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Abstract

Intrinsically disordered proteins (IDPs) sample structurally diverse ensembles. Characterizing the 

underlying distributions of conformations is a key step towards understanding the structural and 

functional properties of IDPs. One increasingly popular method for obtaining quantitative 

information on intramolecular distances and distributions is single-molecule Förster resonance 

energy transfer (FRET). Here we describe two essential elements of the quantitative analysis of 

single-molecule FRET data of IDPs: the sample-specific calibration of the single-molecule 

instrument that is required for determining accurate transfer efficiencies, and the use of state-of-

the-art methods for inferring accurate distance distributions from these transfer efficiencies. First, 

we illustrate how to quantify the correction factors for instrument calibration with alternating 

donor and acceptor excitation measurements of labeled samples spanning a wide range of transfer 

efficiencies. Second, we show how to infer distance distributions based on suitably parameterized 

simple polymer models, and how to obtain ensembles from Bayesian reweighting of molecular 

simulations or from parameter optimization in simplified coarse-grained models.

Introduction

For more than a century (Fischer, 1902), one of the fundamental concepts of molecular 

biology, and in particular enzymology, has been that the functions of proteins are closely 

coupled to their folded, three-dimensional structures. However, it is now clear that proteins 

can be functional without stable tertiary or even secondary structure (Dyson & Wright, 

2005; Forman-Kay & Mittag, 2013; Tompa, 2005). Such intrinsically disordered proteins 

(IDPs) are involved in many essential biological processes, particularly in higher eukaryotes 

(Dunker et al., 2001; Oates et al., 2013; van der Lee et al., 2014). Nevertheless, 

understanding their functional mechanisms requires a rigorous and quantitative analysis of 

the structurally diverse ensembles they populate.

There are many powerful methods available for characterizing the broad conformational 

distributions and dynamics of IDPs (Gibbs & Showalter, 2015; Uversky, 2012), such as 
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NMR (Konrat, 2014) and SAXS (Kikhney & Svergun, 2015). NMR provides a wealth of 

detailed structural information, especially regarding short-range interactions, secondary 

structure content, and conformational dynamics over a broad range of timescales. SAXS can 

report on the overall dimensions and shape of a biomolecule. It is becoming increasingly 

apparent that these methods can be ideally complemented by single-molecule Förster 

resonance energy transfer (FRET), which has been used successfully as a “spectroscopic 

ruler” to probe the dimensions and dynamics of IDPs (Ferreon, Moran, Gambin, & Deniz, 

2010; Schuler, Soranno, Hofmann, & Nettels, 2016). Key strengths of such single-molecule 

experiments are the ability to quantify specific long-range intra- and intermolecular 

distances, to distinguish static and dynamic heterogeneity, to resolve coexisting 

subpopulations, and to probe conformational dynamics ranging from rapid conformational 

fluctuations on the nanosecond timescale all the way to the formation of higher-order 

assemblies on the timescale of days and weeks (Schuler & Hofmann, 2013). Finally, the 

small volumes and low concentrations used in single-molecule FRET require only minute 

amounts of sample; provide access to concentrations down to the picomolar range; and can 

easily be used in a broad spectrum of solutions conditions, even within live cells (König et 

al., 2015; Sustarsic & Kapanidis, 2015). Together, these advantages have made single-

molecule FRET a versatile tool for biophysical studies of conformationally heterogeneous 

biological molecules like IDPs.

In many applications, qualitative distance information provided by single-molecule FRET is 

sufficient (e.g. many kinetic analyses), but FRET can also be used to obtain quantitative 
distance information, not only for structured biomolecules (Hellenkamp, Wortmann, 

Kandzia, Zacharias, & Hugel, 2017; Kalinin et al., 2012; Muschielok et al., 2008), but also 

for IDPs (Gomes & Gradinaru, 2017; Schuler et al., 2016), as demonstrated by comparison 

with other methods (Aznauryan et al., 2016; Borgia et al., 2016; Fuertes et al., 2017). 

However, this task requires two key steps: First, an accurate transfer efficiency must be 

obtained from the experimental data acquired on a calibrated instrument. Second, the 

distance distribution within the IDP must be inferred from this transfer efficiency based on a 

reasonable model. The first step poses essentially the same challenges for IDPs as for 

structured biomolecules (Hellenkamp et al., 2018); additionally, a detailed analysis of 

photon statistics can be used to identify the presence of broad distance distributions (Gopich 

& Szabo, 2012; Schuler et al., 2016). The second step is even more demanding, since 

information about a broad distribution of distances must be inferred, corresponding to a 

highly underdetermined inverse problem. However, advances in the use of analytical 

polymer models and molecular simulations can now be employed to infer increasingly 

accurate distance distributions of unfolded and intrinsically disordered proteins from single-

molecule FRET experiments, ideally in combination with data from complementary 

methods (Borgia et al., 2016; Fuertes et al., 2017; Zheng et al., 2018). In this chapter, we 

outline the steps required for performing accurate transfer efficiency measurements of 

fluorescently labeled IDPs and for inferring the underlying distance distributions.

FRET

Förster Resonance Energy Transfer (FRET) is a photophysical phenomenon involving the 

non-radiative dipole-dipole coupling between chromophores (Förster, 1948) that is often 

Holmstrom et al. Page 2

Methods Enzymol. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exploited to measure distances on biomolecular length scales. An electronically excited 

donor chromophore (D*) transfers energy to a nearby acceptor chromophore in the ground 

state (A), resulting in de-excitation of the donor (D) and excitation of the acceptor (A*). The 

rate coefficient for energy transfer, kFRET, from D* to A depends on the donor fluorescence 

lifetime, τD, and the sixth power of the Förster radius, R0, divided by the distance, r, 
between the two fluorophores:

kFRET = 1
τD

R0
r

6
. (1)

The FRET efficiency, ε, at a given r is the probability that a D*→ D transition will occur via 

energy transfer (kFRET) rather than other non-radiative (knrad) or radiative (krad) decay 

processes, and thus ε = ½ when r = R0:

ε = kFRET
kFRET + krad + knrad

= R0
6

R0
6+r6 . (2)

The value of R0 can be calculated from the refractive index of the medium, the donor 

quantum yield, the relative orientation of the two fluorophores, and the overlap integral of 

the donor emission and acceptor absorption spectra (Van Der Meer, 1994). If R0 is known, 

the efficiency of energy transfer between two nearby fluorophores can be used to quantify 

the distance between them, which is why FRET has often been referred to as a 

“spectroscopic ruler” (Stryer, 1978; Stryer & Haugland, 1967). An important aspect of 

single-molecule FRET is that typical values of R0 are between 5 and 7 nm, which makes 

FRET ideally suited for probing biological macromolecules.

Although rate coefficients are used to define ε, they are more challenging to determine 

precisely for single fluorophores because of the low photon emission rates. A common 

alternative is to obtain ε from ratiometric measurements of the single-molecule transfer 

efficiency as E =
NA

NA + ND
, using the number of donor (ND) and acceptor (NA) photons 

(Deniz et al., 2001). Accordingly, the average of many such measurements from individual 

fluorescence bursts or time bins corresponds directly to the FRET efficiency:

ε = E = NA
NA   +   ND

= R0
6

R0
6 + r6 . (3)

However, this approach requires that ND and NA are corrected for factors such as differences 

in quantum yields and detection efficiencies for the donor and acceptor fluorophores, which 

is one of the crucial challenges associated with obtaining accurate transfer efficiencies.

Experimental considerations

Single-molecule experiments require individual molecules to be spatially separated from one 

another. In practice, this can be achieved in one of two ways: either by immobilizing 

molecules on a substrate at low surface densities or by studying freely diffusing molecules at 
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extremely low concentrations. In the latter case, individual fluorescently labeled 

biomolecules randomly diffuse through the confocal observation volume and give rise to 

bursts of photons that are readily distinguishable from the background photon detection rates 

(Deniz et al., 1999) (Fig. 1). This chapter focuses on how to accurately determine transfer 

efficiencies of fluorescently labeled biomolecules in confocal free diffusion experiments, 

because it is the spectroscopically most versatile approach. However, the principles 

described here are also applicable to experiments on surface-immobilized molecules 

(Hellenkamp et al., 2018).

