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Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease and, owing 
to its increasing prevalence, represents one of the leading public health problems in 
aging populations. The molecular causes underlying the onset and progression of 
AD are manifold and hitherto still incompletely understood. Research over nearly 
four decades has clearly delineated genetics to play a crucial role in AD susceptibil-
ity, likely in concert with non-genetic factors. The field has gained considerable 
momentum and novel insights over the past 10  years owing to the advent and 
application of high-throughput genomics technologies in datasets of increasing size. 
In this contribution to the Mini-Symposium on the Molecular Etiology of Alzhei-
mer’s Disease, we review the current status of genomics research in AD. To this 
end, we scrutinize and discuss the main findings from the two largest and most 
current genome-wide association studies (GWAS) in the field, that is, the papers 
published by Jansen et al (Nat Genet 51:404–413) and Kunkle et al (Nat Genet 51: 
414–430). Particular focus is laid on genomics findings overlapping across both 
studies and on the novel insights they provide in terms of improving our under-
standing of the “genomic mechanisms” underlying this devastating disease.

INTRODUCTION
Alzheimer’s disease (AD) is the most common neurodegen-
erative disorder in humans and is characterized by progres-
sive decline in cognitive functioning ultimately leading to 
dementia and death. Pathogenetically, AD is triggered by 
the aberrant deposition of β-amyloid and tau protein, lead-
ing to the appearance of senile plaques, formation of neu-
rofibrillary tangles, neuroinflammation, synaptic dysfunction, 
neuronal loss, and, ultimately, onset of cognitive decline. 
The molecular events causing neuronal cell death typically 
precede the onset of cognitive symptoms by a decade or 
more (23), implying that, once available, therapeutics target-
ing neuropathology will need to be administered very early, 
ideally prior to the onset of symptoms. Hence, the identi-
fication of genetic risk factors will not only be crucial for 
furthering our understanding of the molecular mechanisms 
causing the disease but will also be essential for an “early 
prediction—early detection—early intervention” approach to 
preventing the onset of AD-related dementia, and aid in 
patient stratification schemes in clinical trials.

THE ROLE OF GENETICS IN AD 
PATHOGENESIS
After the first clinicopathological description of AD by 
German psychiatrist Alois Alzheimer in 1907 (2) it took 

more than half  a century to realize that the disease shows 
familial aggregation consistent with genetic transmission 
(11). It took another decade until the use of  genetic link-
age analysis followed by positional cloning led to the dis-
covery of rare mutations in three genes encoding the 
amyloid-beta precursor protein (APP) and presenilins 1 and 
2 (PSEN1/PSEN2) that cause fully penetrant monogenic 
forms of AD (22). While a large number of additional 
mutations in all three genes have been described following 
the original reports (for an up-to-date summary of mono-
genic findings in AD see the “AD & FTD Mutation Database” 
(9)), no additional genetic locus harboring clearly disease-
causing mutations has been established since. However, 
monogenic forms of AD only make up a small fraction 
of all cases (<5%) while the vast majority of  patients suffer 
from “polygenic AD” (a.k.a. “non-Mendelian AD” or “spo-
radic AD”). Susceptibility for this latter disease form is 
determined by the action (and interaction) of  numerous 
independent genomic variants, likely in concert with non-
genetic factors, such as environmental exposures (eg, head 
trauma) and lifestyle choices (eg, alcohol consumption and 
cigarette smoking). A growing number of studies on a vast 
array of human disease and non-disease traits has revealed 
that most—if not all—human phenotypes are driven by 
complex polygenic backgrounds (8). Thus, with its side-by-
side instances of  both monogenic and polygenic forms, AD 
represents a “genetically complex disorder” par excellence.
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GENOME-WIDE SCREENING IN 
POLYGENIC TRAITS
DNA sequence variants underlying monogenic diseases, 
including those causing AD, are exceedingly rare in the 
population as a whole. This rarity is typically due to the 
large and highly penetrant molecular effects exerted by 
such variants resulting in being “selected against” from 
subsequent generations. DNA sequence variants exerting 
only moderate molecular effects lead to reduced overall 
penetrance and are much less subject to selective pressures 
allowing them to increase in frequency within populations 
over time. Once the minor allele, that is, the nucleotide 
with the lowest frequency, is present in 1% or more in 
the “general” (ie, non-disease) population, a variant is 
defined as a DNA sequence “polymorphism.” Although 
the molecular effects and, hence, contribution to disease 
risk of  any such polymorphism may be very small, it is 
via the combined action of  many such polymorphisms 
that a genetically complex disease may eventually develop. 
Since many, that is, tens to hundreds to thousands, such 
polymorphisms can contribute to the genetic risk archi-
tecture of  the same disease, these are said to be of  a 
polygenic background. The identification of  common 
genomic variants relevant for any given disorder is the 
focus of  current gene findings efforts, including those 
ongoing in AD. The method of  choice is genome-wide 
screening, for example, in the context of  genome-wide 
association studies (GWAS), where the presence of  specific 
alleles or genotypes at polymorphic sites is treated as 
exposure to predict a certain clinical outcome (here: onset 
of  AD). By design, genome-wide analyses afford a heavy 
multiple testing burden owing to the very large number 
of  polymorphisms tested (typically several millions) which 
needs to be accounted for. In European populations it 
could be shown that approximately 1 million independent 
DNA sequence variants exist with a minor allele frequency 
(MAF) >5%. Bonferroni correction for this number of 
independent tests means that study-wide significance is 
achieved at α = 0.05/1  000  000  =  5  ×  10−8, a threshold 
now widely accepted and used in the field. For more 
details on this topic as well as a detailed account of  the 
past (and possible future) achievements of  GWAS in human 
genomics research we recommend consulting the review 
by Visscher et al (24).

