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Abstract

Metamorphic proteins switch between different folds, defying the protein folding paradigm. It is 

unclear how fold-switching arises during evolution. Using ancestral reconstruction and NMR, we 

studied the evolution of the metamorphic protein XCL1, which has two distinct folds with 

different functions, making it an unusual member of the chemokine family that generally adopts 

one conserved fold. XCL1 evolved from an ancestor with the chemokine fold. Evolution of a novel 

dimer interface, changes in structural constraints and molecular strain, and alteration of 

intramolecular protein contacts drove the evolution of metamorphosis. Then, XCL1 likely evolved 

to preferentially populate the non-canonical fold before reaching its modern-day near-equal 

population of folds. These discoveries illuminate how one sequence evolves to encode multiple 

structures, revealing principles for protein design and engineering.

One Sentence Summary:

The human protein XCL1 evolved to switch between two completely different folds with different 

functions.
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Metamorphic proteins defy the protein folding paradigm, in which each amino acid 

sequence adopts one defined fold (monomorphic). They switch reversibly between entirely 

distinct folds, often with different functions, on the timescale of seconds (1). Metamorphic 

proteins undergo large-scale structural changes (e.g. alterations in secondary structure and 

hydrogen bonding networks), whereas allosteric proteins exhibit smaller-scale 

conformational dynamics (1, 2). While only ~6 metamorphic proteins have been well 

characterized (2–4), estimates suggest that metamorphic proteins may comprise up to 4% of 

proteins in the Protein Data Bank (PDB) (5). The emergence of new protein folds on 

evolutionary timescales has been examined (6–9), but it remains unclear how metamorphic 

folding evolves in a single protein.

Among metamorphic proteins, the human chemokine XCL1 (lymphotactin) undergoes one 

of the most significant structural switches, involving complete rearrangement of hydrogen 

bonding networks (Fig.1A–B) (10). XCL1 belongs to a family of 46 human chemokines: 

small, secreted proteins that direct immune cell migration. While non-XCL1 chemokines 

adopt a monomorphic, conserved α+β fold (chemokine fold) (11), XCL1 reversibly 

interconverts between the chemokine fold and a dimeric, all-β fold (alternate fold) with no 

structural similarity to other known proteins (Fig.1A) (10). Non-XCL1 chemokines execute 

two essential functions using one structure, but XCL1 divides these two functions between 

its two folds: the chemokine structure activates XCL1’s cognate G-protein coupled receptor 

(GPCR), while the alternate structure binds glycosaminoglycans (GAGs) (10). Additionally, 

the alternate structure is directly antimicrobial, like a subset of chemokines (12). In a family 

of proteins that adopt a single fold, how did XCL1 evolve to become metamorphic?

To better understand the evolution of metamorphosis in XCL1, we inferred its phylogenetic 

tree using ancestral reconstruction (Fig.1D, Fig.S1). This technique utilizes multiple 

sequence alignments of modern-day proteins from different species to infer amino acid 

sequences of shared ancestors (13) and has been used to investigate various evolutionary 

questions (14–19). We created a multiple alignment for 457 chemokine sequences from 30 

vertebrate species incorporating 14 chemokine structures (20), from which we inferred the 

phylogeny of XCL1 and related chemokines using maximum likelihood methods (i.e. the 

inferred ancestral sequences have the highest probability of producing the modern-day 

sequences (13, 21, 22)). Phylogenetic analysis indicates that XCL1 is most closely related to 

another, monomorphic chemokine, CCL20 (Fig.1D, Fig.S1) (12). We resurrected (i.e. 

expressed and purified) the last shared ancestor of XCL1 and CCL20 (Anc.0). Unlike the 

temperature- and salt-dependent structural equilibrium of XCL1 (23), the Anc.0 HSQC 

spectrum is unchanged from 10–50°C +/− NaCl (Fig. S2). We solved the Anc.0 NMR 

structure: it adopts the canonical chemokine fold (Fig.1C, Table S1). Despite sharing only 

40% sequence identity with extant, human XCL1, Anc.0’s structure is highly similar to 

human XCL1’s chemokine fold (RMSD = 1.45Å) (Fig. 1A, C). Together, these data suggest 

that a metamorphic protein evolved from a monomorphic ancestor.

