clinical 
features that were associated with PFS were selected for the 
final classification modeling.

resolution. Radiomic features based on 
the study by Aerts et al (27) were se-
lected and evaluated. For each MRI se-
quence, four subbands of Coiflet wave-
let transforms were performed, yielding 
a total of 10 images per patient (four 
subbands and original image per MRI 
sequence). For each image, 11 first-
order intensity features and 41 texture 
features (gray level co-occurrence ma-
trix [GLCM], gray level run length 
matrix [GLRLM], and neighborhood 
gray level difference matrix) were ex-
tracted. Also, five shape features were 
extracted from the contrast-enhanced 
T1-weighted sequence, leading to a 
total of 525 features per patient. A de-
tailed description of feature extraction 
and a list of features extracted are pro-
vided in Table E2 (supplement).

Feature Selection
The feature selection process in-
volved three steps. First, robustness 
was tested based on different image 
resampling. Second, interobserver 
variability was assessed by segmen-
tation between readers. Third, re-
dundant features were eliminated 
by conducting hierarchal clustering 
analysis. For resampling, Pearson lin-
ear correlation coefficient (PCC) was 
calculated between features extracted 
with image resampling and features 
extracted without image resampling. 
Features that were highly correlated 
after resampling suggested that tex-
ture information measured from the 
feature remained similar. The features 
with PCC less than 0.9 were excluded 
from analysis. For interobserver vari-
ability of the features, a subset of 30 
randomly selected patients was inde-
pendently delineated by three differ-
ent board-certified radiologists (H.Y., Y.C., and V.V.; 5, 8, 
and 11 years of experience, respectively). Two-way random 
effects one-rater intraclass correlation coefficient (ICC) 
for absolute agreement was calculated between features ex-
tracted from each segmented volume of interest. ICC mea-
sures the degree of agreement between measurements made 
by two or more readers. According to the guidelines, an ICC 
above 0.75 was indicative of good agreement and was se-
lected as the cutoff for subsequent analysis (28).

The remaining robust features were subjected to hierarchi-
cal cluster analysis to identify similar and redundant feature 
groups. Both contrast-enhanced T1- and T2-weighted fea-
tures were considered for hierarchical clustering. All radiomic 

Table 1: Summary of Patient Characteristics in Both Cohorts

Characteristic
Discovery Cohort  
(n = 217)

Validation Cohort  
(n = 60) P Value

Sex … … .579*
  Male 155 (71.4) 40 (66.7) …
  Female 62 (28.6) 20 (33.3) …
Age (y)† … … …
  Male 51 (43–60) 53 (41–62) .248‡

  Female 49 (40–68) 60 (53–74) .003‡

  Both 50 (42–59) 55 (47–65) .007‡

Overall stage … … <.001*
  I 18 (8.3) 0 (0) …
  II 48 (22.1) 5 (8.3) …
  III 86 (36.6) 42 (70.0) …
  IV 65 (30.0) 13 (21.7) …
T stage … … .14*
  T1 61 (28.1) 10 (16.7) …
  T2 42 (19.4) 9 (15.0) …
  T3 80 (36.9) 31 (51.7) …
  T4 34 (15.7) 10 (16.7) …
N stage … … <.001*
  N0 43 (19.8) 8 (13.3) …
  N1 86 (39.6) 10 (16.7) …
  N2 54 (24.9) 39 (65.0) …
  N3 34 (15.7) 3 (5.0) …
3-year PFS … … .329*
  Yes 187 (86.2) 48 (80.0) …
  No 30 (13.8) 12 (20.0) …
WHO histologic type … … .797*
  I 2 (0.9) 1 (1.7) …
  II 5 (2.3) 2 (3.3) …
  III 210 (96.8) 57 (95) …

