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Mechanosensory and mechanotransductive processes mediated by ion channels 
in articular chondrocytes: Potential therapeutic targets for osteoarthritis
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ABSTRACT
Articular cartilage consists of an extracellular matrix including many proteins as well as embedded 
chondrocytes. Articular cartilage formation and function are influenced by mechanical forces. Hind 
limb unloading or simulated microgravity causes articular cartilage loss, suggesting the importance of 
the healthy mechanical environment in articular cartilage homeostasis and implying a significant role 
of appropriate mechanical stimulation in articular cartilage degeneration. Mechanosensitive ion 
channels participate in regulating the metabolism of articular chondrocytes, including matrix protein 
production and extracellular matrix synthesis. Mechanical stimuli, including fluid shear stress, stretch, 
compression and cell swelling and decreased mechanical conditions (such as simulated microgravity) 
can alter the membrane potential and regulate the metabolism of articular chondrocytes via trans
membrane ion channel-induced ionic fluxes. This process includes Ca2+ influx and the resulting 
mobilization of Ca2+ that is due to massive released Ca2+ from stores, intracellular cation efflux and 
extracellular cation influx. This review brings together published information on mechanosensitive ion 
channels, such as stretch-activated channels (SACs), voltage-gated Ca2+ channels (VGCCs), large 
conductance Ca2+-activated K+ channels (BKCa channels), Ca2+-activated K+ channels (SKCa channels), 
voltage-activated H+ channels (VAHCs), acid sensing ion channels (ASICs), transient receptor potential 
(TRP) family channels, and piezo1/2 channels. Data based on epithelial sodium channels (ENaCs), 
purinergic receptors and N-methyl-d-aspartate (NMDA) receptors are also included. These channels 
mediate mechanoelectrical physiological processes essential for converting physical force signals into 
biological signals. The primary channel-mediated effects and signaling pathways regulated by these 
mechanosensitive ion channels can influence the progression of osteoarthritis during the mechan
osensory and mechanoadaptive process of articular chondrocytes.
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Introduction

Articular chondrocytes are subjected to phasic 
stimulation by mechanical forces that is due to 
normal walking/mobility in all manners. These 
biomechanical forces cause articular cartilage 
deformation. Articular cartilage is a layer of low- 
friction, load-bearing tissue that functions as 
a cushion for sensing body weight and exercise. 
Beneficial mechanical stimuli promote cartilage 
regeneration and prevent or attenuate osteoar
thritis progression. In contrast, harmful mechan
ical stimuli can disrupt cartilage homeostasis and 
can accelerate cartilage degeneration. Moreover, 
chondrocyte senescence is associated with age- 
related osteoarthritis characterized by impaired 
cartilage repair [1].

The synovium is a thin sheet of cellular, well- 
vascularized connective tissue that lines the syno
vial joint cavity. Fibroblast-like synoviocytes in the 
synovium synthesize and secrete hyaluronan (HA) 
into the joint fluid to ensure/promote joint lubri
cation, which is essential for articular cartilage 
health. Increased intra-articular osmotic pressure 
can drastically increase the hydraulic conductance 
of the stretched synovial lining (increased area, 
reduced thickness) [2]. The major part of the 
hydraulic resistance to fluid transport between 
blood and joint cavity is generated by the synovial 
lining and interstitial HA, which can conserve 
intra-articular lubricant and lead to outflow buf
fering via the osmotic pressure of an HA concen
tration polarization layer on the synovial surface 
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[3–10]. Static stretch stimulated HA secretion in 
primary rabbit synoviocyte cultures from micro
dissected synovial intima [11]. The activation of 
Ca2+ influx-dependent activation of the PKC�- 
MEK-ERK1/2 cascade is importantly involved in 
mechanically induced HA secretion by static 
stretch in synoviocytes [12], which suggests that 
mechanically induced Ca2+ influx and Ca2+- 
dependent kinases can regulate synovial HA secre
tion [13]. Mechanically induced HA secretion by 
cyclic joint movement may protect joints against 
the damaging effects of repetitive joint use and 
replace the HA lost during periods of immobility, 
which may contribute to the clinical benefit of 
exercise therapy in moderate osteoarthritis [14]. 
The epithelial sodium channel (ENaC) channel 
blocker amiloride inhibited mechanically induced 
HA secretion in synoviocytes [15]. Ca2+- 
dependent kinases are major regulators of synovial 
HA secretion and fibroblast-like synoviocytes cul
tured from the inner synovium of rabbits exhibit 
voltage-dependent inward and outward currents 
involving voltage-gated (Kv1.1) K+ channels and 
L-type VGCCs [13].

