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RNA polymerase II (Pol II) generally pauses at certain positions
along gene bodies, thereby interrupting the transcription elon-
gation process, which is often coupled with various important
biological functions, such as precursor mRNA splicing and gene
expression regulation. Characterizing the transcriptional elon-
gation dynamics can thus help us understand many essential
biological processes in eukaryotic cells. However, experimentally
measuring Pol II elongation rates is generally time and resource
consuming. We developed PEPMAN (polymerase II elongation
pausing modeling through attention-based deep neural network),
a deep learning-based model that accurately predicts Pol II paus-
ing sites based on the native elongating transcript sequencing
(NET-seq) data. Through fully taking advantage of the atten-
tion mechanism, PEPMAN is able to decipher important sequence
features underlying Pol II pausing. More importantly, we demon-
strated that the analyses of the PEPMAN-predicted results around
various types of alternative splicing sites can provide useful clues
into understanding the cotranscriptional splicing events. In addi-
tion, associating the PEPMAN prediction results with different epi-
genetic features can help reveal important factors related to the
transcription elongation process. All these results demonstrated
that PEPMAN can provide a useful and effective tool for modeling
transcription elongation and understanding the related biological
factors from available high-throughput sequencing data.

Pol II pausing | deep learning | alternative splicing

P lenty of studies have discovered that the eukaryotic tran-
scription elongation is not a stand-alone process. Instead, it

is often coupled with many cotranscriptional RNA processing
events, such as precursor mRNA (pre-mRNA) capping, splicing,
and cleavage (1). During these processes, RNA polymerase II
(Pol II) does not read out the DNA sequence at even speeds. In
fact, the transcription elongation rate is dynamic and interplays
with many cotranscriptional regulatory factors (2, 3). Recently,
accumulating evidence has revealed that RNA Pol II complexes
are unevenly distributed along gene bodies (4, 5) and can pause
in specific regions in nearly 40% of genes (6, 7), often associating
with the kinetic competition and coordination between transcrip-
tion elongation and cotranscriptional events (4, 8). For example,
it has been reported that Pol II frequently pauses in promoter-
proximal regions as well as 20 to 40 nucleotides downstream from
the transcription start sites of hsp70 in Drosophila and c-fos in
mammals (9–11), which regulate the gene expression and RNA
processing events (e.g., 5′-end capping and 3′-end processing).
In addition, the transcription elongation rates have been shown
to be crucially involved in the regulation of alternative splicing
outcomes (12–14). For instance, it has been observed that Pol II
pauses on a strong splice site and enables a weaker splice site
upstream to be recognized by the spliceosome, thus resulting
in the inclusion of the corresponding weak exon into the final
mature RNA (15). Although these studies have demonstrated
the regulatory roles of Pol II pausing in cotranscriptional pro-
cesses, they were mainly based on the statistical analyses of Pol II
densities from low-resolution sequencing data in a limited num-
ber of genes and genetic regions. They were mainly dependent

on qPCR and high-throughput chromatin immunoprecipitation
(ChIP-seq) techniques to provide snapshots of the relative abun-
dance of Pol II along gene bodies (16, 17), which were generally
limited in resolution (>200 base pairs [bp]) and strand speci-
ficity that are generally important for our deep understanding
of the regulatory mechanisms underlying Pol II pausing and
cotranscription processes (5).

Recently, the native elongating transcript sequencing (NET-
seq) technique was able to provide a genome-wide, single-
nucleotide resolution and strand-specific quantification of Pol II
abundance in vivo (7, 18). Based on the high-quality quantitative
measurement of Pol II density, Pol II pausing events can be iden-
tified at single-nucleotide resolution (18). Despite the advent of
this high-throughput DNA sequencing technique in characteriz-
ing Pol II distributions, the underlying contextual DNA patterns
related to Pol II pausing and transcription elongation and the
corresponding associations with cotranscriptional processes are
still not fully understood. Thus, accurately modeling the tran-
scription elongation process at nucleotide resolution in genome-
wide scale and systematically extracting the sequence features
underlying Pol II pausing can greatly advance our understanding
of the regulatory mechanisms of gene transcription.

In recent years, deep learning frameworks have been widely
applied in numerous genomic data analysis tasks, such as pre-
diction of antigen presentation by major histocompatibility com-
plex (19), modeling of translation initiation and elongation
(20, 21), and identification of nucleic acid–protein binding sites
(22). Here, we developed PEPMAN (polymerase II elongation
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pausing modeling through attention-based deep neural network)
to address the RNA Pol II pausing prediction problem using
contextual sequences surrounding the target loci. Our PEPMAN
framework is a machine learning-based method that systemat-
ically models Pol II pausing events. By fully taking advantage
of the superior predictive capacity of deep neural networks
(22) and the interpretability of attention mechanism (23), PEP-
MAN can accurately predict Pol II pausing events in human
genome and capture the important contextual sequence features
around Pol II pausing sites. In addition, the PEPMAN predic-
tion results enable us to systematically investigate the underlying
relations between Pol II pausing and other essential cotranscrip-
tional processes, such as alternative splicing, transcription factor
binding, histone modification, and DNA methylation. All these
results demonstrate that PEPMAN can provide a powerful and
useful tool to study the transcription elongation process from
high-throughput sequencing data.

Results
The PEPMAN Framework. For modeling the Pol II pausing events
in human genome, the PEPMAN framework formalized this
problem as a classification task, in which the output scores of
the employed deep neural network quantified the probabilities
of Pol II pausing in genome loci (Fig. 1). In our study, a Pol II
pausing event was said to occur at a given genome locus (which is
also defined as a Pol II pausing site) if its read count derived from
NET-seq is larger than four and higher than three standard devi-
ations above the mean of surrounding 200 nucleotides (Fig. 1A),
following similar criteria as in the previous research (24). Our
sensitivity analyses demonstrated that such criteria were guaran-
teed to yield a high precision set of positive samples with a good
genomic coverage (SI Appendix). In addition, we randomly sam-
pled other genome loci as background from gene bodies, which
were then combined with Pol II pausing sites to train a prediction
model (Materials and Methods).