In AD, about 60 GWAS have been published since 2007 
(according to the “NHGRI-EBI Catalog of published 
genome-wide association studies” [GWAS catalog], URL: 
https://www.ebi.ac.uk/gwas/ (6)), although many of these are 
not independent as the same datasets were utilized in suc-
cessive meta-analyses. The two most recent and—by sample 
size—largest AD GWAS were published back-to-back in 
the March 2019 issue of Nature Genetics (14, 16), and rep-
resent the core “data” of this review. First, we begin by 
highlighting the main findings from each of these GWAS 
with particular emphasis on results overlapping across both 
studies. This will include a short excursion into rare-variant-
based analyses and how data from those studies fit to the 
results from Jansen et al (14) and Kunkle et al (16). In 

the second part, we will discuss new putative “mechanistic” 
insights gained from these GWAS findings and their pos-
sible implications. We close by providing an outlook on the 
field for the next 10  years.

THE STATUS OF AD GENOMICS 
RESEARCH
Prior to spring of  2019, it had been over 5  years since 
the last bona-fide GWAS was published for AD (17). That 
study, conducted by a group of  researchers aligned under 
the auspices of  the “International Genomics of  Alzheimer’s 
Disease Project” (IGAP), entailed the analysis of  ~75  000 
individuals allowing the identification of  20 genome-wide 
significant (ie, P-value  <  5 × 10−8) AD risk loci, of  which 
11 were novel at the time. Since this IGAP-2013 publica-
tion, the consortium continued collecting additional inde-
pendent AD cases and controls culminating in an updated 
GWAS (16) on approximately 94  000 individuals of 
European descent (35K AD cases vs. 59K healthy controls; 
Table  1). The actual genome-wide screening (“discovery 
phase”) in this IGAP-2019 GWAS was performed in 64 000 
individuals followed by validation analyses in another 
30  000 individuals and led to the discovery of  25 genome-
wide significant loci, five of  which were reported as “novel” 
(16). The second GWAS discussed in this review (14) was 
published (online) nearly 2 months before the IGAP follow-
up study and, overall, utilized nearly seven times as many 
samples as the IGAP-2019 GWAS (total n  ~  635  000 
individuals; Table  1). Partially owing to its much larger 
sample size, this AD GWAS identified 29 genome-wide 
significant loci, of  which nine were declared “novel” at 
the time of  publication. Notwithstanding the identification 
of  novel genetic risk loci in these studies it is worth 
noting that the overall number of  genome-wide significant 
findings in AD GWAS continues to be small compared 
to other GWAS of  similar size, for example, Parkinson’s 
disease or schizophrenia (see GWAS catalog for details 
(6)), possibly indicating that the degree of  polygenicity 
underlying AD may be lower than that of  other traits.

Table 1. Summary of key aspects of the two GWAS discussed in this 
review.

Jansen et al (2019) Kunkle et al (2019)

Sample size
Discovery 455K (72K vs. 383K) 64K (22K vs. 42K)
Follow-up 180K (6.6K vs. 174K) 30K (13K vs. 17K)
Total 636K (79K vs. 557K) 94K (35K vs. 59K)

Results
# variants analyzed 13 367 300 11 480 633
MAF threshold No constraint No constraint
# gw sign. loci 29 15
# gw sign. genes 169 95

Data in “Sample size” are taken directly from the respective GWAS (14, 
16), while data in “Results” were derived from the summary statistics 
re-analyzed for this review.

https://www.ebi.ac.uk/gwas/
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Of these two most recent AD GWAS, the study pub-
lished by Jansen et al (14) is considered the more “remark-
able” by us based on several grounds. First, not only was 
it submitted and published before the IGAP-2019 (16) 
study, but it was also the first bona fide AD GWAS to 
make all its results (main and supplementary) publicly 
available as preprint (on bioRxiv at https://doi.
org/10.1101/258533) prior to peer-review and publication 
in Nature Genetics. Some 6  weeks later, the IGAP-2019 
group published their results as preprint as well (https://
doi.org/10.1101/294629). Second, Jansen et al (14) drasti-
cally increased the overall sample size (and along with 
it: statistical power) by nearly an order of  magnitude 
compared to all other previous GWAS in the AD field. 
This was made possible by utilizing genome-wide data 
from nearly 48  000 AD (proxy; see below) cases and 
330  000 non-AD controls of  the UK biobank (UKB) 
project. UKB is a unique prospective cohort study with 
deep genetic and phenotypic data collected on ~500  000 
individuals from across the United Kingdom (7). At base-
line, UKB participants were aged between 49 and 69 years, 
and therefore mostly too young for having developed 
polygenic AD, which peaks after the age of  65. To cir-
cumvent this problem, and this is the third reason for 
being a truly remarkable study, Jansen et al utilized a 
method based on “proxy phenotyping” which makes use 
of  parental AD status as recorded in UKB medical records. 
This approach was recently proposed (18) to be a valid 
approximation of  future AD status in UKB individuals 
for whom genotype data were available but who had not 
(yet) developed AD themselves.