Non-XCL1 chemokines have two conserved disulfide bonds, one of which is incompatible 

with the alternate fold of XCL1. Restoring the missing disulfide bond to XCL1 makes it 

monomorphic, locked into the chemokine fold (24). Anc.0 has both chemokine disulfide 

bonds, so we sought to identify the interval where one disulfide was likely lost, because this 
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may have imparted metamorphism. Maximum likelihood methods (13, 21, 22) identified 

several nodes along the evolutionary trajectory from Anc.0 to extant XCL1. By locating the 

oldest node whose sequence lacks the cysteines needed for one of the disulfides, we 

identified the interval where one disulfide was lost (Fig.1D), culminating in an ancestor 

called Anc.2 (Fig.1D). Anc.2 adopts a single fold at all temperature and salt conditions 

tested by NMR (10–50°C, +/− NaCl), indicating that disulfide loss alone did not enable 

metamorphism (Fig.1D, Fig.S3).

Given that loss of a conserved disulfide was necessary but insufficient to impart 

metamorphism to XCL1, what evolutionary changes resulted in the emergence of 

metamorphosis? We resurrected the remaining inferred ancestral sequences (Anc.3, Anc.4) 

and found by NMR that they both interconvert reversibly between two distinct folds 

(Fig.2A–C, Fig. S4–7) despite sharing only 60 and 68% sequence identity with human 

XCL1 respectively. This suggests that a wide range of sequences can encode metamorphism, 

because here metamorphism is encoded by sequences that differ at up to 40% of positions. 

ZZ-exchange experiments reveal that Anc.3 (kex=0.97 s−1) and Anc.4 (kex=2.6 s−1) 

exchange on the timescale of seconds, similar to human XCL1 (kex=0.90 s−1 (25)), 

consistent with XCL1 evolving to remain metamorphic over hundreds of millions of years, 

balancing occupancy of its two structures by keeping exchange rates in a narrow range.

Because extant human XCL1 occupies its two folds in equal proportion, we sought to 

determine if Anc.3 and Anc.4 do also. HSQC peak intensities can quantify the fractional 

population of the different folds of XCL1, which is determined by the concentration-

independent equilibrium constant for fold-switching. HSQC experiments show that under 

near-physiologic conditions (37°C, 150 mM NaCl) at identical protein concentrations, 

92±3.7% of the Anc.3 population occupies the chemokine fold (Fig. 2A–B, D, Table S2). 

However, only 9.3±2.0% of the Anc.4 population occupies the chemokine fold (Fig. 2A–B, 

D, Table S2). To confirm the robustness of these results to statistical uncertainty in 

ancestrally reconstructed sequences, we expressed and purified “Alt.” ancestral proteins, 

where we replaced every residue with the next most likely residue if the next most likely 

residue was predicted with >20% probability, creating a “worst case” alternate at all 

positions ancestor, as is the standard in the field (26) (Fig. S8). Consistent with our results 

for the maximum likelihood ancestors, Alt.Anc.0 and Alt.Anc.2 are monomorphic, whereas 

Alt.Anc.3 and Alt.Anc.4 are metamorphic (Fig. S8), and Alt.Anc.4 populates the chemokine 

fold 11±1.4%. This suggests that XCL1 likely evolved from a single-fold ancestor (Anc.2), 

to a metamorphic ancestor that prefers the chemokine fold (Anc.3), to a metamorphic 

ancestor that prefers the alternate fold (Anc.4), to an extant metamorph that equally 

populates two different folds (Fig. 2B, D).

