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Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest
forms of cancer and is highly refractory to current therapies. We
had previously shown that PDAC can utilize its high levels of basal
autophagy to support its metabolism and maintain tumor growth.
Consistent with the importance of autophagy in PDAC, autophagy
inhibition significantly enhances response of PDAC patients to
chemotherapy in two randomized clinical trials. However, the
specific metabolite(s) that autophagy provides to support PDAC
growth is not yet known. In this study, we demonstrate that under
nutrient-replete conditions, loss of autophagy in PDAC leads to a
relatively restricted impairment of amino acid pools, with cysteine
levels showing a significant drop. Additionally, we made the strik-
ing discovery that autophagy is critical for the proper membrane
localization of the cystine transporter SLC7A11. Mechanistically,
autophagy impairment results in the loss of SLC7A11 on the
plasma membrane and increases its localization at the lysosome
in an mTORC2-dependent manner. Our results demonstrate a crit-
ical link between autophagy and cysteine metabolism and provide
mechanistic insights into how targeting autophagy can cause met-
abolic dysregulation in PDAC.
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Despite progress in cancer therapy, the prognosis for pancre-
atic ductal adenocarcinoma (PDAC) remains extremely poor

with a 5-y survival rate of just 9% and it is predicted to become the
second leading cause of cancer death in the United States by 2030
(1–3). The PDAC tumor microenvironment is highly desmoplastic
and is composed of heterogeneous cell types, as well as an exu-
berant extracellular matrix. Together, this leads to poor perfusion
and extreme hypoxia, creating a nutrient-limited environment with
impaired drug penetration (4, 5). Another hallmark of PDAC is
elevated basal autophagy which plays multiple protumorigenic roles,
including promoting immune evasion and supporting its metabolic
demand in this austere microenvironment (6–10). Therefore, clini-
cal strategies have been employed to inhibit autophagy in PDAC
patients using lysosomal inhibitors such as chloroquine or hydrox-
ychloroquine (11, 12).
While autophagy can support diverse metabolic processes

through the degradation of various cargo, how it supports PDAC
metabolism has not been fully elucidated. In the present study, we
found that autophagy has a selective role in sustaining cysteine
(Cys) pools in PDAC. One of the major mechanisms of Cys ho-
meostasis is through the import of cystine (the oxidized dimer of
cysteine) through system xc

−, a cystine/glutamate antiporter com-
posed of SLC7A11 (xCT) and SLC3A2 (13). Recently, it was
shown that both Cys and SLC7A11 are critical for PDAC growth
(14). Here, we report that under low Cys conditions, SLC7A11
utilizes autophagy machinery to allow localization at the plasma
membrane. Moreover, we demonstrate that loss of autophagy
increases phosphorylation of SLC7A11 by mTORC2, and it re-
mains primarily localized at the lysosome where its cystine import
function is impaired. In summary, we identify a mechanism of Cys

homeostasis in PDAC where the function of SLC7A11 is coordi-
nately sustained by autophagic machinery and mTORC2 activity
based on intracellular Cys levels.

Results
Loss of Autophagy Abrogates Intracellular Cysteine Levels in PDAC.
We previously identified that inhibiting autophagy in PDAC results
in an accumulation of reactive oxygen species (ROS) and con-
comitant administration of N-acetyl-L-cysteine (NAC) could rescue
the increased ROS (6). To further understand the role of autophagy
in redox homeostasis, we inhibited autophagy pharmacologically
(chloroquine, CQ) or genetically (RNAi to multiple autophagy-
related ATG genes) and assessed the ability of multiple antioxi-
dants to rescue clonogenic growth (Fig. 1A). Consistent with our
prior work, NAC was also able to significantly rescue growth in the
setting of genetic or pharmacologic autophagy inhibition. In con-
trast, none of the other antioxidants could rescue colony formation
despite restoring ROS levels (Fig. 1B). We observed that NAC was
able to rescue proliferation in the setting of autophagy inhibition
across a panel of pancreatic cancer cell lines (Fig. 1C). One possi-
bility was that NAC was replenishing intracellular Cys pools that
might have been compromised by autophagy inhibition. Strikingly,
we found that under nutrient-replete conditions, there was a dra-
matic drop in intracellular Cys levels when autophagy was inhibited
by genetic and pharmacological means while other amino acid pool
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sizes showed minimal effects (Fig. 1 D and E). We first investigated
whether this was due to impaired cystine uptake. Interestingly, we
observed that autophagy inhibition markedly diminished cystine
uptake (Fig. 1F and SI Appendix, Fig. S1A).