MAIN RESULTS FROM THE GWAS BY 
JANSEN ET AL (14)
Some parts of the ensuing results summary were already 
highlighted in a “News and Views” article which we pub-
lished earlier this year (5). In their discovery phase, Jansen 
et al (14) combined the data from UKB, IGAP-2013 and 
two smaller case-control datasets from Europe and the US 
to arrive at an overall sample size of ~455  000 individuals. 
As expected owing to the partial sample overlap, the loci 
reported to show genome-wide significance in (14) included 
many also highlighted in the IGAP-2013 GWAS (17), but 
also pinpointed evidence for genome-wide significant 
(P-value  <  5  ×  10−8) association at nine additional and 
novel loci (Table  2), all of which were subsequently tested 
in an independent replication sample of 180  000 individuals 
from Iceland (Table  1). At the same time, the data by 
Jansen et al (14) did not confirm several of those reported 
in the IGAP-2013 study (ie, MEF2C, NME8, CELF1, and 
FERMT2) and renewed association evidence at one locus 
(ie, CD33; originally identified in a GWAS by our group 
more than 10  years ago (3)) showing clear genome-wide 
significant (P-value  <  5  ×  10−8) association with AD risk 
(Table  2). Also new on the list is ADAM10, encoding the 
key enzyme cleaving APP to preclude Aβ (the core constitu-
ent of β-amyloid and, hence, senile plaques) generation, 

which has previously been shown to contain rare variants 
segregating with AD status in AD families (21), and APH1B, 
whose encoded protein, Aph-1 homolog B, together with 
the presenilins is a component of the gamma secretase 
complex, responsible for cleaving APP to produce Aβ. The 
other novel loci identified in the GWAS by Jansen et al 
(14) include ADAMTS4 (located on chromosome 1), CLNK 
(chr. 4), KAT8 (chr. 16), ALPK2 (chr. 18), AC074212.3 
(chr. 19), HESX1 (chr. 3), and CNTNAP2 (chr. 7). All but 
the last two loci were pinpointed with common polymor-
phisms (ie, those with an MAF  >  1%; Table  2), while the 
latter two loci showed their lead signals with rare variants 
(defined here as MAF  <  1%; Table  3).

For a visual summary of the genome-wide association 
results by Jansen et al (14) as a “Manhattan plot” see 
Figure 1; for a detailed summary of top AD loci see Tables 2 
and 3. To facilitate comparison, both sets of results are 
depicted next to the discovery-phase GWAS findings by 
Kunkle et al (16) in Figure  1. Despite there being a total 
of 29 loci showing genome-wide significance, it needs to be 
emphasized that one locus stands out both in terms of 
statistical support and exerted effect size, that is, locus #26 
in (14), located in the APOE region on the long arm of 
chromosome 19. The “standing out” nature of this locus 
can be grasped from Figure S1 where we plot non-truncated 
association P-values in the APOE region for both GWAS: 
with P-values at 1 × 10−300 and below, markers in the APOE 
region are hundreds of orders of magnitude more signifi-
cantly associated with AD risk than any other locus in the 
genome (the next best association is observed with a variant 
in the BIN1 locus showing a P-value = 3.38 × 10−44; Table 2). 
Interestingly, of all currently established AD genetic risk 
factors, APOE represents the only locus to emerge from 
the pre-GWAS “candidate gene era” (4); all other AD loci 
in Table  2 where established to represent bona fide AD 
genes by genome-wide screening.

MAIN RESULTS FROM THE GWAS BY 
KUNKLE ET AL (16) (IGAP-2019)
Owing to its smaller sample size, the IGAP-2019 GWAS 
identified fewer loci at genome-wide significance than the 
study by Jansen et al (14). Overall, there were 25 loci high-
lighted by Kunkle et al (16) as AD risk factors, five of 
which were deemed “novel” by the authors, namely ADAM10 
(on chromosome 15), IQCK and WWOX (both chr. 16), 
ACE (chr. 17), and ADAMTS1 (chr. 21; Table 2). Technically, 
ADAM10 was first published as a genome-wide significant 
AD locus 2  months prior in the GWAS by Jansen et al 
(14) to which it is, hence, credited for the purpose of this 
review. The other four novel IGAP-2019 AD GWAS loci 
either show no or only very modest evidence of association 
with AD risk in the larger datasets by Jansen et al (14), 
which is why these are interpreted only as “potential” or 
“possibly false positive” findings by us (Table 2). Conversely, 
Kunkle et al (16) also did not replicate some of the novel 
signals in the Jansen GWAS (namely: ADAMTS4 and 
ALPK2), although this may simply be attributed to the 

https://doi.org/10.1101/258533
https://doi.org/10.1101/258533
https://doi.org/10.1101/294629
https://doi.org/10.1101/294629
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much smaller sample size (and, hence, reduction in power) 
of the IGAP-2019 study. While these could therefore also 
represent false-positive findings and more data are needed 
to more conclusively address this possibility, we consider 
the likelihood of such an outcome as relatively low, and 
therefore count these latter two signals as genuine AD genetic 
loci for the purpose of this review.

For a visual summary of the genome-wide association 
results by Kunkle et al (16) as a “Manhattan plot” see 
Figure  1 (and Figure S1); for a detailed summary of top 
AD loci see Tables  2 and 3. To facilitate comparison, the 
results of the IGAP-2019 GWAS are depicted next to the 
discovery-phase GWAS findings by Jansen et al (14) in 

Figure  1. As for the results by Jansen et al (14), markers 
in the APOE region outshine all other genome-wide  
significant AD loci by a large margin, again emphasizing 
the predominant role of this locus in AD pathogenesis 
(Figure S1B).