Cyclic tensile strain upregulates the mRNA levels 
of cyclooxygenase-2 (COX-2), collagen 2 and 
aggrecan (ACAN) and induces the release of nitric 
oxide and prostaglandin E 2 in monolayer cultures 
of porcine articular chondrocytes. In addition, ana
bolic modulator transforming growth factor beta3 
(TGFβ3), catabolic modulator TGFβ1 and matrix 
metalloproteinase-1 (MMP-1) all increase over the 
duration of static mechanical stretch [16]. 
Physiologically, dynamic compression-induced 
membrane strain has been shown to have anabolic 
effects on chondrocytes and to maintain articular 
cartilage in a healthy state [17]. Ion channel- 
mediated flux of Ca2+ can regulate the proliferation 
of human chondrocytes [18]. Mechanical forces 
stimulate the synthesis and release of matrix pro
teins and glycosaminoglycan in articular cartilage 
via complex molecular mechanisms, including 
mechanical regulation of ion channels such as K+ 

channels, Ca2+ channels and Na+/K+ pumps and 
stretch-activated channels (SACs). The common 
denominator of this channel activity is often 
mechanical activation of the Ca2+ signaling path
ways [19–27]. A lack of mechanosensitive ion chan
nels, such as ENaC and transient receptor potential 

vanilloid 4 (TRPV4) has been shown to impair the 
mechanical sensitivity of chondrocytes in response 
to mechanical membrane strain induced by hypo
tonic solution [23,28–30]. Mechanical forces such 
as compression, strain, extracellular matrix (ECM) 
deformation, substrate deflection and fluid shear 
stress in the mechanical cartilage environment can 
significantly alter the expression and activity of 
membrane mechanosensitive ion channels result
ing in intracellular cation mobilization of chondro
cytes and regulation of the proliferation and 
differentiation of immature chondrocytes and sur
vival of hypertrophic chondrocytes [19,31–36]. 
Some mechanosensitive ion channels sense and 
transduce mechanical transduction in response to 
physiological levels of mechanical force. However, 
abnormal or excessive mechanosensitive ion chan
nel activity may accelerate the deterioration of 
chondrocytes and ECM in response to injurious 
levels of mechanical stimulus.

For example, repeated overloading leads to oxi
dant-dependent mitochondrial dysfunction in 
chondrocytes, and may result in destabilization of 
cartilage and osteoarthritis (OA) by disrupting 
chondrocyte anabolic responses to mechanical sti
muli [37]. Mechanical stimulation (such as phy
siological compression) significantly modulates the 
expression of collagen 2, ACAN, the SOX9 tran
scription factor, cartilage oligomeric matrix pro
tein, collagen degradation marker C2C and 
vascular endothelial growth factor in OA human 
cartilage [38]. Excessive mechanical loading of 
subchondral osteoblasts altered the phenotypic 
characteristics of chondrocytes accompanied by 
upregulation of MMP genes and downregulation 
of proteoglycan and collagen in porcine chondro
cytes [39]. Appropriate expression of ion channels 
is vital for the formation of extracellular matrix, 
for instance, K+ channel gene transcription is 
altered in OA [27,40].

There are differences in electrophysiological 
properties and gene expression between human 
chondrocytes and chondroprogenitors derived 
from normal and osteoarthritic cartilage [41]. 
Elucidating the mechanosensitive molecular 
mechanisms by which these mechanical stimuli 
regulate chondrocyte membrane ion channels 
and joint homeostasis will provide insights into 
the pathophysiological process of OA [42–44]. 
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However, the mechanobiology of articular chon
drocytes is still not well understood partly because 
of the complexity of the mechanotransduction 
process in articular cartilage [43,45]. Adopting 
shorter step lengths during daily activity and 
when walking for exercise can reduce mechanical 
stimuli associated with articular cartilage degen
erative processes in adults with and without obe
sity [46]. Mechanically induced release of growth 
factor responds quickly to mechanical damage and 
repairs ligament tissue by activating transcription 
factor 2 accompanied by accelerated repair of liga
ment injury repair, promoted ligament fibroblast 
migration of OA, decreased MMP-2 activity and 
remitted cell deformation [47]. Mechanically 
induced release of growth factor may protect 
articular chondrocytes against harmful cell stress 
responses and prevent OA progression. Walking 
with reduced step length may benefit adults at risk 
for disability because of knee osteoarthritis sug
gesting that physiologic joint loading helps 