Autophagy Inhibition Leads to SLC7A11 Inactivation. Given the
critical role of system xc

− in the import of cystine (13–16), we
hypothesized that autophagy loss may impair the expression of this
glutamate/cystine antiporter. Surprisingly, pharmacological auto-
phagy inhibition in PDAC cells actually increased the levels of the
SLC7A11 subunit of system xc

− as shown by our quantitative mass
spectrometry-based proteomics analysis (Fig. 2A). We confirmed
this finding by immunoblot analysis in multiple PDAC lines where
autophagy was inhibited pharmacologically using CQ (Fig. 2 B and
C) or genetically by knockdown of multiple autophagy genes
(ATG7: Fig. 2 D and E; ATG5: Fig. 2 F andG). We next validated
our in vitro findings in PDAC-bearing mice expressing a dominant
negative (DN) mutant of Atg4B, treated with CQ (Fig. 2 H and I
and SI Appendix, Fig. S1B), or with Atg7 suppression in the tumor
by RNAi, that also showed elevation in SLC7A11 expression
(Fig. 2 J–L).
Taken together, our data demonstrate that despite an increase

in SLC7A11, there was a significant decrease in cystine import
and intracellular Cys pools. This suggested that autophagy inhi-
bition might lead to a physiological situation where the activity of
the transporter may be compromised. To assess this, we mea-
sured the cellular uptake of cystine (Fig. 2M) and glutamate efflux
(Fig. 2N), which revealed that SLC7A11’s activity was reduced in
the setting of autophagy inhibition. One possible explanation for

the reduced activity of SLC7A11 was that it was not properly lo-
calized to the plasma membrane. Indeed, time-lapse video imag-
ing in response to CQ treatment in PDAC cells showed the rapid
translocation of SLC7A11 away from the plasma membrane into
the cytosol (SI Appendix, Fig. S1C and Movies S1 and S2). Con-
sistent with recent studies (14, 17), cystine and SLC7A11 were
observed to be critical for PDAC growth (Fig. 2 O and P).