The aligned sequences of Anc.2 and Anc.3 differ in 26 positions distributed throughout 

sequence and structure (Fig. S1C). To uncover how these sequence changes introduced 

metamorphosis, we examined these positions based on three criteria: sequence comparison 

of positions at the alternate structure’s dimer interface, sequence comparison of positions 

likely to impact overall structural flexibility, and analysis of residue-residue contacts in the 

chemokine structure (Fig.3A). Another sequence-based criterion that has been used to 

predict protein metamorphosis is inaccurate secondary structure prediction (5, 28); however, 
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each ancestral sequence, and WT XCL1, are predicted to adopt the secondary structure 

profile of the chemokine fold (Fig. S9).

Several metamorphic proteins form protein-protein interfaces likely to stabilize one of their 

two structures, including RfaH (29), Selecase (30), and XCL1 (23). For XCL1, the alternate 

structure forms a stable dimer interface that is likely important for metamorphic folding, so 

we performed sequence comparison of Anc.2 and Anc.3 at XCL1 dimer interface positions. 

We found that three interface positions switch from polar or charged in Anc.2 to aliphatic 

side chains in Anc.3 (Y11I, T38I, and R43L) (Fig. 3B), making contacts with the rest of the 

apolar dimer interface more favorable. Sequence comparison also identified two changes 

between Anc.2 and Anc.3 that likely increase structural flexibility (P15R) or create strain (a 

deletion in the β1–β 2 loop at position 29) in the chemokine fold (Fig. 3C).

Networks of noncovalent residue-residue contacts are key indicators of protein conformation 

and stability (31, 32) that mediate essential biological phenomena (33–35). Because 

metamorphosis likely relies on a nuanced balance of conformational stability across multiple 

protein folds, we suspected that changes in noncovalent contact networks might contribute to 

the evolution of protein metamorphosis. We compared contact networks in human XCL1 

versus Anc.0 and identified seven positions that make > 3 contacts in Anc.0 and < 3 contacts 

in XCL1, and whose identities differ between Anc.2 and Anc.3. We focused on these 

sequence substitutions because they decreased connectivity in Anc.0 (potentially permissive 

for interconversion) but minimized changes in connectivity in XCL1 (preserving the 

chemokine fold) (31) (Fig. 3D, S10), suggesting that mutations that permit rewiring of these 

contacts could enable metamorphic folding. These positions largely cluster around Anc.0’s 

second disulfide bond (Fig. 3D, S10C), “gluing” its structure in place. After the disulfide 

was lost, this remaining structural “glue” “dissolved” as metamorphosis evolved. Position 

27, which points into the “glue” region, is a glutamine in Anc.0, Anc.2, and Anc.3. But in 

Anc.4, it is a bulky lysine, which is likely to sterically destabilize the chemokine fold, 

perhaps partly accounting for the fact that Anc.4 prefers the alternate fold. In human XCL1, 

this position is a threonine, perhaps facilitating XCL1’s shift to a 50/50 structural 

equilibrium.

To identify sequence changes sufficient to introduce metamorphic folding, we mutated 

positions in Anc.2 (monomorphic) to match Anc.3 (metamorphic) based on the findings 

described above (Table S3). We evaluated the resulting variants for fold-switching via HSQC 

experiments. We found that combining the three dimer interface, two flexibility-altering, and 

seven connectivity-altering substitutions (11/26 possible sequence changes; Anc.2m; Fig. 

3A–D, Table S3) conferred the ability to populate the alternate fold (Fig. S11, Fig. 3E–H). 

Anc.2 variants incorporating all three dimer interface substitutions alone, or the two 

flexibility-altering changes alone, or the seven connectivity-altering changes alone are not 

metamorphic and only occupy the chemokine fold (Table S3), suggesting that these three 

sets of changes had to occur in combination to introduce metamorphic folding. Reverting the 

least disruptive mutation at the dimer interface (I38T) in Anc.2m disables metamorphosis, 

causing Anc.2m I38T to adopt exclusively the chemokine fold, indicating that the T38I 

mutation is necessary but insufficient for metamorphic folding (Fig. 3G, Table S3). This 

highlights how mutations that stabilize an alternate fold through formation of a protein-
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protein interface can critically impact metamorphic folding, as is seen in other metamorphic 

proteins (29). Together, these findings show that concurrent changes in interaction 

interfaces, structural flexibility, and noncovalent residue-residue contact networks act 

together to drive the evolution of protein metamorphosis.