Sample design and preparation

The success of any single-molecule FRET experiment is highly dependent on the design and 

quality of the sample. Essential design criteria are the spectral properties of the fluorophores 

and their Förster radius, which determines the accessible distance range, and the position of 

the dyes within the protein or nucleic acid. Over the last two decades, a preference has 

emerged for specific classes of fluorophores, primarily because of their commercial 

availability with versatile coupling chemistries, photostability, quantum yield, and 

compatibility with commonly available laser lines (Gust et al., 2014; Ha & Tinnefeld, 2012). 

Those two classes are rhodamine-based fluorophores (e.g., Alexa 488 as a donor and Alexa 

594 as an acceptor), which are more commonly used for proteins, and cyanine-based 

fluorophores (e.g., Cy3 as a donor and Cy5 as an acceptor), which are more frequently used 

for nucleic acids. Additional considerations involve viable coupling chemistries, solvent 

exposure of the labeling sites, proximity to potential quenchers (e.g., other aromatic groups), 

and electrostatic interactions. Finally, the preparation and purification should minimize the 

amount of donor-only and acceptor-only contaminants within the FRET-labeled sample. For 

IDPs, this goal is most stringently achieved with high-resolution reversed-phase or ion 

exchange chromatography. Many of these issues have recently been discussed in detail 

elsewhere (Zosel, Holla, & Schuler, 2018).

Excitation scheme

A second important aspect for accurately determining transfer efficiencies in single-

molecule FRET experiments is the excitation scheme (Fig. 1). In principle, it is possible to 

use a single laser to directly excite the donor fluorophore and then determine E from ND and 

NA. However, in practice, corrections for differences in quantum yields, detection 

efficiencies, spectral crosstalk, and direct excitation of the acceptor are required to 

accurately determine the transfer efficiency. A simple approach for obtaining these 

correction factors involves measurements of high concentrations of uncoupled fluorophores 

(Schuler, 2007), but it requires that the correction factors do not change upon coupling to the 

biomolecule, which is not always the case (Haenni, Zosel, Reymond, Nettels, & Schuler, 

2013; Kretschy, Sack, & Somoza, 2016; Sanborn, Connolly, Gurunathan, & Levitus, 2007; 

Zosel, Haenni, Soranno, Nettels, & Schuler, 2017). This limitation can be circumvented by 

using an additional laser to alternatingly excite donor and acceptor fluorophores (Kapanidis 

et al., 2004; Muller, Zaychikov, Brauchle, & Lamb, 2005), which makes it possible to 

determine all correction factors directly from the labeled samples (Hellenkamp et al., 2018; 

Kudryavtsev et al., 2012; Lee et al., 2005). For this reason, most studies that aim to 
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accurately measure single-molecule FRET efficiencies utilize some form of alternating 

excitation.

The basic idea behind this method is to alternate between donor and acceptor excitation and 

use time gating to analyze the photons from the two excitation sources separately. In 

practice, this can either be achieved using rapidly alternating continuous-wave lasers 

(referred to as Alternating Laser Excitation, ALEX)(Kapanidis et al., 2005; Kapanidis et al., 

2004) or via interleaved pulsed lasers (referred to as Pulsed Interleaved Excitation, or PIE)

(Kudryavtsev et al., 2012; Muller et al., 2005). Although the continuous-wave lasers used for 

ALEX often yield higher photon detection rates, the fluorescence lifetime information 

afforded by PIE is very useful for identifying undesired photophysical effects (e.g., 

quenching) or the presence of rapidly sampled distance distributions (see below). Therefore, 

this chapter will focus primarily on PIE (Fig. 1). However, apart from the lifetime 

information, the other aspects of PIE and ALEX are essentially identical with respect to 

instrument calibration.

Detection scheme

Another important aspect of any single-molecule FRET experiment is the detection system 

used for recording donor and acceptor fluorescence. Spectral separation of photons is easily 

achieved using dichroic mirrors, resulting in two detection channels: one for donor photons 

and another for acceptor photons. Additionally, it is useful to separate photons by 

polarization, resulting in four detection channels: donor parallel, donor perpendicular, 

acceptor parallel, and acceptor perpendicular (relative to the polarization of the excitation 

light). This four-channel approach provides access to information about the fluorescence 

anisotropy of the donor and acceptor, and, much like the lifetime data afforded by PIE, 

serves as an invaluable tool for identifying potential complications, especially hindered 

fluorophore rotation, that invalidate the basic assumptions necessary for quantitative transfer 

efficiency measurements (Sisamakis, Valeri, Kalinin, Rothwell, & Seidel, 2010). The 

detection scheme can be extended with additional spectral channels, e.g. to accommodate 

multi-color FRET, but here we focus on the commonly used and also commercially available 

(Wahl, Koberling, Patting, Rahn, & Erdmann, 2004) four-channel, two-color, configuration 

(Fig. 1).

Accurate FRET efficiencies

The value of E for each fluorescence burst in a free-diffusion measurement can be 

determined from the numbers of donor and acceptor photons after donor excitation. 

However, obtaining E experimentally is complicated by several effects: direct excitation of 

the acceptor fluorophore by the donor excitation source; leakage of donor emission into the 

acceptor detection channel; different quantum yields of donor and acceptor; different 

detection efficiencies for donor and acceptor photons; and background. These effects depend 

on many experimental factors, including the photophysical properties of the fluorophores; 

the excitation wavelengths and radiant fluxes; the combination of filters and dichroic mirrors 

associated with the detection system; the sensitivity of each detector; and the alignment of 

the instrument. Thus, even after correcting for background, we only obtain an apparent mean 
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transfer efficiency, E =
NA

d

NA
d + ND

d , from the detected numbers of donor, ND
d , and 

acceptor, NA
d , photons in each burst. For the actual mean transfer efficiency, 

E =
NA

d

NA
d + ND

d , which is the desired quantity related to the distance between donor and 

acceptor via Eq. 3, we require the properly corrected values, ND
d  and NA

d . This section 

provides an overview of the analytical methods and workflow required to generate 

experimental correction factors from subpopulations of samples containing fluorescently 

labeled molecules (Hellenkamp et al., 2018; Kudryavtsev et al., 2012; Lee et al., 2005), 

which enable us to calculate ND
d  and NA

d  from ND
d , and NA

d .

Data analysis: Apparent fluorescence stoichiometry ratio and apparent FRET efficiency

One of the principle advantages of single-molecule experiments is their ability to separate 

individual subpopulations, provided that their photophysical properties are sufficiently 

different and their interconversion kinetics are slow relative to the burst duration. This is 

particularly obvious in PIE experiments that make use of both donor and acceptor excitation 

(Fig. 2). Such FRET measurements will typically be comprised of at least three distinct 

subpopulations: molecules that contain both an active donor and an active acceptor (‘FRET-

active’), molecules with only active donor fluorophores (‘donor-only’), and molecules with 

only active acceptor fluorophores (‘acceptor-only’), where the latter two subpopulations 

almost inevitable arise from photobleaching and imperfectly labeled molecules.

To separate these subpopulations, we utilize the total numbers of photons in a burst after 

donor excitation, Ntot
d , and acceptor excitation, Ntot

a , to define a parameter called the 

fluorescence stoichiometry ratio, S =
Ntotd

Ntotd   +   Ntota . Bursts from FRET-active molecules are 

expected to have a stoichiometry ratio of S = ½, whereas donor-only and acceptor-only 

molecules should produce bursts of photons with S = 1, and S = 0, respectively. However, 

due to the previously mentioned complications associated with FRET measurements, the 

detected numbers of photons after donor excitation, Ntot
d , and acceptor excitation, Ntot

a , 

usually do not equal the values of Ntot
d  and Ntot

a . As a result, the mean apparent fluorescence 

stoichiometry ratio, S =
Ntot

d

Ntot
d   +   Ntot

a , differs slightly from S =
Ntotd

Ntotd   +   Ntota . 

Nevertheless, these three subpopulations can easily be identified via a histogram of S and 

used to determine the correction factors needed for proper instrument calibration (Fig. 2).