Loss of Autophagy Leads to SLC7A11 Translocation to Lysosome. We
quantified the plasma membrane distribution of SLC7A11 after
both genetic and pharmacologic autophagy inhibition at various
phases of the autophagy pathway by immunofluorescence (Fig. 3
A–C and SI Appendix, Fig.S1 D and E) and biochemical fraction-
ation (Fig. 3 D and E). This demonstrated that upon loss of auto-
phagy, there is translocation of SLC7A11 from the plasma
membrane to the cytosol. Through a series of colocalization
studies, we found that autophagy inhibition results in a significant
fraction of SLC7A11 colocalized with the lysosomal membrane
marker Lamp2 (Fig. 3 A–C). We further demonstrated the lyso-
somal enrichment of SLC7A11 after autophagy inhibition by
immunopurification of lysosomes (Fig. 3F and SI Appendix, Fig.
S2A). Interestingly, cystine deprivation in autophagy intact con-
ditions revealed increased SLC7A11 localization on plasma
membrane by immunofluorescence (Fig. 3A) and biochemical
fractionation (SI Appendix, Fig. S2B). Taken together, these re-
sults indicate that the plasma membrane localization of SLC7A11
is based on Cys demand and is autophagy dependent. To rule out
the translocation of a nutrient transporter as a general phenom-
enon of autophagy inhibition, we assessed the localization of an
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Fig. 1. Autophagy inhibition selectively decreases intracellular cysteine. (A) Autophagy was inhibited pharmacologically (CQ) or genetically (ATG5/7
knockdown) in 8988T cells and treated with indicated antioxidants followed by assessing clonogenic growth after 10 d. Only NAC was able to rescue the
number of colonies in autophagy-inhibited cells (P < 0.0001). (B) Measurement of ROS in 8988T cells with ATG7 knockdown supplemented with NAC or trolox
for 24 h (n = 3 experiments). (C) PDAC cells were treated with CQ, +/− NAC, and relative cell proliferation on day 5 was quantified. Data were normalized to
control. (D) Changes in amino acids after CQ treatment or si-ATG5 in 8988T cells. (E) Immunoblot analysis using the indicated antibodies to assess knockdown
and autophagy inhibition was performed on 8988T cells used in D. Heatmap represents mean of five independent experiments in A, three independent
experiments in C, and D. (F) Cystine starved (16 h) 8988T cells treated with or without CQ were incubated with FITC-labeled cystine (20 min, 37 °C) and the
uptake of cystine was analyzed (n = 51 cells). Data: mean ± SEM, P values: two-tailed unpaired t test (A, C, D, and F); P values: one-way ANOVA with Tukey’s
post hoc test (B). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05.
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Fig. 2. Loss of autophagy inactivates SLC7A11 function. (A) Quantitative mass spectromentry-based proteomics showing SLC7A11 levels in Panc1 cells treated
with CQ at indicated time points. Experiment was done in biological triplicate, P value represents Benjamini–Hochberg corrected. (B) Lysates from different
PDAC cells treated with CQ were immunoblotted for indicated proteins and the relative SLC7A11’s expression was quantified (n = 3) in C. Autophagy was
genetically inhibited by knocking down ATG7 (D) and ATG5 (F) in 8988T, Panc1 cells, and the level of SLC7A11 (n = 5) was quantified by Western blotting,
respectively, in E and G. (H) Tumor (n = 5) sections from mice expressing Atg4b DN or CQ treatment were immunohistochemically analyzed for SLC7A11 followed
by their quantification, respectively (I). P values: two-tailed unpaired t test. (J) IHC images of SLC7A11 in murine KPC [KrasLSL-G12D/+, Trp53lox/+, p48-cre+ (p48 is
also known as Ptf1a)] PDAC tumors with Atg7 knockdown (n = 5). (K) Immunoblot confirming Atg7 knockdown and quantification of IHC data for SLC7A11
(L). SLC7A11 activity was quantified by measuring cystine uptake (M) and glutamate secretion (N). (O) Overexpression and knockdown of SLC7A11 in 8988T,
Panc1 cells were assessed for clonogenic growth under various cystine concentrations along with Western blotting for SLC7A11 in these cells (P). Data:
mean ± SEM, P values: one-way ANOVA with Tukey’s post hoc test (except in A). ****P < 0.0001, ***P < 0.001, **P < 0.01. (Scale bar, 15 μm.)
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Fig. 3. Autophagy inhibition promotes SLC7A11 localization to lysosomes. (A) Confocal microscopy images showing SLC7A11 and Lamp2 colocalization
analysis after autophagy inhibition or cystine starvation (overnight) in 8988T followed by quantification of SLC7A11/Lamp2 colocalization (B) and %cells with
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unrelated solute carrier SLC30A (importer of Zn/Mn) (SI Ap-
pendix, Fig. S2C). In contrast to SLC7A11, SLC30A did not show
altered subcellular localization in response to CQ. Additionally,
there was no significant change in general endocytosis in response

to autophagy inhibition as evidenced by the uptake of transferrin
(SI Appendix, Fig. S2D). Recently, Roy et al. showed that retromer
regulated the translocation of a glucose transporter GLUT1 in an
autophagy-dependent manner (18). However, knockdown of key
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components of the retromer, TBC1D5 and VPS35, did not cause
any change in SLC7A11 localization (SI Appendix, Fig. S2E), in-
dicating that the retromer was not involved in SLC7A11 translo-
cation on and off the plasma membrane.

SLC7A11 Requires LC3-Microtubule Association for Its Localization to
the Plasma Membrane. Based on our data, we speculated that
lipidated LC3 might be essential to transport SLC7A11 along
microtubules, as has been shown previously with autophagosomes
trafficking toward the lysosome (19–22). Consistent with this, we
could detect a complex between SLC7A11 and LC3, as well as
SLC7A11 was present in PDAC autophagosomes (Fig. 3 G–I).
Paradoxically, inhibition of either autophagosome formation (LC3
knockdown) or autophagosome degradation (CQ) both resulted in
decreased membrane-localized SLC7A11 and increased presence
at the lysosome (Fig. 3A). It was unclear how CQ, or knockdown
of LC3, had a similar effect on SLC7A11 positioning, given that
they have opposite impacts on LC3 levels (Fig. 3A and SI Ap-
pendix, Fig. S2F). We hypothesized that while CQ treatment leads
to an increase in lipidated LC3, this likely remains sequestered in
lysosomes, preventing interaction with microtubules. Indeed, CQ
treatment markedly inhibited the interaction of LC3 with tubulin
even though the amount of total LC3 is increased (Fig. 3J and SI
Appendix, Fig. S2G). Thus, any alteration that effectively impairs
the ability of LC3 to associate with microtubules will inhibit
SLC7A11 localization at the plasma membrane.