We assumed that the prediction of Pol II tendencies is deter-
mined by the contextual sequences around individual Pol II
pausing sites. Thus, we also extended each pausing site 100
nucleotides both upstream and downstream to obtain a 201-bp-
long sequence as an input to the convolutional neural network

(CNN) employed in PEPMAN to learn the underlying sequence
features (Fig. 1B and SI Appendix, Fig. S2A). The trained
PEPMAN model can be used to model the Pol II pausing ten-
dency of any given genomic locus (Fig. 1C). Furthermore, the
attention mechanism employed in our model can highlight the
important locations of the contextual sequence when predict-
ing Pol II pausing tendencies and thus, can be used to identify
the sequence motifs around individual Pol II pausing sites.
More importantly, we can associate the prediction results of
PEPMAN with the alternative splicing events, which may offer
useful hints into understanding the interplay between Pol II
pausing and alternative splicing. Moreover, the analyses of the
prediction results of PEPMAN enabled us to investigate the
relations between Pol II pausing and other transcription-related
factors, such as transcription factor binding sites, histone modi-
fication, and DNA methylation, which thus may provide insights
into the cotranscriptional process (Fig. 1C).

PEPMAN Accurately Predicts the Pol II Pausing Events. We evaluated
the prediction performance of PEPMAN on the high-throughput
NET-seq data derived from the human HeLa S3 and human
embryonic kidney 293T (HEK293T) cell lines (5). Because our
method is a method for modeling Pol II pausing events, we also
implemented several machine learning or deep learning-based
methods (22, 25) that were previously used in other biologi-
cal data analysis tasks and regarded them as the baselines for
comparison. In particular, we first compared the performance of
PEPMAN with that of a conventional machine learning-based
method large-scale gapped k-mer (LS-GKM) (25), which was
an updated version of gapped k-mer support vector machine
(gkm-SVM) (26) that was originally used for predicting the regu-
latory elements in DNA sequences. LS-GKM first transfers an
input DNA sequence into a gapped k -mer frequency feature
vector space and then builds an SVM classifier to distinguish
important sequence features from background signals (25). Our
comparison showed that PEPMAN can achieve a superior pre-
diction performance over LS-GKM, with increases of the area
under the receiver-operating characteristic curve (AUROC) of
14.2 and 17.3% and the area under the precision recall curve
(AUPR) of 18.4 and 21.5% in HeLa S3 and HEK293T cells,
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Fig. 1. Schematic overview of the PEPMAN pipeline. (A) Data preprocessing. The NET-seq read counts that are larger than three standard deviations above
the mean are defined as Pol II pausing sites. (B) The PEPMAN architecture. The contextual sequence surrounding a target site is first one-hot encoded and
then passed through a two-layer CNN. The encoded feature map is then fed into an attention layer to calculate the attention vector, which stores the
importance scores of individual nucleotide positions to the final prediction. Next, the attention vector is combined with the original feature map and then
passed into an MLP to predict the pausing probability of the input target site. (C) Downstream applications of PEPMAN. The text has more details.
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respectively (Fig. 2 A–D). In addition, to compare our model
with other deep neural network-based methods in biological
data analysis tasks, we also implemented a CNN-based model
similar to the DeepBind architecture (22), which was originally
used for predicting the sequence specificities of DNA and RNA
binding proteins, and a hybrid convolutional and bidirectional
long short-term memory (LSTM) recurrent neural network
(CNN + LSTM) model similar to DanQ (27), which was pre-
viously applied in predicting the mutational effects of DNA
sequences. As in PEPMAN, these two methods first embed input
sequences into one hot-encoded feature representations, which
are then fed into deep neural networks for prediction. The com-
parison results showed that PEPMAN still can achieve better
performance than both CNN-based and hybrid frameworks in
the HeLa S3 cell line, with increases of 6.8 and 4.9% in AUROC,
respectively, and 13.3 and 9.0% in AUPR, respectively (Fig. 2
A and C). In the HEK293T cell line, the increases were larger,
reaching to 11.5 and 5.3% in AUROC, respectively, and 19.2
and 10.9% in AUPR, respectively (Fig. 2 B and D). Notably, we
also found that the performance of the PEPMAN model without
attention mechanism decreased by 2.1 and 4.7% in AUROC and
5.0 and 10.7% in AUPR in HeLa S3 and HEK293T cell lines,

respectively (Fig. 2 A–D), which thus verified the important role
of the attention layer employed in our model. All these results
demonstrated that PEPMAN is a general framework that can be
applied to different cell lines and that can accurately predict Pol
II pausing events and greatly outperform the baseline methods.

We also performed cross-cell line prediction between HeLa S3
and HEK293T and found that our model can still obtain decent
performance when trained on the data from one cell line and
tested on that from the other cell line (Fig. 2 E and F). These
results indicated that PEPMAN can learn cross-cell line features
of Pol II pausing sites, and both HeLa S3 and HEK293T cell
lines may share a number of similar sequence features contribut-
ing to the prediction of Pol II pausing sites. To further investigate
the similarities between the Pol II pausing sites of HeLa S3 and
HEK293T, we checked the overlap between the two gold stan-
dard datasets (i.e., HeLa S3 and HEK293T). We found that
between the 36,429 and 548,35 positive samples from HeLa S3
and HEK293T cell lines, respectively, there were 22,110 samples
overlapping within a 201-bp window. In other words, over 60%
of positive samples of HeLa S3 cell line overlapped with those of
HEK293T cell line. This result probably could explain the high
accuracy of our model in cross-cell line prediction. In addition,