Correction for cross-talk and acceptor direct excitation from donor-only and 
acceptor-only subpopulations—Donor-only molecules (i.e., S ≈ 1) only emit donor 

photons and should thus ideally have an apparent mean transfer efficiency of 

Edonor−only = 0. However, due to spectral cross-talk, some donor photons leak into the 

acceptor detection channel, and as a result, Edonor−only > 0 (Fig 2). This non-zero value is 
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used to define the cross-talk correction factor, α =
Edonor−only

1 − Edonor−only
. Similarly, acceptor-only 

molecules (i.e.,S ≈ 0) do not contain a donor fluorophore and therefore should not be 

excited by the donor excitation laser. However, due to residual direct excitation of the 

acceptor fluorophore by the donor excitation laser, Sacceptor−only > 0 (Fig. 2). Again, this 

non-zero value is used to define the direct excitation correction factor, 

δ =
Sacceptor−only

1 − Sacceptor−only
. Then, α and δ are used to correct the detected number of acceptor 

photons after donor excitation for both cross-talk and direct excitation, 

NA
d = NA

d − α ⋅ ND
d − δ ⋅ Ntot

ad . Note that cross-talk of acceptor emission into the donor 

channel is usually negligible and can be ignored.

Correction for excitation and detection efficiencies from the FRET-active 

subpopulation—The values of NA
d  are then used to redefine the apparent transfer 

efficiency and apparent fluorescence stoichiometry ratio of each burst:

E = NA
d

NA
d + ND

d and S = NA
d + ND

d

NA
d + ND

d + Ntot
a . (4)

Regardless of the E  of a specific FRET-active subpopulation, it should have an apparent 

mean stoichiometry ratio of S  = ½. However, because of the different excitation and 

detection efficiencies for the two fluorophores, this is generally not the case. Two additional 

correction factors account for these experimental imperfections. The relative excitation 

efficiency, β, describes how efficiently the two fluorophores are excited by their respective 

excitation lasers, β = Pa ⋅ εA
a / Pd ⋅ εD

d , where Pa and Pd represent the relative powers of the 

acceptor and donor excitation lasers, and εA
a  and εD

d  correspond to the extinction coefficients 

of the acceptor and donor fluorophores at their respective excitation wavelengths. The 

second correction factor, γ, accounts for the relative quantum yields and detection 

efficiencies for donor and acceptor emission, with γ = (ϕA·ηA)/(ϕD·ηD), where ϕA and ϕD 

are the quantum yields of donor and acceptor, and ηA and ηD are the detection efficiencies 

for donor and acceptor photons, respectively. The values of β and γ can be determined from 

the dependence of S  on E  using at least two subpopulations with different donor-

acceptor distances (Lee et al., 2005):

S E = 1
1 + β ⋅ γ + E β − β ⋅ γ (5)

This relation shows that when γ = 1, S  is independent of E . If, additionally, the two 

fluorophores are excited with identical efficiency (i.e., β = 1), then S  = ½. The factor γ is 

used to correct the number of donor photons detected after donor excitation for the different 

detection efficiencies of donor and acceptor photons (i.e., ND
d = γ ⋅ ND

d ), and the correction 

factor β is used to correct the total number of photons detected after acceptor excitation for 
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the different excitation efficiencies of the two fluorophores (i.e., Ntot
a =

Ntot
a

β ). These two 

correction factors are then used to calculate the transfer efficiency, E =
NA

d

NA
d + ND

d , and 

stoichiometry ratio, S =
NA

d + ND
d

NA
d + ND

d + Ntota , for each burst. The values of 〈S〉 and 〈E〉 can then 

be determined via a 2D-Gaussian fit to a plot of S vs. E for all FRET-active bursts of a given 

subpopulation. Because the correction factors γ and β are determined from the dependence 

of S  on E , we need to measure multiple subpopulations with different values of E . This 

can be achieved in a variety of ways; the most straightforward is by working with a single 

sample with two or more well-separated subpopulations (e.g., native/denatured, bound/

unbound, cis/trans, phosphorylated/dephosphorylated). However, it is often difficult to 

cleanly determine S  and E  when there are more than a few subpopulations in a single 

sample, which in turn limits the ability to determine β and γ. A more robust, albeit more 

time-consuming approach is to measure multiple independent samples (e.g., different 

biomolecules or different experimental conditions) labeled with the same fluorophores. 

Regardless of the approach, it is important to ensure that the differences in E  arise solely 

because of different donor-acceptor distances and not because of differences in rotational 

flexibility, quenching of the fluorophores, changes in refractive index, or other effects that 

would lead to a change in R0. It is thus important to quantify such contributions, e.g., for 

rotational motion via fluorescence anisotropies, for dynamic quenching via changes in 

fluorescence lifetimes, or for static quenching via nanosecond fluorescence correlation 

spectroscopy (Haenni et al., 2013; Zosel et al., 2017).

Calibration samples and measurements

To demonstrate this approach, we performed single-molecule FRET measurements of 

different IDPs and polyproline peptides labeled with Alexa 488 and Alexa 594 via 

maleimide chemistry (Fig. 3A). None of the samples showed detectable signs of hindered 

fluorophore rotation or quenching and yielded correction factors for acceptor direct 

excitation and donor cross-talk of α = 0.042 ± 0.014 and δ = 0.043 ± 0.004, respectively. 

These values were used to generate plots of S vs. E for each sample using Eq.4, with mean 

values determined from 2D-Gaussian fits. The resulting values of S  and E  were then 

analyzed with Eq. 5, yielding β = 1.16 ± 0.03 and γ = 1.27 ± 0.02 (Fig. 3A), which in turn 

were used to determine 〈S〉 and 〈E〉 for each of the eight samples (Fig. 3B). Once the 

correction factors are established for a given FRET pair and instrument configuration, they 

can be used for any future samples labeled with the same dyes, provided that the 

photophysical properties of the fluorophores do not differ from the reference samples. As 

recently demonstrated in a multi-laboratory benchmark study, this methodology typically 

results in transfer efficiencies with experimental uncertainties between ± 0.02 and ± 0.05 

(Hellenkamp et al., 2018).

One of the advantages of determining 〈S〉 and 〈E〉 values for a larger sample set is that it is 

possible to identify cases where the photophysical properties (e.g., quantum yields) of the 
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dyes deviate from the calibration set based on deviations from 〈S〉 = ½. To demonstrate this 

behavior, we use the N-terminal domain of HIV-1 integrase (IN), an IDP with a tryptophan 

residue at position 23 that is known to quench Alexa 488 (Zosel et al., 2017). The 

fluorescence stoichiometry ratio in the IN sample where Alexa 488 is close to the tryptophan 

residue (IN-WDA) deviates detectably from 〈S〉 = ½ (Fig. 3C), concomitant with a reduced 

donor fluorescence lifetime (Table 1). Replacing the tryptophan residue with phenylalanine 

(IN-FDA) shifts 〈S〉 closer to ½. Also, the donor lifetime determined from the donor-only 

population of IN-FDA is closer to the corresponding values of the calibration set, whose 

members lack any aromatic residues. A similar shift occurs when swapping the positions of 

the donor and acceptor (IN-WAD). This example illustrates that quenched samples can be 

identified based on the fluorescence stoichiometry ratio without having to directly monitor 

the fluorescence lifetime; the effects of quenching can then be taken into consideration when 

calculating 〈S〉 and 〈E〉 . The slight shift of IN-WAD to lower E, however, which is likely 

due to static quenching of the acceptor by the tryptophan (Haenni et al., 2013), is not 

obvious from this analysis and requires alternative methods for detection, such as 

nanosecond fluorescence correlation spectroscopy (Doose, Neuweiler, & Sauer, 2005; 

Haenni et al., 2013; Zosel et al., 2017).

The photophysical parameters, and thus the correction factors, associated with the 

fluorophores can vary depending on the molecules they are coupled to. Therefore, we 

measured a diverse collection of FRET-labeled samples to determine how robust the 

correction factors are. This collection of molecules (Fig. 3D, E) is comprised of different 

types of biomolecules (folded proteins, intrinsically disordered proteins, as well as single- 

and double-stranded nucleic acids) labeled with two different FRET pairs (Cy3B/CF600R 

and Alexa 488/594) using different coupling chemistries (maleimide or N-succinimidyl 

ester). The molecules labeled with Alexa 488/594 exhibit significantly more scatter in 〈S〉 
than the reference samples shown in Fig. 3C. Closer inspection reveals slightly but 

systematically different behavior for the nucleic acid and protein samples. Furthermore, the 

fluorescence stoichiometry ratios generated from this set are not independent of the transfer 

efficiency. These differences can be quantified by analyzing the protein and nucleic acid data 

points separately in the 〈S〉 vs. 〈E〉 plot (Fig. 3D) using Eq. 5, which results in γ′ = 0.65 ± 

0.04 for nucleic acids and γ′ = 1.10 ± 0.04 for proteins. The significant deviations from the 

expected value of γ′ = 1 indicate that different correction factors should be used for the 

protein and nucleic acid samples with this dye pair. For instance, the error in the mean 

transfer efficiency of a protein sample at E  = 0.5 analyzed using the correction factors 

from the nucleic acid samples would be Δ E  ≈ 0.14. However, this discrepancy is highly 

fluorophore-dependent: The data set in Fig. 3E for the Cy3B/CF600R FRET pair, e.g., yields 

correction factors (α = 0.038 ± 0.004, δ = 0.113 ± 0.007, β = 0.97 ± 0.03, γ = 0.60 ± 0.04 in 

this case) that are largely independent of the biomolecules the dyes are attached to.