Note.—Unless otherwise indicated, data are numbers of patients, and data in parentheses are 
percentages. PFS = progression-free survival, WHO = World Health Organization.
* P value was determined with the Pearson contingency x2 test. P . .05 suggests no signifi-
cant difference between the proportion of subjects in the two cohorts.
† Data in parentheses are the interquartile range.
‡ P value was determined with the independent samples t test. P , .05 suggests a significant 
difference between the age in the two cohorts.
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Results

Feature Selection
A total of 530 features were evaluated in this study (525 ra-
diomic features, five clinical features). Of the 525 radiomic fea-
tures, only 114 were found to be robust against image domain 
resolution resampling (PCC . 0.9). A further six features were 
excluded because they were not reproducible against interob-
server variability (ICC , 0.75). PCC and ICC values of each 
feature are given in Appendix E1 (supplement). The remain-
ing 108 robust radiomic features were subjected to hierarchi-
cal cluster analysis to identify similar and redundant feature 
groups. The cophenetic correlation coefficient of the cluster 
was found to be 0.844. The cophenetic correlation coefficient 
measures the goodness of fit of the cluster, and a value greater 
than 0.75 is considered good. A dendrogram of the cluster is 
shown in Figure 2. A total of 17 feature cluster groups were 
identified based on the dendrogram.

Kaplan-Meier analysis was performed for each feature in each 
group. The feature that was most significant based on the P value 
of the log-rank test was selected as being representative of the 
group (Fig 2). For radiomic features, shape sphericity (P = .032), 
contrast-enhanced T1-weighted first-order mean absolute devia-
tion (P = .036), contrast-enhanced T1-weighted low-low band 
wavelet transforms GLRLM gray level nonuniformity normal-
ized (P = .019), and contrast-enhanced T1-weighted low-low 
band wavelet transforms GLCM sum entropy (P = .051) were 
found to be significant or nearly significant in separating sur-
vival. For staging classification, the best groupings were as fol-
lows: T1 + T2 and T3 + T4 (P = .056), N0 + N1 + N2 and N3 
(P = .088), and I + II and III + IV (P = .038). Overall stage and 
T stage were selected for the subsequent model, as it was found 
to be significant and nearly significant. ICC, survival groups, 
and Kaplan-Meier analysis of the selected features are shown in 
Table 2 and Figure 3. No other representative radiomic or clini-
cal features were found to be significantly associated with PFS 
(P . .15). A list of log-rank tests of all features can be found in 
Appendix E2 (supplement).

Classification and Evaluation
Selected features were subjected to classification modeling to 
predict early 3-year disease progression. A support vector ma-
chine with a Gaussian kernel was selected as the classifier for 
the model. The performance of the model was evaluated inter-
nally with the discovery cohort and externally with the valida-
tion cohort. The area under the receiver operating character-
istic curve (AUC) was used as the main performance measure 
of the model. Sensitivity, specificity, and positive and negative 
predictive values in predicting 3-year disease progression were 
also calculated. For the AUC, 95% bias-corrected and acceler-
ated bootstrap confidence intervals were calculated for 1000 
bootstrap samples. The Brier score was used to measure model 
calibration by assessing the mean square difference between the 
predicted probability and the actual outcome. The lower the 
Brier score, the more accurately the predictions are calibrated 
(29).

To enable understanding and explanation of the underlying 
decision rule learned by the machine learning support vector 
machine radiomic model, SHAP values were calculated for each 
prediction. The SHAP method is derived from game theory and 
measures how much each feature of a model contributes to the 
increase or decrease of the probability of a single output (ie, the 
risk of early disease progression in this case) (21). This is achieved 
by perturbating the features and modeling them with the predic-
tion of the trained model with a linear modeling method, such as 
logistic regression, hence allowing a simple linear interpretation 
of the impact of each feature. A feature’s impact and the interac-
tion between features were investigated.

Software and Tools
Manual segmentation was performed by a radiologist using 
the open-source ITK-SNAP 3.6 software (http://www.itksnap.
org) (30). All image processing and radiomic feature extraction 
were conducted in Python using the open-source pyradiomics 
package (31). For statistical analysis, hierarchal clustering, and 
machine learning analysis, the open-source Python packages 
SciPy, scikit-learn, and SHAP were used (21,32,33).