A B C

D E F

Fig. 2. Performance evaluation of PEPMAN on the test data (chromosomes 17 to 22 and X; the ratio of positive to negative samples was 1:10). (A and B)
Receiver-operating characteristic (ROC) curves and corresponding area under receiver-operating characteristic curve (AUROC) scores of PEPMAN and differ-
ent baselines in HeLa S3 and HEK293T cell line, respectively. (C and D) Precision recall (PR) curves and the corresponding area under precision recall (AUPR)
scores of PEPMAN and different baselines in HeLa S3 and HEK293T cell lines, respectively. Pre-PEPMAN denotes the PEPMAN model without attention mech-
anism, CNN + LSTM denotes a reimplementation of DanQ (27), CNN denotes a reimplementation of DeepBind (22), and LS-GKM stands for a conventional
SVM-based method (25). (E and F) ROC curves/AUROC scores and PR curves/AUPR scores of cross-cell line prediction of different models between HEK293T
and HeLa S3 cells, respectively. HeLa S3 and HEK293T denote the performance of PEPMAN on the original test datasets. HEK293T–HeLa S3 and HeLa S3–
HEK293T denote the cross-cell line performance of the models that were trained on data from the former and tested on data from the latter. Detailed
AUROC and AUPR scores of PEPMAN and baselines in HeLa S3 and HEK293T cell lines over 10 repeats are shown in SI Appendix, Table S1.
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to understand why HEK293T–HeLa S3 displayed competitive
accuracy with HeLa S3 and better performance than HeLa S3–
HEK293T (Fig. 2 E and F), we also checked the sequencing
depth of NET-seq data of both HeLa S3 and HEK293T cell lines.
We found that the sequencing depth of HEK293T was larger
than that of HeLa S3 (555 vs. 360 million uniquely aligned reads
for HEK293T and HeLa S3, respectively). This result indicated
that a number of pausing sites may not be detected in the HeLa
S3 cell line possibly due to the low sequence depth. For exam-
ple, among the expressed genes that did not contain pausing
sites in the HeLa S3 cell line, over 30% of them recalled paus-
ing sites in the HEK293T cell line. Meanwhile, we observed that
the expression levels of these genes were not tissue specifically
expressed between HeLa S3 and HEK293T cell lines. Thus, the
pausing sites from HEK293T may be able to complement those
pausing sites that were not detected in the HeLa S3 cell line
because of the low sequencing depth. These results could provide
a possible reason behind the competitive accuracy of HEK293T–
HeLa S3 with HeLa S3 and also explain why HEK293T–HeLa
S3 displayed better performance than HeLa S3–HEK293T.

PEPMAN Highlights Important Sequence Motifs Associated with Pol
II Pausing. A major advantage of PEPMAN over other deep
learning-based frameworks is that PEPMAN further incorpo-
rates the attention mechanism, thus enabling one to capture
the important sequence features through examining the atten-

tion vectors of samples. Here, we first examined the distribution
of attention scores through averaging the attention vectors a=
(a1, . . . , a201)

> over all samples in the test dataset. As shown
in Fig. 3A, in the HeLa S3 cell line, two high-attention regions
(HARs) appeared in the contextual sequences of the predicted
Pol II pausing sites (i.e., a relatively higher peak on the 5′-end
direction [around positions −14 to 0] and a relatively lower peak
on the 3′-end direction [around positions 7 to 12], which were
defined as 5′HAR and 3′HAR, respectively). This observation
indicated that the contextual sequences around a 10- to 20-bp
window on both sides of the target sites are essential for Pol II
pausing prediction in HeLa S3 cells. Similarly, HEK293T cells
also displayed an obvious 5′HAR on the upstream of Pol II paus-
ing sites (Fig. 3B), which was quite similar to the result in HeLa
S3 cells (Fig. 3A). On the other hand, unlike the result of HeLa
S3 cells, we did not observe a 3′HAR on the downstream of
Pol II pausing sites for HEK293T cells (Fig. 3B). To demon-
strate the contribution of HARs in predicting Pol II pausing
sites, we masked out the regions in samples with low-attention
scores and retrained the model. As shown in SI Appendix,
Table S2, comparing with the original PEPMAN model, the
model (PEPMAN−) that was trained on the masked samples
only displayed a minor decrease in performance. Moreover, we
also masked out those positions with high-attention scores and
retrained the model. As expected, the performance of this model
(PEPMAN+) decreased significantly compared with the original

A B

C

Fig. 3. The high-attention regions (HARs) indicating the important contextual sequence features in predicting Pol II pausing events. (A and B) The distribu-
tions of attention scores of the contextual sequences over all samples in the test data in HeLa S3 and HEK293T cell lines, respectively. For the HeLa S3 cell
line (A), two HARs were highlighted (one on the 5′-end direction, denoted by 5′HAR, and the other on the 3′-end direction, denoted by 3′HAR), while for
the HEK293T cell line (B), only one HAR (i.e., 5′ HAR) was highlighted. (C) The known sequence motifs from the database TRANSFAC (28) enriched in the
5′HARs of HeLa S3 and HEK293T cell lines and the 3′HAR of the HeLa S3 cell line, which were determined by the motif-calling program HOMER (29), with
Benjamini q values < 0.05.
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PEPMAN model. These results revealed that the attention
mechanism module employed in our framework can accurately
detect the important positions for predicting Pol II pausing sites.

To further demonstrate the superiority of our feature attri-
bution strategy, we also compared our attention mechanism
approach with other methods, including a random selection
scheme and an integrated gradient-based approach (30). In par-
ticular, we first selected the important positions indicated by our
scheme and baseline methods and then trained a conventional
neural network using only these chosen important features as
input. Intuitively, a better feature attribution method should lead
to superior prediction performance in this setting. As shown in
SI Appendix, Fig. S3, we observed that both our attention mech-
anism and integrated gradients yielded better performance than
the random selection method. In addition, our attention mech-
anism scheme exhibited greater improvement over integrated
gradients. All these results demonstrated that the attention
mechanism module employed in our framework plays an impor-
tant role in capturing important features and enhancing the
prediction of Pol II pausing sites.