The above examples (Fig. 3) illustrate how large sets of samples can provide robust 

correction factors necessary for accurate transfer efficiencies. These measurements can also 

reveal variability in the photophysical properties of fluorophores coupled to biomolecules. 

Both features make this approach ideally suited for quantifying distances in biomolecules, 

including IPDs.
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Evidence for distance distributions from fluorescence lifetimes

Thus far, we have focused on obtaining accurate transfer efficiencies. The next step is to 

relate these values to the distances within the molecule. The key complication for IDPs is 

that they usually sample broad distance distributions, P(r), on a timescale much shorter than 

the microsecond interphoton times of typical single-molecule FRET experiments (Schuler, 

2018; Schuler et al., 2016). If these conformational fluctuations occur on a timescale much 

longer than τD, then

E = ε = ∫ P(r)ε(r)   dr . (6)

Note that the mean values of ε and E are equal if the conformational dynamics occur 

between these two limiting timescales, but the distribution of E in a FRET efficiency 

histogram is determined primarily by shot noise arising from the 100 or so photons within 

each burst and not by the underlying P(r) that we would like to characterize.

However, in addition to 〈ε〉, it is possible to extract the variance, σ2 = 〈ε2〉 − 〈ε〉2, of the 

distribution of transfer efficiencies from single-molecule data acquired using PIE and time-

correlated single-photon counting (Gopich & Szabo, 2012; Kalinin, Valeri, Antonik, 

Felekyan, & Seidel, 2010). The reason is that the relevant observation time in this case is the 

fluorescence lifetime, which is on the order of a few nanoseconds and thus much faster than 

the relaxation time of the inter-dye distance, which is typically in the range of tens to 

hundreds of nanoseconds for IDPs in the length range accessible to single-molecule FRET 

(Schuler, 2018; Schuler et al., 2016). To calculate σ2, we estimate the donor fluorescence 

lifetime of each FRET-active burst, τDA, from the mean of the excitation-emission delay 

time, ΔtDA , of donor photons from the corresponding bursts, i.e., τDA = 〈ΔtDA〉. For a single 

fixed distance, 〈τDA〉/τD = 1 − ε, which follows directly from Eq. 2. However, since IDPs 

rapidly sample broad distance distributions, the value of τDA is biased towards longer times, 

because expanded conformations, for which the donor lifetime is longer, emit more donor 

photons than compact conformations. In a plot of τDA/τD vs. E (Fig. 4), this bias can be 

visualized as a displacement from the diagonal associated with a single fixed distance, also 

referred to as the ‘static FRET line’ (Kalinin et al., 2010). This displacement is then used to 

quantify σ2 (Chung, Louis, & Gopich, 2016; Gopich & Szabo, 2012):

τDA
τD

= 1   − ε + σ2

1 − ε (7)

Correspondingly, bursts arising from molecules that have a broad but static transfer 

efficiency distribution (i.e., slow interconversion during the 1-ms burst duration), 

exemplified by the polyproline peptide shown in Fig. 4 (R. Best et al., 2007; Schuler, 

Lipman, Steinbach, Kumke, & Eaton, 2005), will cluster close to the diagonal, whereas 

intrinsically disordered proteins that dynamically sample a broad transfer efficiency 

distribution on the timescale of the interphoton time or faster, will cluster further above the 

diagonal. The lifetime information in these experiments can thus provide evidence for rapid 

conformational dynamics within a subpopulation. The experimental values of 〈ε〉 and σ2 
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afford a model-independent assessment of P(r), and can in principle be used to parameterize 

the underlying distance distribution.

Inferring distributions of distances and conformations

Thus far, we have discussed how the mean efficiency,〈ε〉, and its variance, σ2, are related to 

an unspecified distribution, P(r), of the distance r between the chromophores. For folded 

proteins, the distance r usually fluctuates relatively little about its mean, so that a given 〈E〉 
is commonly mapped directly to a mean distance via Eq. 3 (even though more quantitative 

approaches accounting for the flexibility of dye linkers are available (Kalinin et al., 2012; 

Muschielok et al., 2008)). Disordered and unfolded proteins, however, populate a very broad 

range of r. Therefore, it is necessary to characterize the distribution P(r) to obtain properties 

such as its mean and higher moments. In practice though, how can one reconstruct P(r) using 

the limited experimental information available? A reasonable choice, when it is safe to 

assume that the protein is disordered, is to take P(r) from a homopolymer model 

characterized by one or a small number of adjustable parameters that can be determined 

uniquely by fitting to the experimental data, so that the problem is well-posed. This is what 

is most commonly done for intrinsically disordered and unfolded proteins (Schuler et al., 

2016), but some care is needed in order to obtain quantitatively accurate results (O’Brien et 

al., 2009), as we outline in section (i) below. In particular, it may be necessary to allow the 

form of P(r) to vary to accommodate changes in solution conditions (Zheng et al., 2018). In 

addition to inferring end-to-end distances, we would often like to know the radius of 

gyration Rg = 1
2 rij2 m i, j, m

1/2
 (here defined in terms of the average distances rij(m) over 

all atom pairs i, j, and also over all conformations m). This facilitates comparison with 

small-angle X-ray scattering, which measures Rg almost directly; Rg is also a fundamental 

property of interest of a disordered chain. However, FRET measures only P(r) for a single 

distance, and there is no fixed relationship between Rg
2 and 〈r2〉 – indeed it is known that the 

ratio of these quantities also varies with solution conditions (Borgia et al., 2016; Fuertes et 

al., 2017; Schäfer, 1999), which must be considered when interconverting them.

While analytical polymer models are by far the simplest to use, they can only be applied to 

single, fully disordered chains. Many proteins containing intrinsically disordered regions 

also contain folded domains (Oldfield & Dunker, 2014; van der Lee et al., 2014); others 

assemble into higher order complexes with other biomolecules (Wright & Dyson, 2015). 

Even among isolated disordered proteins, extreme variations of charge or hydrophobic 

patterning can cause deviations from the distributions that would be obtained from analytical 

homopolymer models (Das & Pappu, 2013; Fuertes et al., 2017). These more complex 

scenarios, which usually cannot be treated analytically and call for the use of molecular 

models, are the subject of sections (ii) and (iii). The chemical diversity inherent in 

disordered proteins means that it is also necessary to run molecular dynamics (or Monte 

Carlo) simulations of the molecular model in order to sample representative configurations 

of the system, which makes this procedure much more time consuming.

A further complication is that, unlike analytical polymer models, predictive simulation 

models typically have many parameters – how, then, should one adapt the model if it does 
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not perfectly reproduce experiment? Bayesian statistics (or similarly, the maximum entropy 

principle), provides a solution in which the ensemble of structures obtained by simulation is 

minimally perturbed in order to match experiment. This is described in section (ii) below. 

An alternative scheme is to use a minimalist coarse-grained model, characterized by only a 

handful of free parameters. One may then fit the parameters of such a model directly to the 

data, as is described in section (iii). This “Occam’s Razor” approach avoids overfitting by 

using only a limited number of parameters in the model. In contrast, the Bayesian procedure 

in (ii) has many more parameters than can possibly be determined by the available data; it 

therefore requires a “regularization” procedure to avoid overfitting.

(i) Polymer model description of intrinsically disordered proteins.