OVERLAPPING FINDINGS ACROSS 
GWAS BY JANSEN ET AL AND  
KUNKLE ET AL
Before engaging in considerations on the potential “mecha-
nistic” implications of  the current AD genomics findings, 

Figure 1. Manhattan plots of “discovery phase” GWAS findings from the two GWAS discussed in this review. A. Jansen et al (14); B. Kunkle et al 
(16). Results are based on data distributed by the two respective studies (see “Data Availability Statement” section for more details). P-values are 
truncated at 1E-25 for didactic reasons. For Manhattan plots of non-truncated results see Figure S1. 
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one needs to derive a subset of  results that stands a large 
likelihood of  surviving the test of  time, that is, likely 
representing genuine AD loci. As outlined above, Jansen 
et al (14) reported to have identified nine novel loci at 
genome-wide significance. Two of  these, that is, HESX1 
and CNTNAP2, were elicited by rare-variants (MAF < 1%; 
Table  3) for which IGAP-2019 did not compute or make 
available summary association statistics at the time of 
writing. Based on the strength of  the reported association 
evidence, we still consider them as genuine AD risk loci 
here. Furthermore, five of  the remaining seven novel AD 
loci elicited by common variants (MAF > 1%) highlighted 
by Jansen et al (14) showed the same direction of  effect 
and association P-values  <  0.01 in IGAP-2019, namely 
CLNK, ADAM10, APH1B, KAT8, and AC074212.3 
(Table  2). Therefore, for the purpose of  this review they 
are also considered as genuine AD loci. Interestingly, the 
reverse is not true for most loci: of  all 4 novel IGAP-
2019 loci, only ACE on chromosome 17 replicates in Jansen 
et al (14) and, thus, appears to represent a genuine AD 
finding. Finally, there remain two loci with somewhat 
unclear association evidence, that is, SPI1/CELF1 (on 
chromosome 11) and FERMT2 (chr. 14). Both of  these 
were originally identified in the IGAP-2013 study (17) 
and continue to show genome-wide significant association 
with AD risk in IGAP-2019 (Table  2). This is not sur-
prising given that 80% of  individuals in IGAP-2019 were 
also included in IGAP-2013. However, Jansen et al (14) 
did not consider these loci further due to the “lower 
association signals in the UKB data set” (ie, P-values of 
0.02 and 0.004 for SPI1/CELF1 and FERMT2, respec-
tively). Given the extremely modest association evidence 
for these two loci in UKB, we tend to agree with the 
notion of  Jansen et al (14), and will also not consider 
these two loci further in the remainder of  this review.

In summary, taking all the available evidence together, most 
genome-wide association findings show good correspondence 
across both studies. Overall, there emerge 32 apparently genu-
ine AD risk loci at the day of writing of this review (August 
2019), 27 (out of 32) from common variant (Table  2) and 
5 (out of 5) from rare-variant based-results (Table  3). Note 
that the latter results also include two loci, that is, PLCG2 
and ABI3, which recently emerged from an “exome chip” 
GWAS (20) on what appears to be largely the same dataset 
also utilized for the IGAP-2019 GWAS. Variants in both 
loci showed P-values  <  0.01 in the Jansen et al (14) results 
(Table  3), thus, fulfilling our criteria of “replication.”

INSIGHTS INTO GENOMIC 
MECHANISMS OF AD FROM GWAS
The identification of  complex trait genetic loci represents 
only the first step in what inevitably proves to be a “long 
and winding road” to advancing our understanding of  the 
pathogenic mechanisms underlying the trait in question. 
This process amounts to “making sense” of  GWAS findings 
and putting them into the (correct) context with other 
molecular data to understand why and when a specific 

disease has developed in cases, but not in controls. A next 
and probably more important aspect is to utilize these 
genetic insights to predict an individual’s risk for the disease 
in question prior to the actual onset of  first symptoms, 
with the aim to offer specific genetic counseling and/or 
therapeutic options (if  these exist) similar to what is now 
possible for many monogenic disease mutations. In the 
beginning of  this review, we summarized this procedure as 
the development of  “early prediction—early detection—early 
intervention” procedures in AD. Notwithstanding its clinical 
importance, the translation of  polygenic genomics findings 
into medical genetics practice is not discussed further in 
this review. Instead, we focus on the interpretation of  the 
GWAS findings from a “disease mechanism” viewpoint.

In the genomics community, the set of  analyses focusing 
on the interpretation (in terms of  putative disease mecha-
nisms and/or translational potential) of  specific GWAS 
findings is often described as “post-GWAS analyses.” In 
general terms, these approaches entail the utilization of 
different computational tools and analyses with the aim 
to integrate high-resolution data from other genomics 
domains (eg, transcriptomics or epigenomics), as well as 
other “-omics” data in general (eg, proteomics and metabo-
lomics). The main aims of  these efforts can perhaps be 
summarized (and simplified) as follows: First, delineate the 
functionally relevant genes located within the identified AD 
GWAS loci. This is important because many AD loci actu-
ally contain several plausible gene candidates in the imme-
diate vicinity of  associated lead variants. Second, characterize 
the functionally relevant molecular genetic mechanisms 
within delineated gene candidates, for example, assess whether 
the predominant effect on pathogenesis is the result of  an 
exonic variant changing the function of  the encoded protein 
or that of  a regulatory variant changing the gene’s expres-
sion. Third, if  a non-exonic variant is the likely culprit, 
assess whether it affects the expression profile of  implicated 
genes in the tissue of  interest, for example, in the case of 
AD the brain, for example, hippocampus or specific corti-
cal areas. Fourth, delineate the overarching mechanistic 
“themes,” for example, specific pathways or gene/protein 
networks, with the aim to assess how the genomics find-
ings may fit with evidence from other molecular domains, 
for example, neuropathological data. Almost always, these 
and other analyses are applied in parallel and in combina-
tion to arrive at the most likely solution. The hope behind 
these efforts is to arrive at a tractable mechanistic hypothesis 
which can then be tested by dedicated laboratory experi-
ments to prove or disprove causality of  a specific disease-
associated sequence variant.