Next, we examined the enriched transcription factor binding
motifs in the HARs. More specifically, we extracted those posi-
tions with the highest 5% attention scores in each HAR and then
calculated the statistically enriched sequence motifs (with neg-
ative samples as background) using the motif-calling program
Hypergeometric Optimization of Motif EnRichment (HOMER)
(29) (Materials and Methods). We found that a number of the
enriched sequence motifs were significantly related to the tran-
scription regulation process (Fig. 3C). For example, we found
that both HeLa S3 and HEK293T shared a common motif of
SMAD3, which is a protein that has been shown to regulate the
alternative splicing of a cancer stem cell marker CD44 through
colocalizing with PCBP1 in a variable exon region to inhibit
spliceosome assembly (31). For the tissue-specific motifs of tran-
scription factors such as SF1, a previous study had shown that in
the HEK293T cell line, SF1 can bind to CA150 and repress Pol
II transcription by inhibiting the transcription elongation pro-
cess (32). Other examples are EWS:ERG and EWS:FLI1 (in
the 3′HAR of HeLa S3), two known fusion proteins of EWS
with ERG and FLI1, respectively, which are both members of
the ETS family (33). More specifically, EWS is a protein con-
taining an RNA binding domain, which interacts with TFIID
and Pol II using its C-terminal half and plays an important role
in Pol II transcription regulation (34). In particular, the fusion
of EWS and FLI1 interacts with the seventh largest subunit of
human RNA Pol II (hsRPB7) to influence the promoter selec-
tivity (35). Among the enriched motifs in the 3′HAR of HeLa
S3, microphthalmia-associated transcription factor (MITF) is
another transcription factor containing the basic helix–loop–
helix (bHLH) structure that is involved in controlling gene
activities through recognizing a short DNA sequence CACGTG
called E box, which is located in the promoter regions and has
been found to play an important role in the regulation of gene
expression (36). All of the above results revealed that although
the two cell lines shared common sequence patterns, they also
owned certain unique features and that our attention mecha-
nism can detect the positions representing the cell line-specific
features that can be supported by the previous known evidence
in the literature.

PEPMAN Provides Useful Clues for Understanding the Mechanisms
of Cotranscriptional Splicing. Cotranscriptional splicing was first
reported by Beyer and Osheim (12) in Drosophila and was found
predominant in Saccharomyces cerevisiae (13). In this process,
the assembly of the spliceosome and its regulatory factors com-
petes with transcription elongation, thus resulting in a biased
distribution of Pol II complexes around splice sites (2). For exam-
ple, Pol II tends to accumulate at the 3′ ends of introns in yeast

(37) and also displays higher density around the 3′ splice sites
(3′SSes) compared with the 5′ splice sites (5′SSes) in humans
(5). In addition, it was found that the transcription elongation
rates can regulate the outcomes of alternative splicing, and var-
ious molecular mechanisms had been proposed to illustrate the
related phenomena (8, 38, 39). For instance, the potential reg-
ulation mechanism of exon skipping was illustrated by a kinetic
model, in which Pol II pauses at the 3′SSes to enable the inclu-
sion of upstream exons (15, 39, 40). Here, we investigated the
relation between Pol II pausing and cotranscriptional splicing
based on the PEPMAN prediction scores around the exon–
intron boundaries. More specifically, we first extracted all exons
in the chromosomes in the test dataset and then calculated the
PEPMAN prediction scores in their 3′SSes and 5′SSes. We also
compared these scores with those of 5,000 background loci that
were randomly sampled from the genome. We found that the
PEPMAN prediction scores of both 3′SSes and 5′SSes were sig-
nificantly higher than those of background loci (Fig. 4), which
was consistent with the previous finding that Pol II tends to
accumulate on alternative splicing sites (2). In addition, 3′SSes
generally had much higher predicted pausing potentials than
5′SSes (Fig. 4), which also agreed well with the previous result
that Pol II complexes accumulated more on 3′SSes than on
5′SSes (5). All these results indicated that the PEPMAN predic-
tion scores are consistently correlated with the previously known
patterns of RNA Pol II distributions on splice sites.

To further investigate the relations between Pol II pausing
and individual types of alternative splicing, we first extracted all
of the previously well-studied alternative splicing events from
the ASpedia database (41) and then analyzed the correspond-
ing PEPMAN prediction scores. The alternative splicing events
are basically classified into five categories (i.e., skipping exons,
mutual exclusive exons [MXEs], retained introns [RIs], alter-
native 3′ splice sites [A3SSes], and alternative 5′ splice sites
[A5SSes]). Here, we compared the predicted tendencies of Pol
II pausing for individual types of alternative splicing events with
those of constitutive exons (i.e., those exons that are not engaged
in alternative splicing) in our test data. In particular, we calcu-
lated the PEPMAN prediction scores for both 3′SSes and 5′SSes
of exons for each type of alternative splicing and then normalized
them with the median scores of the corresponding boundaries
of constitutive exons. Our results showed that the predicted ten-
dencies of Pol II pausing were relatively lower on skipping exons

Fig. 4. Comparative analyses of the PEPMAN prediction scores between
3′ splice sites and 5′ splice sites. Background: 5,000 randomly sampled
positions from the genome. The PEPMAN prediction scores of splice sites
are normalized by the median of the prediction results in background.
∗: P< 1× 10−200, two-sided Wilcoxon rank-sum test.
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Fig. 5. Analyses of the tendencies of Pol II pausing predicted by PEPMAN on different alternative splicing (AS) events, including (A) skipping exons (SEs),
(B) mutual exclusive exons (MXEs), (C) retained introns (RIs), (D) alternative 3′ splice sites (A3SSes), and (E) alternative 5′ splice sites (A5SSes). In each panel,
the lower indicates the splicing types, while the upper shows the PEPMAN prediction scores on the corresponding splice sites. Each color represents a single
exon, and each box plot represents the normalized prediction scores on the corresponding exon–intron boundary. Introns are represented by lines, and the
RI in C is represented by a light blue box. The PEPMAN prediction scores of 3′SSes and 5′SSes in individual AS events are normalized by the median of the
prediction results of the corresponding splice sites from 5,000 randomly selected constitutive exons. *: 1× 10−10 < P< 0.001, two-sided Wilcoxon rank-sum
test; **: P< 1× 10−10, two-sided Wilcoxon rank-sum test; -: P> 0.001, two-sided Wilcoxon rank-sum test.