Given a functional form for a distance distribution, P(r;a), characterized by parameter(s) a, 

one can straightforwardly determine a by numerically solving the integral equation (Eq. 6) 

above. A variety of models have been employed for this purpose, including the Gaussian 

chain, worm-like chain, and self-avoiding walk (Schuler et al., 2016). The distribution which 

has been most commonly used in the past is the Gaussian chain (GC). This is an idealized 

polymer in which the displacements between adjacent monomer units are governed by 

Gaussian statistics (a type of random walk), and there are no interactions between the 

monomer units (i.e., a “phantom chain”). The Gaussian chain P(r) is given by

P(r; R)   = 3
2π

3
2 4π

R exp − 3
2

r
R

2
, (8)

where the single parameter R is the root mean square end-to-end distance. One could then 

infer the radius of gyration by using the exact relation for a Gaussian chain, Rg = R/ 6. This 

model is often a quite acceptable first approximation, in particular, since unfolded proteins 

in water are frequently close to the so-called theta state (Hofmann et al., 2012), in which 

protein-protein and protein-solvent interactions are balanced – the situation in which a 

Gaussian chain works best (Borgia et al., 2016; Zheng et al., 2018). However, where the 

protein interacts more favorably with the solvent than with itself (in high concentrations of 

chemical denaturant, or in a chain with high net charge, for example), a Gaussian chain 

tends to overestimate both the mean-square distance, as well as the inferred radius of 

gyration (Borgia et al., 2016; Fuertes et al., 2017; O’Brien et al., 2009; Song, Gomes, 

Gradinaru, & Chan, 2015). This overestimation arises from the neglect of excluded volume 

in a Gaussian chain, an effect that contributed partly to an apparent discrepancy between 

inferences of Rg from FRET and from small-angle X-ray scattering (SAXS) experiments 

(Yoo et al., 2012). This discrepancy has recently been resolved by improving the methods 

for analyzing both FRET and SAXS (Borgia et al., 2016; Fuertes et al., 2017; Riback et al., 

2017; Zheng & Best, 2018; Zheng et al., 2018).

The end-to-end distance distribution when protein-solvent interactions are very favorable is 

better approximated by a self-avoiding walk (SAW), a model in which the residues in the 

protein have only short-range repulsive interactions between them. An approximation to the 

end-to-end distance distribution of the SAW is given by
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P(r; R, ν) = 4πA
R

r
R

2 + γ − 1
ν exp −α r

R

1
1 − ν

(9)

where R is the root mean square distance, γ ≈ 1.1615 is a critical exponent (Le Guillou & 

Zinn-Justin, 1977) and ν ≈ 0.6 is the Flory exponent for a self-avoiding walk. The constants 

A and α are determined from the requirements ∫0
∞P(r)   dr = 1 and ∫0

∞P(r)r2   dr = R2. For a 

SAW, Rg = R 6.26 for long chains. Examples of P(r) for a Gaussian chain and a self-

avoiding walk corresponding to three different FRET efficiencies are given in Fig. 5. As is 

clear from the figure, it is possible to infer somewhat different average end-to-end distances 

from the same FRET efficiency when using different models; the change of the estimated 

average distance with FRET efficiency is also larger for the Gaussian chain. How can one 

minimize the model dependence of the inferred properties? Naively, one might assume that 

always using the same model to fit the FRET efficiency should give self-consistent results. 

Unfortunately, the most appropriate model depends on the effective solvent quality, which 

can vary with denaturant concentration, ionic strength, temperature, or amino acid sequence. 

In principle, it should be possible to use the additional information provided by σ2 from 

fluorescence lifetime information (Fig. 4) to choose the most appropriate distribution. 

However, in practice, this variance is often very similar for the different models and does not 

have much discriminating power once the experimental error is considered. For example, in 

Fig. 5B at 〈ε〉 = 0.5, σ2 is 0.13 for a GC and 0.11 for a SAW (see figure legend), whereas the 

intrinsically disordered peptide sNH− in Fig. 4, which resides near 〈ε〉 = 0.5, has a variance 

of σ2 = 0.12 ± 0.02 – i.e., the difference between the two models is within experimental 

error. Therefore, some additional information is needed to constrain the form of P(r). 
Furthermore, the Gaussian chain and self-avoiding walk represent two simplified limiting 

scenarios, while in reality a continuum of intermediate distributions is expected (for instance 

due to changes in solvent quality between theta solvent and good solvent for finite chains).

To overcome these difficulties, we recently proposed a semi-empirical approach, referred to 

as SAW-ν, in which the distance distribution is described via Eq. 9, but the exponent ν is 

treated as an adjustable parameter, rather than being fixed to 0.6 (Zheng et al., 2018). 

Consequently, two parameters, ν and R, must be determined, rather than one (R) for the GC 

or SAW. We have found that these parameters could not be reliably determined from the 

combination of 〈ε〉 and σ2 readily available from FRET experiments (Zheng et al., 2018), 

because these parameters are highly correlated and σ2 does not discriminate sufficiently 

between distributions, as discussed above. Instead, we use an approximate scaling law for 

the end-to-end distance in proteins to relate R to ν,

R = bNν, (10)

in which the prefactor b is approximately 0.55 nm for proteins with well-mixed sequences 

(Hofmann et al., 2012) (for some low-complexity sequences or stiff homopolymers such as 

polyproline (Fig. 4A), a different prefactor may be required). This additional relation makes 

it possible to solve for the single free parameter characterizing the distribution, i.e., ν. In 

order to convert R2 to Rg
2, we employ the approximate relation (Witten & Schäfer, 1978)
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R2

Rg
2 = 2(γ + 2ν)(γ + 2ν + 1)

γ(γ + 1) . (11)

The SAW-ν model is thus able to interpolate between different forms of P(r), characterized 

by the scaling exponent ν. The quality of the fit can be tested against molecular simulation 

models, in which varying the temperature modulates the effective solvent quality, 

represented by ν. In Fig. 6, we apply the model to synthetic values of ε calculated from a 

simulation of a homopeptide (poly-Val) chain of length 100, at different temperatures (Fig. 

6A). We can then use different models to attempt to reconstruct P(r) from the knowledge of 

the efficiencies only. Since we have data at multiple temperatures, we can see how well each 

model performs as a function of temperature, with each temperature corresponding to a 

different effective solvent quality.

We see that the SAW-ν can recover the scaling exponent ν computed directly from the 

protein coordinates in the simulations (Fig. 6B), while the Gaussian chain, or a self-avoiding 

walk with fixed ν=0.6 (SAW-EV) of course cannot capture this variation. Both SAW-ν and 

SAW-EV do a reasonable job of recovering the average end-to-end distance and radius of 

gyration (Fig. 6C, D). As noted above, the Gaussian chain tends to overestimate these 

quantities from the mean transfer efficiency when the chain is expanded. Looking in more 

detail at the distributions of end-to-end distance for simulations near the theta state (ν=0.5, 

Fig. 6E) and near the good solvent limit (ν=0.6, Fig. 6F), the Gaussian chain captures p(r) 
where ν=0.5, but is a poor approximation to the true distribution at ν=0.6. On the other 

hand, the SAW-EV model captures p(r) where ν = 0.6, but performs worst in capturing p(r) 
where ν = 0.5. These results simply reflect the relative strengths of each model discussed 

above. The SAW-ν model is able to fit both of these extreme scenarios similarly well. In 

summary, in the absence of additional information about the IDP of interest, the SAW-ν 
model is a good choice for approximating the underlying distance distributions.

Finally, to relate the experimentally observed average inter-dye distance to the distance 

between the two labeled residues, we need to account for the length of the dyes and linkers 

in this framework of analytical polymer models. The most common approach is to simply 

treat the dyes and linkers as part of the polymer chain and consider them equivalent to a 

suitably chosen number of amino acid residues. With the scaling exponent of the specific 

model used for the analysis (i.e., ν = 0.5 for GC, 0.6 for SAW-EV, or the respective value 

obtained with SAW-ν), the residue-residue distance is then estimated by rescaling the inter-

dye distance via Eq. 10 and N=Naa+L, where N is the sequence length of the interdye 

segment, comprising both the number of peptide bonds, Naa, and the contribution from both 

dye linkers, L. The appropriate vale of L can be estimated, e.g., based on atomistic 

simulations (but the force field may need to be adjusted to prevent unrealistic dye sticking 

(R. B. Best, Hofmann, Nettels, & Schuler, 2015)). An experimental alternative is to infer it 

from a global analysis of a set of measurements of the same unfolded protein labeled at 

different sites, so that Naa is known and different in every variant, but L is the same for all 

and can be treated as a fit parameter. For the Alexa 488/594 maleimide dye pair, e.g., such 

an analysis yielded L = 9 ± 2, corresponding to four or five residues per dye and linker 

(Aznauryan et al., 2016).