maintain cartilage integrity. However, both disuse 
and overuse can result in cartilage degradation. 
The primary characteristics of OA are destruction 
of articular cartilage, ECM degradation, dysfunc
tion of chondrocytes, osteophyte formation and 
subchondral bone alterations [48]. An osteophyte 
is a fibrocartilage-capped bony outgrowth that is 
one of the features of OA [49]. Moreover, osteo
phytes are thought to originate from progenitor 
cells (residing in the periosteum at the boundary 
of bone and cartilage) that undergo a process of 
chondrogenesis and finally endochondral ossifica
tion [50]. Osteophytes can be induced with 
a single mechanical impact applied to the perios
teum in rat knees, which indicates that moderate 
trauma to the periosteal layer of the joint may play 
a role in osteophyte development [51]. 
Periarticular osteophyte formation may erode 
articular cartilage by disrupting chondrocyte func
tions accelerating ECM degradation in the context 
of OA progression (Figure 1).

Figure 1. Conceptual illustration of the cellular mechanotransduction mechanism mediated by ion channels in articular 
chondrocytes.
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The mechanosensory processes in 
chondrocytes

Chondrocytes are the unique cells found in all 
types of cartilage. Key to their function is the 
ability to respond to mechanical loads with 
changes in metabolic activity. This mechanosen
sory and mechanotransductive process is, in part, 
mediated through the activity of a range of 
expressed mechanosensitive transmembrane ion 
channels.

The following transmembrane ion channels 
have been reported to be expressed in human, 
equine, bovine, chicken, and murine chondrocytes: 
transient receptor potential (TRP) family channels, 
including TRPV1, TRPV2, TRPV3, TRPV4, 
TRPV6 and TRPP1/2; large conductance Ca2+- 
activated K+ channels (BKCa channels); small- 
conductance Ca2+-activated K+ channels (SKCa); 
SACs; voltage-activated H+ channels (VAHCs); 
T/L-type voltage-gated Ca2+ channels (VGCCs); 
Piezo1/2 channels; epithelial sodium channels 
(ENaCs); purinergic receptors; Ca2+ release- 
activated Ca2+ channels (CRACs) and chloride 
channels.

Physiological ion homeostasis is fundamental to 
routine chondrocyte functions, ion transport 
through membrane channels is vital for electro
physiological properties manifested by altered 
membrane potential and mechanically induced 
Ca2+ influx and activation of the Ca2+-related sig
naling pathways in response to mechanical stimu
lation [52], and compression increases ACAN- 
mRNA via Ca2+/calmodulin-dependent signaling 
processes in bovine articular chondrocytes 
(BACs) [53]. K+ channel subfamilies, such as 
BKCa channels, SKCa channels and Kv subtype 
channels, have all been identified in articular 
chondrocytes and participate in mechanotransduc
tion, cell volume regulation, apoptosis and chon
drogenesis [40]. TRPV4 and Piezo1/2 channels 
mediate mechanical modulation of articular chon
drocytes and are involved in hypertrophic chon
drocyte and ECM degeneration. Many studies 
have demonstrated that chondrocytes, as nonexci
table cells, sense and respond to a variety of 
mechanical forces by different morphological and 
metabolic changes, and that these forces are essen
tial for the mechanical properties of articular 