Autophagy Inhibition Leads to SLC7A11 Inactivation through an
mTOR-Mediated Process. Recently, it was shown that mTORC2 in-
hibits SLC7A11 activity by phosphorylation on the S26 site of
SLC7A11 (15). Indeed, we were able to detect the phosphorylation
of SLC7A11 which was increased upon inhibition of autophagy by
CQ treatment (Fig. 4A). Consistent with the importance of
mTORC2, knockdown of Rictor, but not Raptor, significantly
inhibited the phosphorylation (Fig. 4B). We confirmed that the S26
site was the mTORC2 target by demonstrating that the phosphor-
ylation was completely abrogated by mutating the S26 site to an
alanine (Fig. 4A). To further study the role of phosphorylation in
SLC7A11 function, we generated the phosphomimetic S26E mu-
tant and expressed this mutant as well as the corresponding alanine
mutant in cells with a GFP tag to study its localization (Fig 4 D–G)
or untagged in cells where the endogenous SLC7A11 was sup-
pressed by RNAi to study its transport functions (Fig 4 A, C,H, and
I). Interestingly, we found the SLC7A11-S26E mutant showed less
plasma membrane localization in comparison to the wild type, or
the S26A mutant and exhibited higher lysosomal localization, sim-
ilar to the situation where autophagy was inhibited (Fig. 4 D–G).
Consistent with its predominantly lysosomal localization, the
SLC7A11-S26E mutant failed to import cystine (Fig. 4H) and could
not reduce the level of reactive oxygen species upon knockdown of
endogenous SLC7A11 (Fig. 4I). Moreover, knockdown of mTOR
(Fig. 5 A–C) itself or Rictor (Fig. 5 D and E), prevented SLC7A11
colocalization with the lysosome in the setting of autophagy inhi-
bition. Taken together, these data show that SLC7A11 activity is
regulated by subcellular localization. Its transport function neces-
sitates plasma membrane localization, requiring intact autophagy,
and this is impaired upon autophagy inhibition through phosphor-
ylation by mTORC2, leading to translocation to the lysosome
(Fig. 5F).

Discussion
Autophagy is conventionally regarded as a lysosome-based catabolic
pathway. Here, we discover an unconventional role of autophagy
machinery that is utilized for promoting uptake of cystine from the
extracellular environment via promoting localization of SLC7A11 at
the plasma membrane. Our work shows that inhibition of autophagy
specifically impairs Cys uptake and metabolism in PDAC. This
critical metabolic role further supports our previous studies that

established autophagy inhibition as a key therapeutic strategy in
PDAC (8–10). While the link to Cys metabolism appears to be
prominent in PDAC, we cannot rule out other metabolic functions
of autophagy in these tumors, given the complexities of cellular
metabolism. Indeed, in other tumor types such as lung cancer,
autophagy has been shown to be important for supporting the mi-
tochondrial substrate supply and nucleotide pools (23). This high-
lights that the physiological importance of autophagy can vary in
different cancers even if they have the same oncogenic drivers, such
as Kras, and may reflect the unique biology and metabolic needs of
a given tumor type.
We used genetic and pharmacological means to impair the

function of key proteins involved in the process of initiation,
elongation, and lysosomal fusion steps of autophagy and dem-
onstrated the significance of the autophagosome/tubulin inter-
action as a conduit for SLC7A11 translocation. This is in
agreement with a previous report from Kimura et al. where it was
shown that microinjection of anti-LC3 antibody prevented the
autophagosome movement in the cytoplasm (21). Although it is
well established that SLC7A11 is an importer of cystine (13–16)
as part of system xc

−, its requirement for LC3 machinery to
regulate its transport function and proper localization in a Cys-
dependent manner had not been previously identified. In PDAC,
we found that the regulation of the transport functions of
SLC7A11 relies on the localization to the plasma membrane
which requires autophagy machinery to lipidate LC3 and medi-
ate its interaction with microtubules. Furthermore, inhibition of
autophagy promotes an inhibitory phosphorylation by mTORC2
and results in lysosomal localization of SLC7A11, which prevents
extracellular cystine uptake. Future studies will be required to
understand the precise mechanisms connecting autophagy inhibi-
tion to mTORC2 kinase activity. Additionally, the mechanism of
microtubule transport from the plasma membrane to lysosome
and the role of SLC7A11 on the lysosome remain to be defined.
One mechanism of how autophagy supports PDAC growth is