Holmstrom et al. Page 14

Methods Enzymol. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(ii) Combining experiment with simulations using Bayesian inference

An alternative to analytical polymer models for generating a distance distribution, P(r), is the 

use of molecular simulations. The advantage of such simulations is that, in addition to 

providing P(r), they also yield an ensemble of conformations, which we will denote {xi}, 

that can be further analyzed. The protocol for running the simulations themselves is beyond 

the scope of this chapter to describe, but really any type of molecular representation can be 

used (e.g. from one bead per residue to all-atom), as long as the distance r in question can be 

computed from each conformation xi. For the purposes of this section, we are thinking of 

simulations in which all atoms of the protein are explicitly represented. Such an ensemble 

allows additional details beyond P(r) to be determined, such as local secondary structure and 

the types of contacts that are formed most frequently. In an ideal world, a highly accurate, 

predictive simulation model would be used and the FRET data would merely be a check on 

the results. However, that level of accuracy is rarely achieved in practice, and the mean 

efficiency computed from the simulations will be somewhat different from experiment 

(Robert B. Best, Zheng, & Mittal, 2014). If the simulation model is a reasonably good 

approximation, and only a small shift in the distribution of configurations is needed, one 

might imagine reweighting the observed conformations xi, each by a corresponding weight 

wi, to give a reweighted efficiency

ε rw wi = ∑
i

wiε(xi)/∑
i

wi . (12)

In this expression, ε(xi) is the FRET efficiency computed for conformation xi. This can be 

optimized to match experiment by minimizing the χ2 function, defined as

χ2 wi = ∑
k   =   1

Nobs ε rw k; wi − ε expt k 2

δε2 k
. (13)

Here, we describe the most general situation, in which several (Nobs) FRET efficiency 

observations are available, with the mean efficiency and experimental uncertainty of 

observation k (arising mostly from systematic calibration errors) given by 〈ε〉expt(k) and 

δε(k), respectively. Multiple observed 〈ε〉expt(k) may come from different labeling 

positions of the protein (Borgia et al., 2016; Hoffmann et al., 2007), or from three-color 

FRET (Gambin & Deniz, 2010), but the procedure is still applicable even if only one 

observation is available. In the language of Bayesian statistics, minimizing χ2 corresponds 

to maximizing the log-likelihood of the observed efficiencies, with a prior distribution given 

by the molecular simulation.

An obvious problem, considering the large and diverse ensemble of structures sampled in a 

typical simulation of a disordered protein, is that the solution {wi} minimizing χ2 is highly 

underdetermined by the data (Hummer & Koefinger, 2015). This difficulty may be overcome 

by requiring that the weights deviate minimally from the original (uniform) weights from the 

simulation. One way of achieving this is to introduce an additional term to the optimization 

function, penalizing sets of weights which differ from being uniform, and yielding the 

modified target function (Hummer & Koefinger, 2015)
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G wi = χ2 wi − KS wi . (14)

where the deviation from uniform weights is measured by the entropy of the weight set, 

S = ∑iwiln wi. The factor K controls the relative importance of the penalty (or 

regularization) term. It is chosen to be as large as possible, thus keeping the weights as 

uniform as possible, without causing a large increase in χ2. The weights are chosen using a 

Monte Carlo (MC) simulation, in which attempts to vary weights are accepted according to a 

Metropolis criterion (Borgia et al., 2016; Hummer & Koefinger, 2015). These simulations 

are run until χ2 reaches a stable value. We note here that a similar formalism (Leung et al., 

2016) was developed starting from the principal of maximum entropy (Jaynes, 1957), and 

has also been applied to refinement of disordered protein ensembles (Fuertes et al., 2017; 

Leung et al., 2016). Outside of the context of single-molecule FRET, a number of methods 

have been developed for ensemble refinement of proteins against experiment, as recently 

summarized in an excellent review (Bonomi, Heller, Camilloni, & Vendruscolo, 2017).

In Fig. 7, we show a practical example of this procedure, applied to FRET data from the 

intrinsically disordered protein ACTR as a function of denaturant concentration (Borgia et 

al., 2016). This data set includes FRET efficiencies for 3 different pairs of labeling positions 

of the protein under each set of conditions, which are combined in the ensemble fit (shown 

in Fig. 7A). In Fig. 7B, we show a plot of χ2 vs S at each denaturant concentration. 

Different points on each curve correspond to different weight factors K. These curves show a 

plateau region at low χ2 and low entropy, corresponding to smaller K. As K is increased, the 

entropy is increased, corresponding to more uniform sets of {wi}, but this initially has little 

effect on χ2, because there are many sets of {wi} which can achieve this low χ2. If K is 

increased too far, keeping the weights uniform becomes more important than reducing χ2, 

and there is a sharp increase in χ2. We chose the value of K immediately before this 

increase, as it corresponds to the highest entropy solution that is still able to fit the data 

(Borgia et al., 2016; Hummer & Koefinger, 2015; Mantsyzov et al., 2014). In 7A, we 

compare the experimentally observed efficiencies with the fits from the model with this 

optimal choice of K, and in Fig. 7C,D we show the average end-to-end distance, R, and Rg.

The penalty for non-uniform weights helps to avoid the solution being dominated by a few 

large weights wi with the remainder being small. Nonetheless, a reweighting procedure of 

this sort always works best when there is good “overlap” between the initial ensemble of 

structures generated by the simulation and the final solution (i.e. weights are all 

approximately uniform)(Hummer & Koefinger, 2015). For example, if the initial distribution 

of conformations from simulation consisted almost entirely of compact structures, the only 

way to match experimental data reflecting an expanded distribution of conformations would 

be to have non-zero weights only for those few (if any) structures that are more expanded. 

Clearly this is undesirable when the underlying ensemble is expected to be a smooth 

distribution of diverse structures, not a few outliers, and this would be reflected in a lower 

entropy for the weights. One intuitive way of assessing this is to plot the distributions of 

various properties (e.g. R, Rg) from the initial, unweighted ensemble and also from the 

reweighted ensemble – it should not look like the reweighting is picking out only the tails of 

the distribution, and the reweighted distributions should (generally) look smooth, as 
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illustrated for R and Rg in the example of ACTR introduced above (Fig. 7E,F). Another 

objective procedure is to compute the partition function for the weights, i.e. 

Z = ∑i = 1
Ns wi /max wi , where NS is the number of structures in the simulation ensemble. 

With this definition, the value of Z measures the number of structures contributing to the 

average. A good rule of thumb is that Z/NS should be at least 0.2. In practice, there is no 

guarantee that a standard force field will have such a good overlap, therefore it is often 

helpful to generate a range of ensembles, for example at different simulation temperatures, 

and pick the temperature which yields the highest entropy fit or best overlap with the 

experimental data as the starting point for reweighting (Robert B. Best et al., 2018; Borgia et 

al., 2016).

An attractive feature of ensemble reweighting is that it is applicable to other types of 

experimental data besides FRET, as long as they can be computed from each structure in the 

ensemble. For example, we have recently applied it to joint refinement of unfolded state 

ensembles against FRET and SAXS data (Robert B. Best et al., 2018; Borgia et al., 2016). 

The main drawback is clearly that the procedure requires running a simulation of the system 

of interest, often several simulations under different conditions, in order to find one that 

overlaps well with the experimental data. In addition, some care is required in the 

reweighting procedure to avoid overfitting to a few structures. Therefore, if the protein in 

question can be described as a disordered chain, using a method such as SAW-ν to fit the 

data directly is a much easier alternative, but it cannot capture aspects such as secondary 

structure formation or other residue-specific interactions. Another advantage of detailed 

molecular simulations is that the fluorophores can be included explicitly if a suitable force 

field parametrization is available (R. B. Best et al., 2015; Zheng et al., 2016). Alternatively, 

rotamer libraries of fluorophores can be used to add the dyes after the simulation, albeit at 

the expense of information about their dynamics (Fuertes et al., 2017; Grotz et al., 2018).