cartilage [35,54–60]. In addition to ion channels, 
cytoskeletal elements, connexin and pannexin- 
based hemichannels form mechanosensitive units 
along with adjacent purinergic receptors, and 
mediate the mechanotransduction process of 
chondrocytes involving ATP release and intracel
lular Ca2+ oscillation [21,45,61,62]. ENaCs and 
SACs participate in the mechanical electrophysio
logical process of the chondrocyte membrane 
along with cytoskeletal proteins, �5β1 integrins 
via mitogen-activated protein kinase (MAPK) sig
naling, tyrosine kinases and phospholipase 
C (PLC), which phosphorylate inositol 1,4,5-tri
sphosphate (IP3), focal adhesion kinase (FAK), 
paxillin (a focal adhesion complex adapter protein) 
and β-catenin [63–68]. The cyclical pressure- 
induced strain activated SKCa channels and SACs 
involving the phosphorylation of p125, p90, p70, 
FAK, β-catenin and �5 integrin in normal human 
articular chondrocytes [56]. ENaCs and VGCCs 
colocalized with β1 integrins mediate mechano
transduction processes along with the cytoskeleton 
in murine chondrocytes [69]. Mechanical stimuli 
activate MAPK signals and alter ACAN gene 
expression most likely via ion channels [23,70]. 
The association of mechanosensitive ion channels 
with integrin, cytoskeletal and signaling complexes 
is vital for physiological mechanically induced 
responses of chondrocytes including inducing 
intracellular anion oscillations and activating 
mechanical signaling pathways. Maintenance of 
cell volume is essential for survival and the mem
brane potential may be vital for regulating chon
drocyte volume by changing the osmotic pressure 
for ionic flux [71]. Mechanically induced cell 
volume changes induce ATP release in chondro
cytes, and purinergic receptors are activated [72], 
and a Gq-mediated PLC enzymatic reaction is 
triggered, which produces IP3 that binds to IP3 
receptors and induces Ca2+ release from the endo
plasmic reticulum [21]. The depletion of intracel
lular Ca2+ stores causes subsequent store-operated 
Ca2+ entry (SOCE) through CRACs consisting of 
Orai1, Orai2 and stromal interaction molecule 1 
(STIM1) and causes membrane hyperpolarization 
[21,73–76]. CRAC-modified mesenchymal stem 
cells (MSCs) have distinct differentiation fates to 
adipocytes, osteoblasts, and chondrocytes from 
multipotent mesenchymal stem cells [77].
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In summary, these channels can sense and 
respond to environmental factors especially 
mechanical cues, such as ECM deformation and 
membrane strain [23,27,35,56,57,78–86]. As 
shown in Table 1, ion channels that are involved 
in the mechanosensory and mechanotransductive 
processes of articular chondrocytes are summar
ized and the mechanosensory and mechanotrans
ductive processes are briefly described.

Mechanical responses of SACs, VGCCs and 
VAHCs in chondrocytes

Articular chondrocytes dwell in an environment 
that continuously changes their osmolarity as 
a consequence of mechanical stimulation. ECM 
deformation and hypotonic solution can generate 
membrane strain and result in physiological adap
tation of cell volume and shape in chondrocytes. 
Matrix deformation-induced membrane stretching 
induces Ca2+ influx in BACs through SACs 
[82,83,87]. Gadolinium chloride, an SAC blocker, 
causes rat chondrosarcoma cells to undergo ded
ifferentiation accompanied by the downregulation 
of ACAN, SOX9, collagen 2 and collagen 9; and 
the upregulation of collagen 1 and fibronectin 
[88]. Pharmacological blockade of SACs and 
VGCCs can eliminate the effects of mechanical 
stimulation on the growth and shape development 
of chick joints [82]. Mechanical stimulation by 
silicon nanowires regulates adhesion, chondrocyte 
proliferation, and differentiation of MSCs partially 
via activation of SACs and Ras/Raf/MEK/ERK sig
naling cascades [68]. Cell swelling-induced mem
brane strain caused activation of a volume- 
sensitive outwardly rectifying Cl – current followed 
by a regulatory volume decrease in freshly disso
ciated rat articular chondrocytes and influenced 
the mechanical properties of BACs [89,90]. 
Membrane strains induced by hypotonic solution 
increase intracellular Ca2+ and trigger membrane 
depolarization in BACs via SACs [91,92]. T-type 
VGCCs mediate mechanically induced osteoblast- 
derived factor release from MC3T3-E1 cells 
sheared by fluid shear stress, and the conditioned- 
media obtained from sheared MC3T3-E1 cells may 
promote the early OA phenotype in chondrocytes 
[34]. Cyclic mechanical strain enhanced the 
expression of parathyroid hormone-related 

proteins, which promoted chondrocyte maturation 
and ECM formation via Ca2+ channels sensitive to 
nifedipine in chondrocytes [32]. Fluid shear stress 
elevated the mRNA levels of collagen X�1, alkaline 
phosphatase (ALP), MMP13, ACAN, and collagen 
II�1 in chondrocytes via activation of T-type 
VGCCs in osteoblasts and enhanced the interac
tion between subchondral osteoblasts and articular 
chondrocytes. These changes result in enhanced 
cartilage degeneration and subchondral bone 
resorption [34]. SACs and T/L-type VGCCs med
iate the mechanical transduction process of imma
ture chondrocytes in response to mechanical 
stretch induced by articular cartilage matrix defor
mation [82,93]. Mechanical stretching causes 
articular cartilage matrix deformation and pro
motes chondrocyte proliferation and chondrocyte 
differentiation of immature chondrocytes through 
SACs and L-type VGCCs and increases the mRNA 
and protein expression of CMP/Matrilin-1 and 
collagen �1(X) [93].