through maintaining the nutrient transport function of SLC7A11,
as it provides the ability of the cell to coordinate Cys availability
and proliferation. Cys plays a critical role in sustaining the anti-
oxidant pool that is essential for maintaining tumor growth and
proliferation (14, 24). Recent work has shown that shortage of
extracellular Cys can be compensated by transulfuration activity to
support the growth of neuroblastoma cells (25). However, Badgley
et al. showed that loss of Cys was not being compensated by
any salvage pathway in PDAC, thereby exposing its metabolic
vulnerability (14). Our work also supports targeting Cys metabolism
in PDAC and provides an alternative mechanism to do so through
inhibition of autophagy, which would impair SLC7A11 activity and
deplete Cys pools.

Materials and Methods
Cell Culture. 8988T, Panc1, 8902, AsPC1, DanG, Capan2, HupT3, HPAC, and
HPAF II were obtained fromATCC or DSMZ and cultured in DMEM (Dulbecco’s
Modified Eagle Medium) with 10% FBS (fetal bovine serum) and antibiotic
antimycotic. Cystine starvation experiments were carried out in media with
dialyzed FBS (Fisher Scientific 26-400-044). All the cell lines were routinely
tested for mycoplasma by PCR and periodically authenticated by finger-
printing, visual inspection, and storage in a centralized cell bank.

SLC7A11 Activity. Cystine uptake was analyzed following the sodium nitroprusside-
based protocol previously described (15). In tandem with the cystine uptake, the
extracellular glutamate secretion was quantified using Glutamate-Glo (Promega
J7021) following the manufacturer’s protocol. Data were normalized by MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) based cell number
quantification and was represented as %control. For analysis of fluorescent cystine
uptake, equal numbers of PDAC cells were starved of cystine by culturing in media
without cystine and supplemented with dialyzed serum overnight followed by
incubation with BioTracker cystine-FITC (fluorescein isothiocyanate) live cell dye
(1 μM, 20 min). Following this, cells were washed with PBS (phosphate-buffered
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saline) and imaging was done immediately. Data were normalized by cell number
quantification by Hoechst-based nuclear staining and represented as %control.

Transferrin Uptake. PDAC cells under the indicated conditions were analyzed
for transferrin uptake as previously reported (18).

Plasma Membrane and Cytoplasm Purification. Plasma membrane and cyto-
plasm were purified using the Minute Plasma Membrane Protein Isolation
and Cell Fractionation Kit (Invent Biotechnologies Inc. SM-005) according to
the manufacturer’s instructions.

Cell Proliferation and Clonogenic Assay. Cell proliferation and clonogenic
assay were performed as previously reported (6, 26). For these assays, CQ was
used at 10 μM.

Immunofluorescence Analysis. Unless otherwise mentioned, antibodies (see
SI Appendix) were used against endogenous proteins for analyzing colocali-
zation using a Leica-DM6 and analyzed using LAS-X software (version
2.0.0.14332.2) as previously described (27). Percentage of cells with pre-
dominantly plasma membrane expression of GFP-SLC7A11 was quantified by
measuring the integrated optical density (threshold filter was set at a value
of 40) and area fraction with the ImageJ software (National Institute of
Mental Health); nuclear-staining by DAPI/Hoechst was used to normalize cell
number. Random visual fields were observed for each group to quantify the
immunofluorescence signal for colocalization using JACoP plugin in ImageJ
(27). SLC30A10-GFP was gifted by Somshuvra Mukhopadhyay (The University
of Texas at Austin, Austin, TX), Addgene 104381.

Immunohistochemistry Analysis. The mentioned antibodies were used at the
manufacturer’s recommended concentration for immunohistochemical (IHC)
analysis which was performed according to the previously reported methods
(9). We performed color deconvolution of IHC images using ImageJ Fiji soft-
ware with the help of the “H DAB” vector option and selected a threshold of
the antibody staining intensity to quantify the H-score.

Live Cell Imaging. 8988T cells stably expressing GFP-SLC7A11 were treated
with CQ and live time-lapse imaging acquisition of spatiotemporal location
of GFP-SLC7A11 was performed using the Zeiss LSM-880 Airyscan Fast Live
Cell using Zen software at 20-s intervals, 7 slice z-stack, 60 cycles. Images
were acquired for 20 min in CQ-treated and control groups. The real-time
tracking of GFP-SLC7A11 was analyzed by Imaris software.