(iii) Optimizing simulation parameters for simplified models

An alternative philosophy to the Bayesian reweighting scheme described above is a 

minimalist model. Rather than taking the view that atomistic simulations are a reasonable 

approximation needing only small improvements, one includes in the model only those 

features that are required to reproduce the experimental data, together with basic 

assumptions about protein structure that can be expected to be valid, such as covalent 

bonding between residues, and the size of a given residue type (Kim & Hummer, 2008; 

Tozzini, 2005). Such simplified models can potentially highlight which physical properties 

are most important for determining the observed conformational ensemble (i.e., properties 

that must be included in the model). The resulting model is naturally going to be quite 

coarse-grained, with little structural detail. An advantage, however, is that simulations of 

such models are much cheaper and faster to perform, and the energy landscape of the system 

is of lower dimensionality and smoother than those associated with all-atom simulations. 

Consequently, it is much easier to sample the system sufficiently to ensure that the results 

are independent of initial conditions (i.e. “converged” results), which is required for this 

method (it is desirable for Bayesian reweighting, but not absolutely essential in practice).
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A typical minimalist model would represent each residue by a bead centered on its alpha 

carbon, with an energy function or force field, Vff, of the form:

V ff = V bonded + ∑
i < j

qiqj
4πϵ0Dexp − dij

λD
+ ∑

i < j
4eij

sij
rij

12
− sij

rij

6
. (15)

The first part of the energy, Vbonded, includes typical force field terms describing covalent 

bonding of the chain of residues, i.e. harmonic bond terms (or constraints), harmonic angle 

terms, and dihedral angle terms. These terms are described in more detail elsewhere (Borgia 

et al., 2018), and being transferable between different proteins, they would not generally be 

subject to optimization to fit experiment. The second term describes electrostatics in terms 

of a Debye-Hückel screening potential, with qi being the charge on atom i, ϵ0 the 

permittivity of free space, D the dielectric constant and λD the screening length. Being a 

physically-derived term, this is also not subject to optimization and is defined by the 

experimental ionic strength. The last term is the contact potential describing short-range 

interactions between the beads, here given in terms of a Lennard-Jones potential with 

contact distances sij between beads i and j and optimal interaction energies eij; rij is the 

distance between the beads. This is where the flexibility lies for fitting to experimental data. 

Although among the combinations of sij and eij there is in principle a large number of 

parameters, this can be greatly reduced. Firstly, the contact distances sij can be estimated 

from the known average volumes of different residue types in crystal structures (Kim & 

Hummer, 2008). The energies eij can be based on a standard contact potential for amino 

acids, such as the Miyazawa-Jernigan potential (Miyazawa & Jernigan, 1996). The simplest 

type of optimization would involve a global shifting and/or scaling of eij in the simulation in 

order to match the experimental transfer efficiency data. The optimal parameters can be 

obtained by a parameter search, most simply using a binary search in parameter space. 

Alternatively, a more sophisticated gradient-based parameter optimization could be used, as 

has recently been proposed for general force field refinement (Wang, Martinez, & Pande, 

2014). The simplicity of the model allows multiple simulations with different parameters 

during optimization. A coarse-grained representation of the fluorophores and linkers can 

also be included in the model to assess their effect on the observed transfer efficiencies 

(Borgia et al., 2018).

Having given this very general outline of the form of the coarse-grained models used, we 

will illustrate the concept with the example of the binding of two highly charged proteins, 

prothymosin-α (ProTα) and histone H1 (H1) (Borgia et al., 2018). These are both 

intrinsically disordered proteins, except for the presence of a small folded domain in H1. 

The model used is similar to that given in Eq. 15 above, except for an extra term for the 

folded H1 domain, which is described in more detail by (Borgia et al., 2018); its purpose in 

this example is only to keep the domain folded throughout the simulation. The contact 

potential adopted is extremely simple, being just a single, common eij for all protein residue 

pairs, optimized against the single-molecule FRET data; more sophisticated potentials did 

not show better agreement with experiment. FRET efficiencies were measured for 28 inter- 

and intramolecular labeling pairs. Remarkably, it was possible to fit virtually all of the 

experimental FRET efficiencies, and in particular their pattern along the protein sequences 
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(Fig. 8). From the resulting ensemble, we can compute the average distances between 

residue pairs, as well as distance distributions between any pair of residues of interest, some 

examples of which are shown also in Fig. 8. Lastly, one can go beyond distributions to 

characterize the ensemble of structures, a few of which are shown in Fig. 8. In this case, the 

simplicity of the energy function revealed that electrostatic interactions were the key factor 

in distinguishing the involvement of different regions of the protein sequence in the structure 

of the complex.

Conclusions

Quantifying distances and distance distributions in IDPs with single-molecule FRET 

requires two key steps, which we have described here: (1) obtaining accurate transfer 

efficiencies, which rely on careful instrument calibration, and (2) extracting information 

about the structurally diverse ensemble of conformations based on a suitable model. Once 

accurate transfer efficiencies are available (ideally from multiple labeling positions), the 

simplest approach for inferring intramolecular distance distributions is the use of analytical 

polymer models, such as the SAW-ν model (Eq. 9), which often provides a good 

approximation. For a more detailed description that considers specific interactions, residual 

structure, or involves the complex of an IDP with a binding partner, the methods of choice 

are reweighting of molecular simulations or fitting of coarse-grained models to experimental 

data. These approaches further enable the direct integration with additional experimental 

results that afford complementary information, e.g. from NMR or scattering experiments. 

The resulting distance distributions can also be combined with nanosecond fluorescence 

correlation spectroscopy for quantifying intra- and interchain dynamics (Schuler, 2018). 

Single-molecule FRET thus increasingly contributes to our understanding of the structural, 

dynamic, and functional properties of IDPs.
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Figure 1: Confocal single-molecule fluorescence spectroscopy of freely diffusing molecules using 
Pulsed Interleaved Excitation (PIE) and four-channel detection.
Two interleaved pulsed lasers (blue and yellow) for donor and acceptor excitation, 

respectively, are coaxially aligned using a dichroic mirror (BS1) and then directed into the 

back aperture of a high-numerical-aperture microscope objective. The spatial selection of the 

femtoliter confocal observation volume enables single-molecule detection at sub-nanomolar 

concentrations. When a single molecule diffuses through this volume, it produces a short (~1 

ms) burst of donor (green) and acceptor (red) photons. The signal upon direct excitation of 

the acceptor is shown in yellow. Fluorescence photons are then collected by the same 

objective in an epifluorescence configuration, spatially separated from the excitation light 

using a second dichroic mirror (BS2), focused through a pinhole to reject out-of-focus 

fluorescence, split by polarization (PBS), and directed towards avalanche photodiodes 

(APDs 1–4) via a pair of dichroic mirrors (BS3a and BS3b) chosen to spectrally separate 

donor and acceptor fluorescence. The resulting four detection channels correspond to 

parallel and perpendicular polarized fluorescence from the donor and acceptor fluorophores, 

respectively.
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Figure 2: Determining correction factors for acceptor direct excitation (δ) and donor cross talk 
(α).
Using the apparent fluorescence stoichiometry ratio, S, it is possible to identify bursts from 

molecules with either only active donor (i.e., S ≈ 1) or only active acceptor (i.e., S ≈ 0) 

fluorophores. The apparent mean transfer efficiency, E , of the donor-only subpopulation is 

used to determine the correction factor for cross-talk, α =
Edonor−only

1 − Edonor−only
. The apparent 

mean fluorescence stoichiometry ratio, S , associated with the acceptor-only subpopulation 

is used to determine the correction factor for direct excitation, δ =
Sacceptor−only

1 − Sacceptor−only
 (due to 

background correction, Ê values for the acceptor-only bursts extend beyond the range 

shown). With pulsed interleaved excitation (PIE), time-correlated single-photon counting, 

and four-channel detection, it is also possible to obtain time-resolved fluorescence intensity 
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and anisotropy decay plots from the parallel and perpendicular emission of the donor-only 

subpopulation after donor excitation (i.e., ∥ ND
d  and ⊥ ND

d ) and the parallel and 

perpendicular emission of the acceptor-only subpopulations after acceptor excitation (i.e, ∥ 

Ntot
a  and ⊥ Ntot

a ). This information is then used to determine the fluorescence lifetimes of 

donor and acceptor fluorophores and the time-resolved and the steady-state anisotropies (rss) 

of the fluorophores.
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Figure 3: Quantifying correction factors for relative excitation (β) and detection (γ) efficiencies.
For each of the eight different samples, a 2D histogram of S vs. E is generated using Eq. 4 