Owing to the complexity of the matter, we can here only 
provide some first and early insights into potential mecha-
nisms offered by the newest AD genomics findings. For the 
sake of simplicity, we only touch on the four main “mecha-
nistic domains” outlined in the previous paragraph and 
summarize selected results of post-GWAS analyses presented 
in the two primary GWAS publications that form the basis 
of this review. We refer to the other papers in this Mini-
Symposium for insights into additional potential mechanisms 
underlying AD pathogenesis.
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DELINEATING FUNCTIONALLY 
RELEVANT GENES WITHIN THE AD 
ASSOCIATED GENETIC LOCI
In the context of GWAS, the term “genetic locus” describes 
a specific stretch of genomic DNA collectively showing 
association evidence with the outcome trait in question, 
here the onset of AD. The physical dimensions, that is, 
length, of each locus can vary quite substantially between 
chromosomal regions and mainly depend on the extent of 
correlation between DNA sequence variants located within 
the locus, a situation reffered to as “linkage disequilibrium”. 
A genomic region not much affected by chromosomal recom-
bination at meiosis will be larger (and possibly contain more 
genes) than recombination “hotspots” which are smaller and 
typically contain fewer genes. In the GWAS by Jansen et 
al, the average AD locus encompassed ~138  000 base pairs 
(bp) in length (range 1–823  000  bp; calculated based on 
information from table S2 of (14)). Using three different 
mapping strategies the authors of that study concluded that 
up to 192 genes may be linked to the 29 AD loci identified 
by genome-wide screening. Using equivalent mapping strate-
gies, the authors of the IGAP-2019 study delineated up to 
400 gene candidates underlying the GWAS signals in their 
analyses (16). In theory, all of these could be involved in 
AD pathogenesis and hence represent culprits for eliciting 
the observed GWAS signal within each locus. In some 
instances, it is even possible that several DNA sequence 
variants within the same locus are independently associated 
with disease risk and these do not necessarily have to be 
located in the same gene. The APOE locus on chromosome 
19q13.32 shall serve as a illustrative example of the problem 
faced when attempting to translate “GWAS loci” to “disease 
genes” (Figure S2): here, the entire AD-associated GWAS 
locus extends over ~823  000  bp. Near the main association 
signal, it contains several highly correlated variants mapping 
into different genes located in close proximity. Most of the 
other non-APOE AD GWAS loci highlighted in the GWAS 
by Jansen et al (14) and Kunkle et al (16) contain several, 
albeit less than in the APOE region, such gene candidates. 
Knowledge of the other “mechanistic domains” (see below) 
can help to further pinpoint the pathophysiological culprits, 
that is, genes eliciting the observed GWAS signals.

CHARACTERIZATION OF THE 
UNDERLYING MOLECULAR GENETIC 
MECHANISMS
An integral part of mapping relevant disease genes within 
GWAS loci is characterizing the assumed molecular genetic 
mechanisms of the associated DNA sequence variants. For 
instance, an exonic loss-of-function variant, for example, 
introducing a premature stop-codon severely affecting the 
function of the encoded protein, may elicit stronger and 
more significant disease-effects than an intronic variant 
without any obvious molecular consequences. However, exonic 
variants (and others near the coding sequence) are quite 
rare and rarely serve as plausible mechanistic explanation 

for the disease association. Figure  2 depicts the distribution 
of variant locations for all genome-wide significant loci in 
the Jansen et al (14) GWAS (Figure S3 for both GWAS, 
side-by-side). It shows that the two most frequent disease-
associated variant categories are “intergenic” (ie, outside the 
coding sequence, between genes) and “intronic.” While these 
categories may at first appear less compelling than “exonic” 
or “splicing” or “UTR” it is becoming increasingly clear 
from other work that much of the intergenic space is actively 
involved in the regulation of gene expression (15) and may, 
therefore, be of relevance in the onset and progression of 
disease. Systematic functional mapping of variants in the 
29 loci highlighted in the Jansen et al (14) GWAS revealed 
that in addition to APOE a total of only four loci (ie, 
CR1 [chr. 1], PILRA [chr. 7], APH1B [chr. 15], and CD33 
[chr. 19]) contained non-synonymous exonic variants deemed 
to be “credible causal” for the observed association signals 
(see table S9 in (14)); conversely, the association signals in 
the other loci are, therefore, likely elicited by non-exonic 
variants. Interestingly, within the APOE locus on chromo-
some 19 this approach identified a total of 16 non-synonymous 
exonic variants across nine different genes: the one deemed 
as “credible causal” using the same framework was the well-
known epsilon4-allele (at variant rs429358) in the APOE 
gene itself.

CHARACTERIZATION OF POTENTIAL 
VARIANT EFFECTS ON GENE 
EXPRESSION
Non-exonic (and even some exonic) variants are hypothesized 
to exert their molecular effects by influencing the regulation 
of gene expression (10). To this end, the recent advent of 
high-dimensional reference datasets for tissue-specific gene 
expression profiles based on whole transcriptome RNA 
sequencing data, has vastly facilitated the interpretation of 
putative regulatory effects of DNA sequence variants (26). 