Figure 1:  Workflow of the radiomic analysis in this study. Abs. = absolute, AUC = area under the ROC curve, CE-T1W = contrast-
enhanced T1-weighted, GLCM = gray level co-occurrence matrix, ICC = intraclass correlation coefficient for absolute agreement, PCC 
= Pearson correlation coefficient, PFS = progression-free survival, ROC = receiver operating characteristic curve, SHAP = Shapley 
additive explanations, wavelet-LL = low-low band wavelet transforms.

https://pubs.rsna.org/journal/ai
http://www.itksnap.org
http://www.itksnap.org
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Figure 2:  Dendrogram of hierarchical cluster of radiomic features. The dotted line indicates the threshold 
used for separation of the cluster groups. Representative features for each cluster group are highlighted in red. 
CE = contrast-enhanced, GLCM = gray level co-occurrence matrix, GLRLM = gray level run length matrix, T1W 
= T1-weighted, T2W = T2-weighted, wavelet-HH = high-high band wavelet transforms, wavelet-HL = high-low 
band wavelet transforms, wavelet-LH = low-high band wavelet transforms, wavelet-LL = low-low band wavelet 
transforms.
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Classification Model and 
Performance
Three different Gaussian ker-
nel support vector machine 
models were trained with the 
six features mentioned in Ta-
ble 3 to predict 3-year disease 
progression. Performance of 
the models is summarized in 
Table 3. The best performance 
was found in the model trained 
with both radiomic and clini-
cal features, which achieved an 
AUC of 0.80 in both the dis-
covery cohort (95% bootstrap 
confidence interval: 0.80, 0.81) 
and the validation cohort (95% 
bootstrap confidence interval: 
0.73, 0.89). The receiver oper-
ating characteristic curve plot 
and the Kaplan-Meier plot of 
the model are shown in Fig-
ure 4. By using median output 
probability as the threshold for 
separating the survival group, 
the model was found to be sig-
nificantly associated with PFS 
in the discovery cohort (P , 
.001) and nearly significantly 
associated with PFS in the vali-
dation cohort (P = .057). The 
performance of the radiomic-
only model (AUC = 0.71 [95% 
bootstrap confidence interval: 0.71, 0.72] and 0.76 [95% 
bootstrap confidence interval: 0.58, 0.92] in the discovery 
and validation cohorts, respectively) was found to be sig-
nificantly higher than the performance of the clinical-only 
model (AUC = 0.57 [95% bootstrap confidence interval: 
0.55, 0.57] and 0.55 [95% bootstrap confidence interval: 
0.53, 0.55] in the discovery and validation cohorts, respec-
tively). For model calibration, the Brier score was 0.101 and 
0.150 in the discovery and validation cohorts, respectively.

Model Explanation with SHAP
The SHAP values of each feature for each prediction were 
calculated. For each prediction, a positive SHAP value indi-
cates an increase in the risk of early disease progression and 
vice versa. SHAP values of each prediction are summarized in 
Figure 5. As seen in the plot, shape sphericity was found to be 
the most important risk factor, with a decrease in sphericity 
corresponding to an increase in risk. The contrast-enhanced 
T1-weighted first-order mean absolute deviation was also an 
important factor in the prediction of the radiomic model. T 
stage and overall stage were found to be the clearest indica-
tors of risk, with advanced stage III + IV and T3 + T4 tumor 
clearly indicative of higher risk of disease progression. Figure 