Lattman and Rose proposed that a protein’s specific folded structure can be encoded either 

by amino acids distributed throughout its sequence (distributed control), or discrete sites 

(centralized control) (36). While both distributed (37) and centralized (38) control of folding 

have been described, the requirement for numerous, structurally distant mutations of 

different kinds to enable metamorphosis suggests that distributed control governs XCL1’s 

structure.

Despite growing interest in metamorphic proteins (2–5), the mechanism by which one 

sequence encodes two structures remains unclear. Here, ancestral reconstruction illuminates 

the molecular evolution of protein metamorphosis in XCL1. Metamorphic proteins have 

been hypothesized to represent evolutionary bridges, or “snapshots” of proteins “caught in 

the act” of evolving a new fold (8, 39, 40). Were this the case for XCL1, its ancestors would 

likely have progressed from populating only the chemokine fold to adopting exclusively the 

alternate fold. Rather, our data suggest that human XCL1 likely evolved from a metamorphic 

ancestor that may preferentially adopt the chemokine fold to one that may preferentially 

adopt the alternate fold, before evolving to occupy both structures in approximately equal 

proportion. This suggests that XCL1 is not evolving from one fold to a new one, but is 

evolving to remain metamorphic, indicating that metamorphosis may be a molecular 

phenotype that was selected for in XCL1 rather than a transient feature of an evolutionary 

intermediate.

Why would metamorphosis be favored? All chemokines activate GPCRs and bind GAGs, 

and some chemokines, including XCL1, are directly antimicrobial (12, 41–44). Non-XCL1 

chemokines carry out these three functions using one fold, whereas XCL1’s chemokine fold 

activates its cognate GPCR and its alternate fold binds GAGs and is directly antimicrobial 

(10, 12, 41). As such, metamorphic folding could confer dynamic control over the fractional 

population, and therefore the activity, of each structure (Fig. 4A), avoiding the need to 

transcribe and translate multiple genes and degrade or inhibit multiple proteins in order to 

turn multiple functions on and off, thus allowing for fast switching between functional states 

mediated by distinct folds. It could also enhance a specific function (e.g. GAG binding), or 

permit acquisition of a new function (e.g. antimicrobial activity). Specifically, metamorphic 

folding may enable XCL1 to kill pathogens directly at the site of infection (alternate fold) 

and stimulate antigen cross-presentation to effector cells (chemokine fold), coordinating 

humoral and cell-mediated immune responses and allowing for spatiotemporal regulation of 

multiple functions (Fig. 4A). If fold-switching thus enhances the ability of other 

metamorphic proteins to carry out their biologic roles, then metamorphic proteins may be 

more common than previously thought. Why metamorphic folding evolved in XCL1 and not 

other chemokines, however, remains mysterious.

Analysis of proteins like XCL1 that reversibly switch between two well-defined folds can 

inform the de novo design of fold-switching proteins, which remains a challenge. Our work 
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suggests that designed fold-switching proteins may need to incorporate protein-protein 

interfaces that stabilize one fold, structural constraints and strain to enable interconversion, 

and residue-residue contact networks that allow stable formation of both folds without 

trapping the protein in either fold (Fig. 4B). LOCKR, a designed protein switch system 

currently being developed for therapeutic use, has already been constructed by stabilizing a 

protein-protein interface, demonstrating the utility of this approach (45, 46). Moreover, the 

broad span of XCL1 sequence space compatible with metamorphic interconversion implies 

that design of fold-switching proteins could be within reach, especially with the help of 

principles uncovered in this study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Evolutionary history of XCL1.
(A) Structures and secondary structure diagrams for XCL1’s chemokine fold (red) and 

alternate fold (gold). (B) Cartoon comparing hydrogen bonding networks in each fold’s β-

strands. Black lines between dots represent pairs of hydrogen bonds between amino acids. 