Figure 2. Functional consequences of SNPs on genes for the GWAS by 
Jansen et al (14). The histogram displays the proportion of SNPs (all 
SNPs in LD with independent significant SNPs) which have 
corresponding functional annotation assigned by ANNOVAR. Bars are 
colored by log2 (enrichment) relative to all SNPs in the selected 
reference panel. Plots are made with FUMA (25) using data described in 
“Data Availability Statement” section. For equivalent results of the 
GWAS by Kunkle et al (16) see Figure S3. 
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Such variants are often called “expression quantitative trait 
loci” (eQTL), meaning that they elicit quantitative (and 
statistically significant) effects on the expression of genes. 
In essence, these studies are nothing but GWAS using quan-
titative gene expression data as outcome variables. The field 
was revolutionized by the launch of the “GTEx” (Genotype-
Tissue Expression) project, whose overarching aim is to 
characterize variation in gene expression across individuals 
and diverse tissues in humans (1). Owing to the availability 
of gene expression data in 13 different brain regions, data 
accumulated by the GTEx consortium are highly relevant 
to the neuroscience community (26). Importantly for the 
efforts described here, all GTEx data and results are made 
freely available via a dedicated website (www.gtexp ortal.org) 
and numerous variant-mapping algorithms have integrated 
these data into their “variant effect prediction.” Among 
these is the “Functional Mapping and Annotation” (FUMA) 
of GWAS findings tool (25), developed by the same group 
that also spearheaded the Jansen et al (14) AD GWAS.

There are multiple different ways of  connecting DNA 
sequence variant to gene expression data. One way rou-
tinely applied by FUMA are “gene property analyses for 
tissue specificity.” Essentially, these analyses probe for tis-
sue specificity of  the phenotype by testing for potential 
relationships between tissue specific gene expression profiles 
(based on GTEx data) and disease-gene associations (based 
on genome-wide gene-based association statistics of  the 
underlying single-variant results). Applying these analyses 
to the discovery phase gene-based GWAS results from 
the Jansen et al (14) study revealed study-wide significant 

association between AD risk genes and tissue-specific gene 
expression in spleen, whole blood, and lung (Figures  3 
and S4A). Interestingly, no significant association was 
observed between AD risk genes and gene expression in 
the various different brain regions analyzed by GTEx. A 
very similar pattern was observed when analyzing the 
discovery-phase AD GWAS results from the Kunkle et al 
study (16) which also showed significant tissue-specific 
expression in non-brain regions such as whole blood, liver, 
and spleen (Figure S4B). These and other related sets of 
gene expression results converged on the notion that AD 
risk genes overlap more with immune-system related tis-
sues than with brain- or neuron-specific datasets. For 
instance, the brain cell types with the highest expression 
of  AD risk genes were microglia, a cell type involved in 
the brain’s immune system response, rather than neuronal 
cell types (see figure 4 of  (14)).

DELINEATING OVERARCHING 
MECHANISTIC “THEMES” BY MEANS 
OF PATHWAY ANALYSES
The final set of  “functional characterization” analyses 
discussed in this section relate to various types of  “path-
way analyses” to elucidate common mechanistic themes 
combining genetics with protein function. There are a 
multitude of  different approaches to link disease genes 
to pathways, but probably the most widely used test in 
this context is to probe for an enrichments of  associated 
genes in certain predefined gene sets (eg, converging on 

Figure 3. Results of tissue expression analysis for the GWAS by Jansen et al (14). Results are based on MAGMA gene-property analyses as 
implemented in FUMA (25) using GTEx (1) v6 data on 53 tissue types. Input GWAS data as described in “Data Availability Statement” section. Red 
bars represent study-wide significant results correcting for the 53 tissue types. 

http://www.gtexportal.org
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certain biological mechanisms defined by gene ontology 
[GO] classification). Applying such GO-based enrichment 
analyses for the two GWAS discussed in this review high-
lighted two biological mechanisms in both studies, that 
is, processes involved in “lipid metabolism” and “APP 
metabolism/ Aβ formation.” In addition, the GWAS by 
Kunkle et al (16) also identified “immune system response” 
and “tau protein binding” as significantly enriched among 
their set of  AD-associated GWAS genes. While the con-
nection to lipid metabolism and immune system response 
pathways had already been described in similar enrichment 
analyses of  the IGAP-2013 data (13), the connection to 
APP metabolism represents a new outcome of  the refined 
AD association results of  the two largest and most recent 
GWAS. As such it provides further support for the notion 
that the “amyloid hypothesis” of  AD—which posits that 
Aβ mismetabolism is the primary driver of  AD-related 
pathogenesis (for reviews see refs (22) and (19))—may 
also be at play in late-onset, polygenic AD, in addition 
to its well-known role in monogenic AD.

As for all other “functional mapping” domains highlighted 
in this section, there is a vast array of additional types of 
analyses allowing to integrate the evidence from genetics 
studies (such as GWAS) to those from other “-omics” domains 
with the aim to derive common pathways relevant for patho-
genesis and/ or therapeutic interventions. A substantial number 
of additional results from these analyses are highlighted in 
the primary publications by Jansen et al (14) and Kunkle 
et al (16). To learn more about these findings and their 
implications we encourage the interested reader to scrutinize 
the very detailed Supporting Information provided with both 
publications on the Nature Genetics website.