than on constitutive exons (Fig. 5A), which can also be supported
by the previous finding that the Pol II density is generally smaller
on skipping exons (5). We also found that MXEs had a lower
predicted pausing tendency similar to skipping exons (Fig. 5B),
indicating that these two types of alternative splicing may share
common cotranscriptional mechanisms. On the other hand, RIs
showed an opposite pattern in which the RIs preferred a stronger
pausing tendency (Fig. 5C), which was consistent with the pre-

vious finding that the slow transcription elongation rates can
enhance intron retention more efficiently (42). Taken together,
our analyses indicated that higher pausing tendencies and slow
elongation rates may promote intron retention and inhibit exon
skipping. On the contrary, the PEPMAN prediction scores on the
exon–intron boundaries of A3SSes and A5SSes were quite close
to those of constitutive exons (Fig. 5 D and E). Previous studies
had revealed that the sequences on exon–intron boundaries of
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A3SSes and A5SSes are similar to those of constitutive exons,
although the sequences on splice sites in alternative splicing
exons of A3SSes and A5SSes resemble those on skipping exons
(43). This result was consistent with our finding that the tran-
scription elongation rates on exon–intron boundaries of A3SSes
and A5SSes may display similar patterns to those on constitu-
tive exons. In summary, PEPMAN can provide a useful tool
to investigate the relations between Pol II pausing and specific
alternative splicing events and thus, offers useful hints to better
understand the cotranscriptional splicing process.

PEPMAN Associates Transcription Elongation with Epigenetic Fea-
tures. The cotranscriptional splicing process had been reported
to be modulated by different epigenetic factors such as histone
modification, transcription factor binding, and DNA methyla-
tion (44). In particular, several previous studies revealed that
histone modification may regulate the transcription elongation
rates and further influence the alternative splicing events. For
instance, it was found that exon skipping can be induced by the
high elongation rates in the context of hyperacetylation of H3K9
and increased levels of H3K36me3 (2, 45). In addition, it had
been found that inhibition of histone deacetylases can lead to
the increased processivity of Pol II along an alternative splic-
ing element, thus changing the altered splicing outcome (46).
Moreover, several transcription factors had been reported to
govern the transcription elongation rates and thus, affect the
Pol II processivity (47, 48). It had also been reported that DNA
methylation can regulate Pol II pausing and alternative splicing
through mediating the binding of methyl-sensitive DNA bind-
ing proteins such as MeCP2 and CTCF (49, 50). Therefore, it is
generally necessary to gain comprehensive understanding of the
relations between Pol II pausing and various types of epigenetic
features. To achieve this goal, we first collected the ChIP-seq
data of 10 histone modifications and nine transcription factors
as well as information about methylated and unmethylated 5′–
C–phosphate–G–3′ (CpG) sites for all of the chromosomes in
the test dataset. For each histone modification or transcription
factor, we also randomly sampled a nonbinding genomic region
of equal length from the same gene for each binding area as neg-
ative control. For DNA methylation, we also randomly sampled
5,000 genomic loci from the same gene as background.

As shown in Fig. 6A, 9 of 10 histone modifications displayed
significant changes in the PEPMAN prediction scores com-
pared with negative control (i.e., H3K27ac, H3K27me3,
H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2,
H3K9ac, and H4K20me1: P =2.21× 10−15, 4.51× 10−81,
1.09 × 10−4, 2.17 × 10−18, 2.74 × 10−7, 1.22 × 10−10, 4.99 ×
10−65, 2.70× 10−11, and 8.99× 10−13, respectively; two-sided
Wilcoxon rank-sum test). Among these histone modifications
with significant change, H3K79me2 had been previously verified
to activate transcription and regulate transcription elongation
through the methyltransferase DOT1L of H3K79 (51, 52).
H3K4me3 had been shown to promote transcription initiation,
and H3K9ac has been reported to release the Pol II pausing
by recruiting the super elongation complex to chromatin (53).
In addition, we observed that the transcription factor binding
motifs were also highly associated with the PEPMAN prediction
scores (Fig. 6B), indicating that transcription factors may also
act as strong or direct regulators of Pol II pausing. For example,
NELFA, the most significant factor, is one of the subunits of
the negative elongation factor (NELF) that had been known to
directly interact with the RNA Pol II complex and promote Pol
II pausing in the promoter-proximal regions (3). Also, DDX5
had been previously reported to affect the three-dimensional
chromatin structure through influencing the CTCF/Cohesin
binding in the targeted exons, which may indirectly interrupt the
functions of CTCF to produce Pol II pausing (54). In addition,
the DRB sensitivity-inducing factor (DSIF) had been reported

A

B

C

Fig. 6. Analyses of the relations between PEPMAN prediction scores and
different regulatory factors, including (A) histone modifications, (B) tran-
scription factor binding sites, and (C) DNA methylation. In A and B, negative
control was generated by randomly sampling the genomic regions from
the same genes, each of which did not overlap with any binding area of
the corresponding epigenetic factor and had the same length of an epige-
netic binding peak. The sums of PEPMAN prediction scores of individual sites
within peak regions were compared. In C, 5,000 randomly selected positions
in the test data in which the guanine–cytosine content distributions were
consistent with the DNA methylation sites were used as background. The
PEPMAN prediction scores of the DNA methylation sites were normalized by
the median of the prediction results of background. *: 1× 10−5 < P< 0.05,
two-sided Wilcoxon rank-sum test; **: 1× 10−50 < P< 1× 10−5, two-sided
Wilcoxon rank-sum test; +: P< 1× 10−50, two-sided Wilcoxon rank-sum test;
-: P> 0.05, two-sided Wilcoxon rank-sum test.