6 shows the dependence plots of SHAP values with features. 
A clear interaction can be observed between sphericity and 
overall stage. Figure 6a shows that the range of SHAP values 
at high sphericity in stage I + II tumors was lower than that 
in stage III + IV tumors, meaning high sphericity in stage I + 
II tumors does not impact prediction as much as in stage III 
+ IV tumors. This is also represented in Figure 6c, where for 
stage I + II tumors, a low sphericity score corresponds to de-
creased risk, whereas a low sphericity score for stage III + IV 
tumors resulted in higher risk, as demonstrated by the reverse 
in trends in Figure 6c. A similar but less profound trend was 
observed for contrast-enhanced T1-weighted first-order mean 
absolute deviation, with this feature having a similar impact, 
independent of overall staging (Fig 6d). Despite being sig-
nificantly associated with PFS in the Kaplan-Meier plot, the 
model did not find contrast-enhanced T1-weighted low-low 
band wavelet transforms GLCM sum entropy and gray level 
nonuniformity normalized to be important for prediction of 
3-year disease progression.

Discussion
In this study, we evaluated the prognostic value of radiomic 
features extracted from pretreatment MRI examinations in 
the assessment of patients at risk for early disease progres-

Table 2: Kaplan-Meier Analysis and Interobserver Variability of the Selected Ra-
diomic and Clinical Features for Machine Learning Modeling

Feature Type and Risk Group No. of Patients Threshold P Value* ICC

Clinical features
  T stage
    Low risk 103 T1 + T2 .057 NA
    High risk 114 T3 + T4 … …

  Overall stage
    Low risk 66 I + II .038 NA
    High risk 151 III + IV … …

Radiomic features
  Shape sphericity
    Low risk 109 0.641 .032 0.86
    High risk 108 ,0.641 … …

  CE T1W first-order mean absolute deviation
    Low risk 108 ,49.4 .033 0.91
    High risk 109 49.4 … …

  CE T1W wavelet LL GLCM sum entropy
    Low risk 108 ,6.98 .051 0.93
    High risk 109 6.98 … …

  CE T1W wavelet LL GLRLM GLNUN
    Low risk 109 0.016 .019 0.99
    High risk 108 ,0.016 … …

Note.—Risk groups were determined visually with the Kaplan-Meier plot. CE T1W = contrast-
enhanced T1-weighted, GLCM = gray level co-occurrence matrix, GLNUN = gray level nonunifor-
mity normalized, GLRLM = gray level run length matrix, ICC = intraclass correlation coefficient, 
wavelet LL = low-low band wavelet transforms.
* P values were determined with the log-rank test.

https://pubs.rsna.org/journal/ai
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Figure 3:   
Kaplan-
Meier plots of 
features that 
are associated 
with progres-
sion-free 
survival. Log-
rank P value 
and risk table 
are given in 
each plot. (a) 
Overall stage. 
(b) T stage. 
(c) Shape 
sphericity. 
(d) Contrast-
enhanced 
T1-weighted 
low-low 
band wavelet 
transforms 
gray level run 
length matrix 
gray level 
nonuniformity 
normalized. 
(e) Contrast-
enhanced 
T1-weighted 
first-order 
mean absolute 
deviation. 
(f) Contrast-
enhanced 
T1-weighted 
low-low 
band wavelet 
transforms 
gray level 
co-occurrence 
matrix sum 
entropy.
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sion. We developed and validated a machine learning 
model based on a combination of clinical and radiomic 
features that can predict 3-year disease progression in pa-
tients with a diagnosis of NPC after primary treatment. 
The results showed that the model could discriminate 
patients who had 3-year disease progression equally well 
in both the discovery cohort and the independent vali-
dation cohort. Interestingly, despite a nearly significant 
association found in the validation cohort, the model 
was able to separate PFS under Kaplan-Meier analysis. 
The significantly higher proportion of advanced-stage 
tumor in the validation cohort may have resulted in the 
difference in the log-rank test results in the validation 
cohort. However, the differences did not affect the abil-
ity of the model to discriminate 3-year disease progres-
sion, as demonstrated by the high separation at around 
36 months in the Kaplan-Meier plot. Despite reasonable 
discriminability in the model, the positive predictive val-
ues were found to be low in both cohorts. This was due 
to low prevalence of disease (ie, low incidence of disease 
recurrence) in the population, especially after IMRT 
(34). The high negative predictive value in the results 
indicated the model might be more useful in excluding 
disease recurrence; however, further studies are needed to 
confirm these assertions.