(Fig. 2) and the values of S  and E  for the FRET-active subpopulation of each sample 

determined using 2D-Gaussian fits. (A) These data are plotted and fit to Eq. 5 to determine 

the correction factors β and γ . (B) All four correction factors (i.e., α, δ, β, and γ) are then 

used to determine 〈S〉 and 〈E〉 for the eight samples (see Table 1). Note that 〈S〉 = ½ for all 

samples, independent of 〈E〉. (C) Species with photophysical irregularities can be identified 

via a deviation from 〈S〉 = ½, for example tryptophan-induced quenching of Alexa 488 in 

HIV-1 integrase (grey squares; see text for details). (D) Example of a set of correction 

factors derived from a collection of biomolecules labeled with Alexa 488/594 that results in 

〈S〉 values that systematically deviate from ½, depending on the type of biomolecule. This 

deviation is quantified by fitting 〈S〉 vs. 〈E〉 for proteins and nucleic acids separately with 

Eq. 5 (colored dashed lines). This analysis indicates that the different local chemical 
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environments of the fluorophores give rise to variations in their photophysical properties, 

resulting in different correction factors. (E) A more broadly applicable set of correction 

factors is obtained for another diverse set of proteins and nucleic acids labeled with Cy3B/

CF660R, indicating that the photophysical properties of this FRET pair are less dependent 

on the local environment than those of the Alexa 488/594 FRET pair.
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Figure 4: Assessing distributions of inter-dye distances with fluorescence lifetime information.
With pulsed interleaved excitation, it is possible to determine the relative donor lifetime in 

the presence of the acceptor, τDA/τD. This parameter provides information about the 

variance of the underlying distribution of transfer efficiencies. (left) In the case of a static 

distribution of distances in a 20-mer polyproline peptide (R. Best et al., 2007; Schuler et al., 

2005), the values of 〈τDA〉/τD cluster close to the diagonal, which corresponds to a single 

fixed distance (static FRET line), 〈τDA〉/τD = 1 − ε. (right) However, for a broad and rapidly 

sampled distribution, for example the intrinsically disordered peptide sNh−, values of τDA/

τD cluster above the diagonal. This vertical displacement provides a measure of the variance 

of the underlying distribution of transfer efficiencies, σ2. In this way, lifetime vs. transfer 

efficiency plots can be used to assess the quality of polymer models (i.e., self-avoiding walk 

(Zheng et al., 2018), or worm-like chain (O’Brien, Morrison, Brooks, & Thirumalai, 2009)) 

commonly used to describe FRET-labeled biomolecules. The error of σ2 was estimated 

assuming an uncertainty of ~0.1 ns for both τD and τDA.
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Figure 5. Illustration of the ambiguity in inferring a distance distribution from limited FRET 
data.
Distributions with mean efficiencies of 〈ε〉 = 0.75, 0.5, and 0.25 are shown in A, B, and C, 

respectively. In each case, the P(r) for a Gaussian chain and a self-avoiding walk 

corresponding to the same FRET efficiency are shown. The variances of the corresponding 

transfer efficiency distributions, σ2, for the Gaussian chain and self-avoiding walk, 

respectively, are 0.08 and 0.07 in A, 0.13 and 0.11 in B, and 0.10 and 0.09 in C.
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Figure 6. Ability of polymer models to recover ensemble properties from simulation data.
(A) Mean transfer efficiency computed from simulations of a simple homopolymer (Val100), 

as a function of simulation temperature. (B) Scaling exponent ν computed directly from 

internal distance scaling (Borgia et al., 2016) in the simulation, and from the SAW-ν model 

(Zheng et al., 2018). Fixed ν implicit in Gaussian chain and SAW-EV models shown for 

reference (horizontal lines). Broken vertical lines indicate temperatures corresponding to ν 
≈ 0.5 and ν ≈ 0.6 in (E) and (F). (C) End-to-end distance, R, and (D) radius of gyration, Rg, 

as a function of temperature, as calculated directly from the simulation, and as inferred from 

each polymer model (see legend in B). (E, F) P(r) at ν ≈ 0.5 and ν ≈ 0.6 respectively, as 
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calculated directly from the simulation and as determined from fitting polymer models to the 

FRET efficiencies in (A).
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Figure 7. Bayesian ensemble reweighting of simulations of unfolded R17.
(A) FRET efficiency data versus denaturant concentration. Shaded regions show 

experimental confidence intervals (standard error), symbols and error bars show the values 

calculated from the reweighted ensemble. (B) Variation of χ2 and S as the control parameter 

K is varied. Each curve corresponds to a given denaturant concentration (see legend) and 

each point to a particular value of K. Root mean square (C) distance, R, and (D) radius of 

gyration, Rg, are recovered as a function of denaturant. In (E) and (F) we show, respectively, 

examples of distribution functions for r and rg (color code is: black, 1.13 M urea; magenta, 

5.07 M urea; cyan, 9.02 M urea).

Holmstrom et al. Page 33

Methods Enzymol. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: Fitting a coarse-grained model to experimental FRET efficiencies.
(A) Experimental (solid symbols) transfer efficiency data for inter- and intramolecular 

labeling pairs in the complex between ProTα and H1 (red: ProTα residue; blue: H1 residue). 

Empty symbols show results from the fitted model. (B) Average inter- and intramolecular 

pair distances between the two proteins. Blue circle in schematic of H1 represents the folded 

domain. (C) Pair distance distributions for labeled residue pairs from simulations with 

optimized energy function. (D) Example structures of ProTα-H1 complex.
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Table1:
Fluorescence parameters for IDP/polyproline samples.

Photophysical parameters: δ is the correction factor for acceptor direct excitation; τD is the donor-only 

fluorescence lifetime (from tail fits); α is the correction factor for spectral cross-talk; τA it the acceptor 

fluorescence lifetime (from tail fits); rss(donor) is the donor steady-state anisotropy of the donor-only 

subpopulation; and rss(acceptor) is the stead-state anisotropy of the acceptor-only subpopulation upon acceptor 

direct excitation. Note that δ increases upon coupling to proteins, an indication that the use of free dyes would 

result in non-representative correction factors. After the correction factors are applied, the mean fluorescence 

stoichiometry ratio of the reference data set is 〈S〉 = 0.501 ± 0.004. The decreased donor lifetimes of the HIV–

1 Integrase sample result in a substantially decreased fluorescence stoichiometry ratio. Replacing the 

tryptophan near the donor fluorophore (IN-WDA) with a phenylalanine (IN-FDA) leads to an increase in 

donor lifetime and fluorescence stoichiometry ratio. A similar effect is apparent when the labeling positions of 

the donor and acceptor are swapped (IN-WAD). Color code as in Figure 4.

Sample δ τD α τA rss(donor) rss(acceptor) 〈E〉 〈S〉

Free-Dyes 0.035 3.92 0.041 3.89 * * - -

Reference Data Set

P40
0.045 3.998 0.053 3.939 0.019 0.016 0.175 0.504

P27
0.040 3.994 0.043 3.851 0.006 0.015 0.336 0.503

P20
0.040 3.948 0.048 3.937 0.011 0.011 0.563 0.502

P14
0.050 3.794 0.020 3.899 0.022 0.007 0.774 0.502

P11
0.038 3.983 0.047 3.898 0.021 0.020 0.863 0.497

P6
0.045 3.951 0.020 3.767 0.020 0.016 0.952 0.506

sNh−
0.043 3.984 0.053 4.288 0.045 0.026 0.529 0.501

sNh+
0.040 3.966 0.051 4.001 0.038 0.014 0.318 0.494

average 0.043 3.95 0.042 3.94 0.023 0.016 - 0.501

standard deviation 0.004 0.07 0.014 0.15 0.013 0.006 - 0.004

Integrase Data Set

IN-WDA
0.042 3.37 0.055 4.11 0.049 0.021 0.654 0.435

IN-FDA
0.057 3.66 0.047 4.09 0.030 0.031 0.649 0.480

IN-WAD
0.044 3.81 0.047 4.26 0.032 0.038 0.633 0.506

*
defined as zero for the purpose of correcting for differential collection efficiencies of the parallel and perpendicular detection channels
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-
orange values in the Integrase Data Set are more than 3 standard deviations away from the mean of the Reference Data Set.
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