to inhibit transcription elongation rates together with NELF,
which can be rescued by the positive transcription elongation
factor b (P-TEFb), a kinase that phosphorylates the C-terminal
domain of the RPB1 subunit of Pol II (55). Moreover, previous
studies indicated that DNA methylation can also play a certain
role in transcription regulation. For example, DNA methylation
can inhibit CTCF binding, which leads to Pol II pausing,
resulting in the weakened inclusion of exon 5 of CD45 (49).
Being consistent with this finding, our analyses showed that the
unmethylated CpG sites tended to have a higher potential of Pol
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II pausing than the methylated CpG sites (Fig. 6C). Overall, the
above analyses demonstrated that most of the epigenetic factors
that were previously known to associate with transcription
elongation were also highly related to PEPMAN prediction
scores, which suggested that PEPMAN can provide a reasonably
accurate tool for identifying the important regulators of the
transcription elongation process.

Discussion
In our work, we provided a useful deep learning framework
to accurately predict the pausing tendencies of Pol II pausing
in single-nucleotide resolution. We found that Pol II pausing
was strongly associated with alternative splicing, histone modi-
fications, transcription factors, and DNA methylations based on
PEPMAN prediction results. A number of associations can be
supported by the previous studies in the literature. Meanwhile,
six of nine histone modifications and five of nine transcription
factors (TFs) that exhibited significant associations with Pol II
pausing in our analyses (Fig. 6) had not been studied before (to
our best knowledge). These findings can provide useful insights
into understanding the regulation and functions of transcription
elongation dynamics.

Although it is convenient to analyze the associations between
different genomic features and Pol II pausing using only NET-
seq data (SI Appendix, Figs. S4 and S5), some of the associations
can only be found using PEPMAN prediction scores. For exam-
ple, the analyses based on the PEPMAN predictions showed
that for the MXE event, the middle exons displayed signifi-
cantly lower Pol II pausing tendencies (Fig. 5B), while the results
from NET-seq data cannot reveal this relation (SI Appendix,
Fig. S4B). In addition, CTCF and DDX5 displayed stronger
statistical significance in the analysis results from PEPMAN pre-
diction scores than those from NET-seq data (Fig. 6B and SI
Appendix, Fig. S5B). Furthermore, although NET-seq data can
provide a useful source of information for studying transcrip-
tion elongation, they are often noisy and of low coverage in
certain genomic regions (18, 24). In such regions, it is generally
hard to analyze the Pol II pausing activities using only NET-seq
data. To further demonstrate this point in detail, we also particu-
larly investigated the associations with TFs in those low-coverage
regions (i.e., with bottom 30% coverage of NET-seq data). As
shown in SI Appendix, Fig. S6, in such regions with low cover-
age, the analysis with NET-seq data failed to identify almost all
of the known associations that had been supported by the previ-
ous evidence in the literature, including CTCF (54), DDX5 (54),
and DSIF (55). Only the association with NELFA appeared in
the analysis results from NET-seq data. On the other hand, the
PEPMAN prediction scores can still reveal almost all these asso-
ciations between Pol II pausing and TFs (except SWI), even in
the low-coverage regions (SI Appendix, Fig. S6). All these results
demonstrated that PEPMAN can learn the underlying sequence
features determining Pol II pausing, which are not subject to the
influence of sequencing depth and bias in experimental data.

It would also be interesting to understand the relations between
Pol II pausing and expression levels of genes. To investigate this
point, we first predicted the pausing tendencies using our trained
model along the gene bodies and then calculated average pausing
score for each gene in the test dataset. Next, we checked the cor-
relation between these prediction scores and the corresponding
RNA sequencing (RNA-seq) read count densities of individual
genes, which were the RNA-seq read count densities obtained
from the same paper as in the NET-seq data (5). As shown in SI
Appendix, Fig. S7A, the correlation between RNA-seq read count
densities and predicted Pol II pausing scores was 0.41 (Spear-
man correlation), which indicated that Pol II pausing displayed
a moderate correlation with the expression of the correspond-
ing genes. Meanwhile, our analyses indicated that some lowly
expressed genes contained a number of high prediction scores,

indicating the false position predictions in them. We looked into
several specific genes with low expression levels (i.e., logarithm
of RNA-seq densities <−5) and high prediction scores (i.e., log-
arithm of averaged PEPMAN scores >−0.75). For example, for
gene KISS1R, we found that there were a number of high peaks
along the prediction scores on the gene body, although there were
only five NET-seq read counts on this gene (SI Appendix, Fig. S8).
This result indicated that there were some specific sequence
features on these high-prediction regions, which may result in
false-positive predictions. To further investigate this problem, we
extracted the sequences of these high prediction scores on the
genes with low expression levels and then called the enriched
sequence motifs using the program HOMER (29). Intriguingly,
we found that these regions were enriched with the CAGCTG-like
core sequence, which is a binding motif of Group A bHLH pro-
teins (SI Appendix, Fig. S9). In addition, we previously found that
there was a Group B binding motif (MITF) that was also enriched
with the sequence CACGTG on the HARs of PEPMAN. Thus,
it was possible that PEPMAN had learned the enriched bHLH
sequence motifs from the Pol II pausing sites and predicted high
scores on those lowly expressed genes that were enriched with the
bHLH binding motifs.