For feature selection, we decided to only select features 
that were associated with PFS under the log-rank test. 
Features that were associated with survival would make 

Table 3: Performance of Radiomic and Clinical Models in 
the Prediction of 3-year Disease Progression

Model AUC Sensitivity Specificity PPV NPV

Radiomic and 
clinical

  Discovery  
  cohort

0.80 0.83 0.71 0.31 0.96

  Validation  
  cohort

0.80 0.92 0.52 0.32 0.96

Radiomic only*
  Discovery  

  cohort
0.71 0.67 0.49 0.32 0.94

  Validation  
  cohort

0.76 0.92 0.77 0.29 0.95

Clinical only†

  Discovery  
  cohort

0.57 0.53 0.57 0.17 0.89

  Validation  
  cohort

0.55 0.75 0.49 0.22 0.84

Note.—AUC = area under the receiver operating characteristic curve, 
NPV = negative predictive value, PPV = positive predictive value.
* Features used for the radiomic-only model are shape sphericity, 
contrast-enhanced T1-weighted first-order mean absolute deviation, 
contrast-enhanced T1-weighted low-low band wavelet transforms gray 
level co-occurrence matrix sum entropy, and contrast-enhanced T1-
weighted low-low band wavelet transforms gray level run length matrix 
gray level nonuniformity normalized.
† Features used for the clinical-only model are T stage and overall stage.

Figure 4:  Performance of the radiomic model. (a) Kaplan-Meier plot of the radiomic model. Survival group for both the 
discovery cohort and the validation cohort is given. The median output probability of the discovery cohort was used as the 
threshold for separation of groups for both discovery and validation cohorts. (b) Receiver operating characteristic (ROC) 
curve of discovery and validation cohort. Optimal decision threshold was selected by the maximum Youden index of the 
ROC of the discovery cohort. AUC = area under the ROC curve.

https://pubs.rsna.org/journal/ai
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Figure 6:  Shapley additive explanations (SHAP) dependence plot of the features in the model. Each point on the 
plot corresponds to a prediction in a patient. (a) Dependence plot of shape sphericity shows how SHAP values vary 
with varying sphericity and the interaction with overall staging. (b) Dependence plot shows how SHAP values vary 
with contrast-enhanced T1-weighted first-order mean absolute deviation and the interaction with overall staging. (c) 
Dependence plot shows how SHAP values vary with overall staging and the interaction with shape sphericity. (d) 
Dependence plot shows how SHAP values vary with overall staging and the interaction with contrast-enhanced T1-
weighted first-order mean absolute deviation.