Reactive Oxygen Species Detection. Briefly, 10,000 cells underwent indicated
experimental treatments followed by quantification of ROS by DCFDA
(2’,7’–dichlorofluorescin diacetate) Cellular ROS Detection Assay Kit (Abcam:
ab113851) using manufacturer instructions followed by reading at Ex/Em
(excitation/emission wavelength): 485/535 with a BMG Labtech Spectro-
photometer. Alteration in ROS level is represented as %control or %shGFP.

Animal Experiments. Histology sections from murine PDAC tumors with
autophagy inhibition expressing the dominant negative Atg4b (9), shAtg7, or
CQ (10) treated were obtained from previous studies. Briefly, 25,000 mouse
PDAC cells were suspended in a 40-μL solution comprising 50% HBSS (Hank’s
balanced salt solution) and 50% Matrigel (Corning: 356231) and injected
subcutaneously into the lower flank of female NCr nude mice (Taconic) at
6 wk of age. Daily intraperitoneal injection was performed with CQ at
60 mg/kg in 100 μL of PBS or 100 μL of PBS only daily for 3 wk. All mouse
experiments were conducted in compliance with ethical regulations ap-
proved by the New York University Institutional Animal Care and Use
Committee (IACUC-ID:IA16-00507, IA16-01331).

Metabolomics. Metabolites were extracted by first washing cells with ice-cold
0.9% saline followed by addition of 5:2:5 ratio of methanol:water:chloroform

(−20 °C). Cells were scraped into an Eppendorf and vortexed at 4 °C for 10 to
15 min followed by separation of aqueous and inorganic metabolites by
centrifugation. Polar metabolites containing amino acids were transferred to
an Eppendorf and evaporated by SpeedVac (Savant, Thermo). Metabolite
levels were quantified by gas chromatography-mass spectrometry (GC-MS) as
previously described (28). Briefly, metabolites were derivatized to form their
methoxime-tBDMS (tert-butyldimethylsilyl) derivatives and analyzed on an
Agilent 5977B gas chromatograph (GC) interfaced with an Agilent 5977B mass
spectrometer (MS). Metabolite levels were normalized for extraction and de-
rivatization efficiency by normalizing the total ion counts to an added nor-
valine internal standard and cell number. As intracellular Cys levels were
difficult to measure by GC-MS, they were measured separately using the cys-
teine assay kit (MyBioSource: MBS8309602) following the manufacturer’s in-
structions. In this case the normalization was done to cell count.

Western Blotting. Freshly pelleted cells were lysed in chilled buffer comprising
Cell Lysis Buffer (1×, Cell Signaling Technology: 9803) supplemented with
protease inhibitor (1×, Thermo A32953) and phosphatase inhibitor (1×,
PhosSTOP, Sigma: 04906837001) and followed as previously described (10).

Immunoprecipitation. Briefly 1 × 106 cells were lysed in a buffer comprising
50 mM Tris·HCl (pH 8.0), 150 mM NaCl, 1% Nonidet P-40 supplemented with
protease inhibitor (Thermo A32953) and phosphatase inhibitor (PhosSTOP,
Sigma 04906837001). For experiments with mTORC1, C2 components, CHAPS
(3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate) buffer was
used instead of Nonidet P-40. Cell lysates were immunoprecipitated using
the recommended concentration of antibody which was already tagged
with Dynabead A protein matrix following the instructions from the Dyna-
beads Protein A Immunoprecipitation Kit (Thermo 10006D). Lysosomal
immunopurification was performed in PDAC cells stably expressing pLJC5-
Tmem192-3xHA (gifted by David Sabatini, Whitehead Institute for Biomed-
ical Research and Massachusetts Institute of Technology, Cambridge, MA,
Addgene 102930) following a previously reported method (10).

Quantitative Proteomics. Analysis for quantitative mass spectrometry-based
proteomics was performed as previously described (26). All analysis involved
an MS3-based TMT (tandem mass tag) method as previously mentioned and
mass spectra were processed as described earlier (26, 29).

Statistical Analysis. All data are presented as the mean ± SEM. The experi-
mental results were analyzed by comparing one-way ANOVA followed by
Tukey’s post hoc test until otherwise mentioned. P < 0.05 was considered the
level of significance when comparing the values from the experimental
treatments to those of the control using GraphPad 7. Each experiment was
conducted with biological replicates and repeated multiple times. All at-
tempts at replication were successful and no data were excluded. Mice were
randomly allocated to experimental groups and the investigators were not
blinded during the experiments.

Data Availability. All study data are included in the article and/or supporting
information.
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