Note that although the gene expression levels displayed a
relatively higher correlation with the NET-seq read counts (SI
Appendix, Fig. S7B), such a quantitative analysis may be biased
by the abundance of the expressed transcripts. According to the
NET-seq protocol (5), the sequenced read counts are inevitably
biased toward those highly expressed genes. Thus, when defin-
ing the Pol II pausing events, we should not simply compare the
NET-seq read counts at a genome-wide level (24). Instead, it
would be better to consider the local NET-seq read density, as
such a strategy has already taken into account the abundance of
the expressed nascent RNA within the same gene. In our study,
we followed the same rigorous scheme as in ref. 24 to define the
Pol II pausing events from NET-seq data. Such a definition of
pausing events had been shown to be an effective scheme to study
the transcription elongation activities from NET-seq data (24).

To further investigate the biological functions of the Pol II
pausing-associated genes, we also applied a gene ontology (GO)
term analysis (56) on those genes with average PEPMAN scores
larger than 0.5. As shown in SI Appendix, Fig. S10, the Pol II
pausing-associated genes were highly enriched in the functions
and processes related to DNA binding and transcription regula-
tion. Such GO analysis results indicated that Pol II pausing may
play an important regulatory role in controlling transcription
activities.

Conclusion
Deciphering the regulatory codes of Pol II pausing can provide
useful and insightful understanding on how the transcription elon-
gation rates affect gene expression and messenger RNA (mRNA)
splicing. PEPMAN is an attempt to apply a machine learning-
based framework to systematically model the Pol II pausing events
from high-throughput sequencing data. The comparative anal-
yses showed that the deep learning architecture employed in
PEPMAN can achieve superior prediction performance over
other baseline prediction methods. Through interpreting our
prediction model via attention mechanism, we also discovered
possible important regulatory regions and their corresponding
sequence motifs in the neighborhood of Pol II pausing sites.

We also demonstrated that PEPMAN can accurately predict
the tendencies of Pol II pausing around the alternative splic-
ing sites. Our analysis results indicated that there may exist
different regulatory cotranscriptional mechanisms behind differ-
ent types of alternative splicing. In addition, the analyses of the
relations between the PEPMAN prediction scores and differ-
ent epigenetic factors also indicated that PEPMAN can learn
the underlying important regulatory features of transcription
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elongation. Through the comprehensive analyses between
PEPMAN prediction results and histone modifications, tran-
scription factor binding motifs, and DNA methylation, we pro-
vided a thorough overview about the relations between Pol II
pausing and individual types of epigenetic features. Since our
framework can be applied to almost all species and cell lines with
available NET-seq data, we expect that it can be used to gain a
better understanding of Pol II pausing among different cell lin-
eages and organisms. In summary, we believe that our PEPMAN
framework can offer a powerful and useful tool in understanding
the regulation of transcription elongation.

Materials and Methods
NET-seq and RNA-seq Data. NET-seq and RNA-seq data of HeLa S3 and
HEK293T cell lines were acquired from previous research (5). According to
the statistics information summarized in ref. 5, in total 768 million and 1,203
billion reads were sequenced and 360 million and 555 million reads were
uniquely aligned for HeLa S3 and HEK293T cell lines, respectively. In addi-
tion, most genes contained 100 to 1,000 reads in both HeLa S3 and HEK293T
cell lines (figures 1D and S1H in ref. 5). Thus, the NET-seq datasets used
in our study should provide a sufficient set of high-quality Pol II pausing
data to train our model. To only consider the Pol II pausing events in the
expressed genes, we excluded those genes in which no RNA-seq reads were
mapped onto their bodies. We followed the same principle as in ref. 24 and
extracted the positive and negative samples according to the following cri-
teria: 1) the read density was at least three standard deviations above the
mean over a surrounding 201-bp window that did not contain any other Pol
II pausing event; 2) if the genomic distance of two positive samples is less
than 201 bp, we only kept the one with a higher read density; and 3) the
read count was larger than four regardless of sequencing coverage. Those
with at least one read coverage that did not satisfy the above criteria were
defined as negative samples. In summary, we obtained 36,429 positive sam-
ples and 1,699,724 negative samples for the HeLa S3 cell line and 54,835
positive samples and 1,568,693 negative samples for the HEK293T cell line.

Alternative Splicing Sites. In our analyses, the constitutive 3′SSes and 5′SSes
were extracted from human genome (57). Five types of alternative splic-
ing events were obtained from the ASpedia database (41), from which both
alternative splicing sites and their adjacent exon–intron boundaries were
extracted. We also extended each splice site 100 nucleotides both upstream
and downstream to obtain a 201-bp contextual sequence, as in the previous
construction procedure of training samples. Note that here we only analyzed
those splice sites in the expressed genes of chromosomes in the test dataset
(i.e., chromosomes 17 to 22 and chromosome X). Overall, we obtained 3,488
skipping exons; 340 MXEs; 1,199 RIs; 1,645 A3SSes; and 899 A5SSes.

Histone Modifications, Transcription Factor Binding Sites, and DNA Methyla-
tion Sites. We collected the ChIP-seq data of nine transcription factors (i.e.,
CTCF, CHD2, DDX5, DSIF, ELL2, NELFA, NELFE, SWI, and TFIIF) and 10 histone
modifications (i.e., H3K27ac, H3K36me3, H3K4me1, H3K4me3, H3K27me3,
H3K4me2, H3K79me2, H3K9ac, H3K9me3, and H4K20me1) for the HeLa S3
cell line from ENCODE (58) and the ChIP-Atlas database (59). The CpG DNA
methylation sites were obtained from the HAIB Methyl 450K Bead Arrays
data in ENCODE (58). The experimentally measured strength of CpG methy-
lation was defined between 0 and 1,000, and we chose the CpG sites with
methylation scores greater than 600 as methylated and those with scores
less than 200 as unmethylated, following the original setting provided in
ENCODE (58). We also extended each ChIP-seq peak 100 nucleotides both
upstream and downstream to obtain a 201-bp contextual sequence. In our
analyses, we mainly focused on those loci in chromosomes in the test dataset
(i.e., chromosomes 17 to 22 and X).