Figure 5:  Summary plot of feature impact on the decision of the radiomic model and interaction 
between features in the model. A positive Shapley additive explanations (SHAP) value indicates an 
increase in risk and vice versa. For overall stage and T stage, the high value corresponds to stage III 
+ IV and T3 + T4 groups. Each point corresponds to a prediction in a patient. CE-T1W = contrast-
enhanced T1-weighted, GLCM = gray level co-occurrence matrix, GLNUN = gray level nonuniformity 
normalized, GLRLM = gray level run length matrix, wavelet-LL = low-low band wavelet transforms.
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a better and more interpretable model. One major concern 
with a radiomic-based prediction model is the interpretabil-
ity of models. Radiomic models that rely on complex machine 
learning algorithms often have low clinical utility, as clinicians 
are unable to understand or explain certain predictions made 
by the model. To allow for interpretability, clinical models are 
often restricted to simple linear modeling methods, such as 
logistic regression, which often leads to lower accuracy. To ad-
dress this issue, we applied the recently proposed SHAP values 
to interpret the model. The advantage of SHAP is that it can 
uncover patterns learned by complex prediction models with-
out being restricted to simple modeling methods. The analysis 
identified shape sphericity as the most important factor in pre-
dicting 3-year disease progression. Sphericity is a measure of 
tumor compactness, with high sphericity indicating a compact 
spherical tumor. A previous study on head and neck cancer 
also yielded similar findings, in that tumor compactness mea-
sured with CT was prognostic of survival (27). While there are 
no clear pathologic findings that relate to the compactness of 
a tumor, a possible explanation could be that complex non-
spherical geometry could correspond to a more invasive and 
infiltrative tumor. Contrast-enhanced T1-weighted first-order 
mean absolute deviation was also an important risk factor. 
Mean absolute deviation is a description of the distribution 
of intensities. A high mean absolute deviation means there 
is high contrast between high and low intensity in a tumor, 
which could reflect contrasting mixture of viable and necrotic 
tissues or microscopic-level tumoral heterogeneity. T stage and 
overall stage were also found to be clear indicators of risk in the 
model, and these findings were consistent with conventional 
knowledge. One important note is that complexity of the tu-
mor geometry measured with sphericity could be confounded 
with tumor staging. However, an interesting observation in the 
model was that despite the fact that a decrease in sphericity 
generally increases the risk of early progression, low sphericity 
in early stage I + II tumors was indicative of lower risk when 
compared with low sphericity in early stage III + IV tumors. 
Early stage tumors tend to conform to the shape of the naso-
pharynx, which is irregular in nature and might explain the low 
sphericity value (further illustrated in Fig E1 [supplement]). 
In one previous study, a radiomic model based on a combina-
tion contrast-enhanced T1-weighted texture and TNM staging 
achieved an AUC equivalent to 0.78 in discriminating 3-year 
PFS on a holdout test set, which was consistent with our results 
(18). However, the radiomic features selected in the model 
were not selected in models developed in two previous MRI 
NPC radiomic studies (18,19). A major difference between the 
present study and the previous studies was that we analyzed 
robustness against interobserver variability and redundancy. 
The features selected in the two studies were removed due to 
robustness or were redundant against the selected features in 
the model.

It is important to note that patterns explained by SHAP val-
ues do not directly explain the underlying sample characteristics 
but instead explain the pattern learned by the machine learning 
model. Outliers that deviate from the general trend of the data 
could not be explained. The results of this study demonstrate 

that explanatory machine learning techniques such as SHAP 
may offer value in understanding the prediction made by ra-
diomic or clinical models that rely on machine learning.

There were several limitations to this study. First, we were 
unable to investigate the association between Epstein-Barr vi-
rus and PFS. Because an elevated level of Epstein-Barr virus 
DNA at diagnosis is indicative of risk in patients with NPC, it 
could be a potentially useful predictor of early disease progres-
sion (35). Owing to the retrospective nature of our study, this 
was not performed for every patient. Second, we were unable to 
investigate test-retest or time-dependent variability of radiomic 
features. Given one of the important predictors in the model 
was measured on contrast-enhanced T1-weighted MR images, 
images acquired with different postcontrast times could poten-
tially affect the value and robustness of the features. Finally, 
because of the retrospective nature of the cohorts, the reso-
lution across examinations was heterogeneous. We decided to 
resample all scans to the same resolution to provide consistency 
in texture analysis. Reducing image resolution in texture analy-
sis means that coarser texture was measured. In consideration 
of the multicenter application of the model, we selected only 
those features that were highly consistent before and after resa-
mpling. This meant that only features that were highly linearly 
correlated when they were finely and coarsely measured were 
selected, which limited the number of features in this study.

In conclusion, the results of this study add to the growing 
evidence of the use of radiomics in tumor diagnosis and risk as-
sessment. By using SHAP values, we were able to uncover an 
interaction pattern learned by the radiomic model between tu-
mor shape and staging, hence improving explainability and po-
tentially aiding the clinical utility of the model. Further studies 
on test-retest and time-dependent variability and validation in a 
larger prospective cohort are needed to determine the true value 
of radiomics in the assessment of NPC.
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