Grey shading highlights the same set of residues. Interconversion between XCL1’s 

chemokine fold and alternate fold requires the β2 strand to rotate 180° and shift by one 

residue relative to the β1 and β3 strands, establishing an entirely new hydrogen bonding 

pattern. (C) Ensemble of the top 20 NMR structures for Anc.0 (PDB ID 7JH1), colored by 

secondary structure. Disulfide bonds are shown as dark grey sticks. (D) Simplified 

phylogenetic tree showing XCL1’s evolutionary history, beginning with the last shared 

ancestor (Anc.0) of XCL1 and another chemokine (CCL20). MYA, Million Years Ago. 

Nodes represent reconstructed ancestral sequences. For each ancestral sequence, % identity 

to extant human XCL1 is shown in parentheses.
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Fig. 2. Evolutionary progression of metamorphic folding in XCL1.
(A) 1D traces (from HSQC experiments performed at 37°C, 150 mM NaCl, 350 μM protein 

concentration) for a glycine peak (Gly44 in XCL1) that is diagnostic of XCL1’s 

metamorphic conformation, shown as spheres on Anc.0’s structure at left. Because Gly44 

occupies distinct chemical environments in XCL1’s different native structures, there are two 

Gly44 peaks with chemical shifts of ~8.0 1H ppm (chemokine fold, red) and ~7.4 1H ppm 

(alternate fold, gold). (B) Fractional abundance of the chemokine and alternate folds were 

calculated as an average of relative HSQC peak volumes for two reporter residues (Gly44 

and the indole NH of Trp55 in XCL1). All spectra were collected at 37°C with 150 mM 

NaCl and 350 μM protein concentration. (C) ZZ-exchange dynamic analysis (27) of Anc.3 at 

40 °C and Anc.4 at 25 °C, both with 0 mM NaCl, using the glycine reporter. Cross peaks 

indicate the presence of structural interconversion. Conditions for each ancestor were chosen 

to maximize the presence of both folds in order to enhance detection of cross peaks. (D) 

Simplified phylogenetic tree indicating the back-and-forth evolutionary trajectory of XCL1 

metamorphosis. Pie charts represent fractional occupancy of the chemokine fold (red) and 

the alternate fold (gold).
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Fig. 3. Metamorphic folding is enabled by the combined presence of changes in dimer interface, 
structural flexibility, and residue contact networks.
(A) Schematic of the hypothesis that metamorphosis evolved over time via a subset of key 

sequence changes from Anc.2 towards Anc.3. (B) Dimer interface positions that are polar in 

Anc.2 and hydrophobic in Anc.3. (C) Positions likely to be important for structural 

flexibility, and creation of strain in the chemokine fold. (D) Positions selected for 

replacement in Anc.2 using contact network analysis (Cα, red spheres). Anc.0 disulfides 

shown in black. (E-G) HSQC spectra for Anc.2 (E), Anc.2m (F) and Anc.2m I38T (G) 

(50°C, 20 mM NaPO4 (pH 6.0)). Boxes: conformational reporter residues. (H) ZZ-exchange 

analysis for Anc.2m (50°C, 20 mM NaPO4 (pH 6.0)) using reporter residue Gly41. Top: 

cross peaks indicate interconversion. Bottom: curves fit to peak intensities vs. time to 

calculate kinetic parameters. kforward (kfor), interconversion from the alternate fold towards 

the chemokine fold; kreverse (krev), interconversion in the reverse direction.
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Fig. 4. Functional advantages and design insights provided by protein metamorphosis.
(A) Metamorphosis enables spatiotemporal control of protein function through modulation 

of the relative population of two different folded states in a concentration-dependent manner. 

For example, XCL1 can populate the antimicrobial fold close to a site of infection and the 

GPCR binding fold further away. (B) The emergence in nature or de novo design of fold-

switching proteins may require (top) creation of a protein-protein interface that stabilizes the 

alternate fold, (middle) incorporation of molecular flexibility and strain, and (bottom) 

optimization of residue-residue contact networks to avoid thermodynamic or kinetic trapping 

in a single fold.
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