Feature Extraction by a CNN. For a 201-bp contextual sequence, we first con-
vert it into a one hot-encoded feature matrix (also called feature map),
which is then used as an input to PEPMAN. We then apply a two-layer
CNN over this input feature map (SI Appendix, Fig. S2A). More specifically,
given an input sequence S = (s1, . . . , s201), we first apply the zero padding
scheme on its corresponding one hot-encoded feature map E∈R201×4 (i.e.,
padding both ends of the feature map with zero values) and then perform
a convolution operation on the padded matrix E′: that is,

xi,d =

K∑
j=1

4∑
l=1

e′i+j−1,lwj,l,d , [1]

where i = 1, . . . , 201; d = 1, . . . , D (here, D represents the kernel number);
K stands for kernel size; e′i,j and wi,j,d stand for the elements of E′ and W ,

respectively; W ∈RK×4×D represents the learnable weight matrix; and xi,d

stands for an element of the output matrix X ∈R201×D. After the convolu-
tion operation, the parametric rectified linear activation function (PReLU) is
used to imitate the neuron activation: that is,

PReLU(u) =

{
u, if u > 0,

αu, otherwise,
[2]

where u stands for a single unit in each layer and α stands for a train-
able parameter representing the negative slope coefficient. In the end, we
obtain the output feature (denoted by Y) of the first convolution layer:
that is,

Y = PReLU(X). [3]

The second layer of convolution operation is implemented similarly. After
the two layers of convolution operation, we obtain a feature matrix H =

(h1, . . . , hL)∈RL×C , where hi stands for the learned feature of the ith posi-
tion and L and C represent the length and the dimension of the feature
matrix, respectively.

Pol II Pausing Site Prediction with the Attention Mechanism. To capture
the important contextual sequence features involved in the determinants
of RNA Pol II pausing, we incorporate an attention layer in our model,
using a similar strategy to the previous works (23, 60). As shown in SI
Appendix, Fig. S2B, given the feature matrix H = (h1, . . . , hL), we compute
the attention score ai of the ith position in the attention vector a = (a1, . . . ,
a201)> by

ai =
exp(w>2 f(hi))

L∑
i=1

exp(w>2 f(hi))

, [4]

f(hi) = tanh(W1hi), [5]

where W1 ∈RT×C stands for a weight matrix (T is a hyperparameter that
needs to be determined; C is the dimension of the feature matrix) and w2

represents a weight vector. Next, we multiply the attention vector a> =

(a1, . . . , a201) with the original feature matrix H and then feed the result into
a two-layer multilayer perception (MLP) network, followed by a sigmoid
activation function. Overall, the procedure of predicting the Pol II pausing
probability of an input sequence S based on the above operations can be
defined by the following formula:

PauseProb(S) = sigmoid(MLP(a>H)), [6]

where sigmoid() represents the sigmoid activation and MLP() stands for the
two-layer MLP network.

In our study, we mainly followed the same principle as in the previous
study (24) to use the 201-bp window to define the Pol II pausing events.
To check how this window size can affect the prediction results, we also
tested different window sizes (i.e., 151, 101, and 51 bp). As shown in SI
Appendix, Table S3, the window size parameter used for defining the Pol II
pausing sites did not significantly change the prediction performance, and
our model yielded relatively robust prediction results for different window
sizes. Note that according to our test results shown in Fig. 3, the most impor-
tant contextual sequence features (i.e., the HARs) are typically located in
positions −14 to 12 bp around the pausing sites. Thus, it would not be sur-
prising to observe the stable performance of the different window sizes
tested.

Model Training. In order to determine the hyperparameters in PEPMAN,
such as kernel size, kernel number, number of hidden units in the atten-
tion layer, learning rate, batch size, and number of hidden units, we first
divided our data into three independent sets, including training, valida-
tion, and test datasets. More specifically, samples from chromosomes 1 to
13 were used as training data, those from chromosomes 14 to 16 as vali-
dation data, and the rest as test data (excluding chromosome Y). Overall,
we obtained 25,297, 3,988, and 7,116 positive samples for training, valida-
tion, and test, respectively, in the HeLa S3 cell line and 38,992, 5,484, and
10,331 positive samples for training, validation, and test, respectively, in the
HEK293T cell line. We next used a grid search strategy according to the per-
formance on the validation set to obtain the best hyperparameters settings
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(SI Appendix, Table S4). During training, to address the issue arising from
the imbalanced positive and negative samples and cover the negative sam-
ples as much as possible, for each epoch, we also resampled a new group
of negative samples with a specific ratio to positive samples (i.e., 10:1) and
combined them with positive samples as training data. For the objective
function, we used a binary cross-entropy loss to train our model: that is,

Loss =−
N∑

i=1

log(yiPauseProb(Si) + (1− yi)(1− PauseProb(Si))), [7]

where Si represents the ith input sequence, yi represents its correspond-
ing true label, and N stands for the total number of training samples. The
Adam optimizer (61) was used to minimize our training loss. In addition,
we reduced the learning rate by multiplying a factor 0.8 for every five
epochs. The early-stopping strategy (62) and the dropout method (63) were
applied to overcome the overfitting problem. Batch normalization was used
to alleviate the gradient vanishing and gradient exploding problem (64).
We accelerated the training process with NVIDIA GTX 1080Ti GPU, in which
PEPMAN costs about 100 s for an epoch with 278,267 training samples.

Motif Discovery. To identify the regulatory elements that are specifically
enriched in the HARs identified by PEPMAN, for each positive sample in
the test dataset, we first selected those regions whose attention scores
were among the top 5% list within the input contextual sequence. We
also extracted the same number of sequences from negative samples and
used them as background. We then ran the findMotifs.pl Perl script pro-
vided by the program HOMER (29) to extract the known sequence motifs
that were significantly enriched in positive samples from the TRANSFAC
database (28).

Data Availability. All study data are included in the article and/or SI
Appendix. The code is available in Github at https://github.com/fpy94/
PEPMAN.
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