CONCLUDING REMARKS AND 
OUTLOOK
At the day of  writing (August of  2019), AD genomics 
can be summarized succinctly with the results from two 
GWAS investigating a large number of  independent case 
control datasets of  European descent using state-of-the-art 
methodology. From these studies, a total of  32 independ-
ent genomic loci showing compelling association with AD 
emerge in analyses of  both common (Table  2) and rare 
(Table  3) genomic variants. While the exact nature of  the 
underlying genes biologically responsible for the observed 
genetic associations remains elusive for most of  the implied 
loci, a number of  overlapping mechanistic themes emerge. 
First, both GWAS converge on the notion that most AD 
associated DNA variants are located in non-coding por-
tions of  the genome, especially in regions with effects on 
gene transcription. This is in line with GWAS results from 
other complex phenotypes (8, 24) and has important bear-
ings on the design of  future genomic studies: if  most of 
the functionally relevant variation occurs outside genes, 
technologies focusing on coding regions only (such as exon 
variant genotyping or whole-exome sequencing) will likely 
not be suitable to decipher the genetic basis of  AD and 
other conditions. Instead, more emphasis should be laid 

on the regions between genes (eg, using whole-genome 
sequencing) and their functional implications and interac-
tions (eg, using epigenomic and transcriptomic profiling, 
covered elsewhere in this Mini-Symposium). Second, and 
in line with previous work in the AD field, the compu-
tational modeling performed by both GWAS emphasizes 
lipid metabolism and immune system response as crucial 
components in the pathogenesis of  AD. For the latter, 
this is corroborated by gene-set enrichment results showing 
expression in immune system-related tissues (ie, whole 
blood, spleen, and liver) and, perhaps more importantly, 
in a key population of  immune cells in the brain (micro-
glia). Third, while no direct association signals were 
observed in the genes causing early-onset monogenic AD 
(ie, APP, PSEN1, and PSEN2) the GWAS variants by 
both teams show a highly significant enrichment in other 
genes involved in the regulation of  “APP metabolism/ Aβ 
formation.” This is the first time that APP metabolism 
emerged as a main functional category in genetic analyses 
of  polygenic AD, providing further support for the amyloid 
hypothesis in this form of  the disease. Last but not least, 
the results of  both GWAS were published in “pre-print” 
form prior to entering the peer-review process (https://
www.biorx iv.org/). The authors should be commended for 
this decision, as it has effectively allowed the community 
to work with their findings for almost a year before formal 
publication.

Despite their seminal scopes and unique analytic angles 
extending our understanding of  genomic mechanisms 
underlying AD pathogenesis, the current GWAS results 
still leave some important questions unanswered. For 
instance, the new data in both studies did not markedly 
increase the proportion of  phenotypic variance explained 
by genetics, a situation often described as the “missing 
heritability problem” in complex traits (27). Hence, if  the 
phenotypic variance cannot be sufficiently explained by 
“simple” DNA variants of  the type typically assayed by 
GWAS (eg, single base-changes and small insertion-dele-
tions), the elusive heritability must be “hidden” elsewhere, 
for instance in other types of  genomic variants (neces-
sitating other genotyping/sequencing methods) and/or in 
genetic interactions among loci (necessitating novel analytic 
approaches highlighted elsewhere in this Mini-Symposium). 
Third, both GWAS discussed here (as most GWAS pub-
lished for AD to date), focus on datasets of  European 
descent. The reason for this apparent selectivity is often 
simply convenience: European-descent populations are typi-
cally those with the most readily available phenotype and 
genotype data. It will be exciting to observe how the 
utilization of  datasets from other descent-groups will (re-)
shape our knowledge and understanding of  genomics 
mechanisms underlying AD (12). Finally, delineating the 
precise molecular mechanisms linking “genomic dysfunc-
tion” to “cognitive dysfunction,” for example, via “immune 
system dysfunction,” are still, works-in-progress and will 
require the development and application of  novel methods 
effectively linking readouts from “-omics”-based studies 
to cellular function in vivo to establish causality of  the 
observed statistical associations.

https://www.biorxiv.org/
https://www.biorxiv.org/


Bertram & TanziGenomic Mechanisms in Alzheimer’s Disease

Brain Pathology 30 (2020) 966–977

© 2020 International Society of Neuropathology

976

ACKNOWLEDGEMENTS
This work was supported by grants from the Deutsche 
Forschungsgemeinschaft (DFG), the European Research 
Council (ERC), and the Cure Alzheimer’s Fund (CAF).

DATA AVAILABILITY STATEMENT
All figures shown in this review were based on the re-
analysis and plotting of  summary statistics made available 
alongside the original GWAS using FUMA (25). Specifically, 
for the Jansen et al (14) study we utilized the discovery 
phase association results available at https://ctg.cncr.nl/
softw are/summa ry_stati stics. For the Kunkle et al (16) 
study, we used the Stage 1 summary data available at 
https://www.niaga ds.org/igap-rv-summa ry-stats -kunkl e- 
p-value -data.

REFERENCES
 1. Aguet F, Ardlie KG, Cummings BB, Gelfand ET, Getz G, 

Hadley K et al (2017) Genetic effects on gene expression 
across human tissues. Nature 550:204–213.

 2. Alzheimer A (1907) Über eine eigenartige Erkrankung der 
Hirnrinde. Allg Zeitschr Psychiatr Psychiatr-Gerichtl Med 
109:146–148.

 3. Bertram L, Lange C, Mullin K, Parkinson M, Hsiao M, 
Hogan MF et al (2008) Genome-wide association analysis 
reveals putative Alzheimer’s disease susceptibility loci in 
addition to APOE. Am J Hum Genet 83:623–632.

 4. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE 
(2007) Systematic meta-analyses of Alzheimer disease genetic 
association studies: the AlzGene database. Nat Genet 
39:17–23.

 5. Bertram L, Tanzi RE (2019) Alzheimer disease risk genes: 
29 and counting. Nat Rev Neurol. 15:191–192.

 6. Buniello A, MacArthur JAL, Cerezo M, Harris LW, 
Hayhurst J, Malangone C et al (2019) The NHGRI-EBI 
GWAS catalog of published genome-wide association 
studies, targeted arrays and summary statistics 2019. Nucleic 
Acids Res 47:D1005–D1012.

 7. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, 
Sharp K et al (2018) The UK Biobank resource with deep 
phenotyping and genomic data. Nature 562:203–209.

 8. Canela-Xandri O, Rawlik K, Tenesa A (2018) An atlas of 
genetic associations in UK Biobank. Nat Genet 
50:1593–1599.

 9. Cruts M, Van Broeckhoven C (2018) Data mining: applying 
the AD&FTD mutation database to progranulin. Methods 
Mol Biol 1806:81–92.

 10. Hannon E, Marzi SJ, Schalkwyk LS, Mill J (2019) Genetic 
risk variants for brain disorders are enriched in cortical 
H3K27ac domains. Mol Brain 12:7.

 11. Heston LL, Mastri AR, Anderson VE, White J (1981) 
Dementia of the Alzheimer type. Arch Gen Psychiatry 
38:1085–1090.

 12. Hindorff  LA, Bonham VL, Brody LC, Ginoza MEC, 
Hutter CM, Manolio TA, Green ED (2018) Prioritizing 
diversity in human genomics research. Nat Rev Genet 
19:175–185.

 13. International Genomics of Alzheimer’s Disease Consortium 
(IGAP),Jones L, Lambert JC, Wang LS, Choi SH, Harold 

D et al (2015) Convergent genetic and expression data 
implicate immunity in Alzheimer’s disease. Alzheimers 
Dement 11:658–671.

 14. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, 
Steinberg S et al (2019) Genome-wide meta-analysis 
identifies new loci and functional pathways influencing 
Alzheimer’s disease risk. Nat Genet 51:404–413.

 15. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, 
Heravi-Moussavi A et al (2015) Integrative analysis of 111 
reference human epigenomes. Nature 518:317–330.

 16. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, 
Naj AC et al (2019) Genetic meta-analysis of diagnosed 
Alzheimer’s disease identifies new risk loci and implicates 
Aβ, tau, immunity and lipid processing. Nat Genet 
51:414–430.

 17. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, 
Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 
individuals identifies 11 new susceptibility loci for 
Alzheimer’s disease. Nat Genet 45:1452–1458.

 18. Liu JZ, Erlich Y, Pickrell JK (2017) Case-control 
association mapping by proxy using family history of 
disease. Nat Genet 49:325–331.

 19. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of 
Alzheimer’s disease at 25 years. EMBO Mol Med 
8:595–608.

 20. Sims R, van der Lee SJ, Naj AC, Bellenguez C, 
Badarinarayan N, Jakobsdottir J et al (2017) Rare coding 
variants in PLCG2, ABI3, and TREM2 implicate 
microglial-mediated innate immunity in Alzheimer’s disease. 
Nat Genet 49:1373–1384.

 21. Suh J, Choi SH, Romano DM, Gannon MA, Lesinski AN, 
Kim DY, Tanzi RE (2013) ADAM10 missense mutations 
potentiate β-amyloid accumulation by impairing prodomain 
chaperone function. Neuron 80:385–401.

 22. Tanzi RE, Bertram L (2005) Twenty years of the 
Alzheimer’s disease amyloid hypothesis: a genetic 
perspective. Cell 120:545–555.

 23. Veitch DP, Weiner MW, Aisen PS, Beckett LA, Cairns NJ, 
Green RC et al (2019) Understanding disease progression 
and improving Alzheimer’s disease clinical trials: recent 
highlights from the Alzheimer’s Disease Neuroimaging 
Initiative. Alzheimer’s Dement. 15:106–152.

 24. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, 
Brown MA, Yang J (2017) 10 years of GWAS discovery: 
biology, function, and translation. Am J Hum Genet 
101:5–22.

 25. Watanabe K, Taskesen E, van Bochoven A, Posthuma D 
(2017) Functional mapping and annotation of genetic 
associations with FUMA. Nat Commun 8:1826.

 26. Wohlers I, Bertram L (2018) Taking genomics research to 
the next level: the Genotype-Tissue expression project. Mov 
Disord 33:1097.

 27. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The 
mystery of missing heritability: genetic interactions create 
phantom heritability. Proc Natl Acad Sci U S A 
109:1193–1198.

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of this article at the publisher’s web site:

Figure S1. Manhattan plots of “discovery phase” GWAS find-
ings from the two GWAS discussed in this review. A. Jansen  
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et al (14); B. Kunkle et al (16). Equivalent to Figure 1 except 
that P-values were not truncated.
Figure S2. Regional association plot for the APOE region on 
chromosome 19q13.32 in the GWAS by Jansen et al (14). Plots 
were constructed with FUMA (25) on data described in “Data 
Availability Statement” section. Color code for SNPs: Each 
SNP is color-coded based on the highest r2 to one of the inde-
pendent significant SNPs, if  that is greater or equal to r2 = 0.6. 
Other SNPs (ie, r2  <  0.6) are colored in grey. The top lead 
SNPs in genomic risk loci, lead SNPs and ind. sig. SNPs are 

circled in black and colored in dark-purple, purple and red, 
respectively. Color code for genes: Red: Mapped genes. Blue: 
Non-mapped protein-coding genes. Dark grey: Non-mapped 
non-coding genes.
Figure S3. Functional consequences of SNPs on genes for the 
GWAS by Jansen et al 14 and Kunkle et al (16). See legend to 
Figure 2 for more details.
Figure S4. Results of tissue expression analysis for the GWAS 
by Jansen et al 14 and Kunkle et al (16). See legend to Figure 3 
for more details.