In summary, mechanical cues are transduced, at 
least in part, through mechanosensitive Ca2+ chan
nels, and both SACs and VGCCs participate in 
cartilage development and may exert synergistic 
effects of mechanotransduction [82]. Hypotonic 
solution induces membrane depolarization and 
intracellular alkalinization of BACs via Na+ influx 
and H+ efflux by SACs and VAHCs [94]. VAHCs 
in BACs mediate electrophysiological transduction 
and have specific mechanosensitive properties in 
response to osmotic challenges [95].

Mechanical responses of BKCa channels in 
chondrocytes

Voltage-gated potassium channels play an impor
tant role in regulating the membrane potential of 
primary equine and elephant articular chondrocytes 
and may mediate the electromechanotransduction 
process [96]. The BKCa channel is present in the 
chondrocyte membrane and is highly selective for 
K+, and its gating is dependent on intracellular Ca2+ 

[27,80]. Blocking Ca2+-activated K+ channels signif
icantly reduces the SOCE induced by Ca2+ addition 
after store-depletion of intracellular Ca2+ by thapsi
gargin in OUMS-27 cells derived from human 
chondrosarcoma [97]. The membrane strain 
induced by hypotonic solution promotes K+ efflux 
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and membrane hyperpolarization by activating 
BKCa channels in human chondrocytes [56,80]. 
Hypertonic solution induced membrane hyperpo
larization via K+ efflux by BKCa channels in 
human articular chondrocytes [80]. Activation of 
BKCa channels in human chondrocytes by hyper
tonic challenge may affect the synthesis and degen
eration of the articular cartilage matrix via several 
metabolic signaling pathways [80]. The total stretch- 
activated membrane current is induced by the BKCa 
channels present in equine articular chondrocytes, 
as recorded by using patch-clamp electrophysiology 
technology [98]. TREK-2 is a mammalian two-pore 
domain K+ channel and is important for mechan
osensation and can sense and transduce a broad 
profile of forces within the membrane [99]. 
Although hypertonic solution induces membrane 
hyperpolarization, in articular chondrocytes from 
healthy humans via K+ efflux by BKCa channels, 
chondrocytes from OA patients fail to respond to 
this kind of mechanical stimulation [100]. Stretch 
triggers membrane hyperpolarization via BKCa 
channels in isolated primary equine chondrocytes 
[98]. Hypertonic solutions phosphorylate p38 
MAPK accompanied by altered expression of BKCa 
channels in equine articular chondrocytes [101].

Mechanical responses of TRP family channels 
in chondrocytes

TRPV4 channels mediate significant signal trans
duction to osmotic and mechanical stimuli in live 
cells [102]. The membrane strain induced by 
hypotonic solution was found to activate the 
TRPV4 channel, and mechanically induced Ca2+ 

influx and SOX9 transcription are associated with 
the synthesis of articular cartilage [29,30,103]. 
Membrane stretching activates TRPV4 ion chan
nels and induces Ca2+ influx in rat articular chon
drocytes [104]. TRPV4 ion channels play a role in 
chondrocyte pathological processes induced by 
injurious levels of loading [105]. Adamalysin-like 
metalloproteinases with a TS motif (ADAMTS), 
MMPs and a disintegrin and metalloproteinase 
(ADAM) were reported to be expressed in carti
lage and participate in the destruction of cartilage 
in OA by regulating ACAN expression [106,107]. 
Dynamic compression enhances articular cartilage 
matrix synthesis by upregulating the TGFβ3, 

collagen 2�1 and ACAN genes and downregulat
ing the ADAMTS5 gene. These effects require Ca2 

+ influx induced by mechanical activation of the 
TRPV4 ion channel [33,108]. The ECM of articu
lar cartilage is a key factor in the development and 
progression of OA and HA plays a key role in 
articular cartilage lubrication and preventing 
ECM loss in articular cartilage in addition to its 
other excellent physicochemical properties, such as 
regulation of cell adhesion and cell motility, and 
manipulation of cell differentiation and prolifera
tion [109,110]. Excessive cyclic tensile strain 
enhances the expression of ADAM10, which 
induces cleavage of CD44 a transmembrane pro
tein that serves as an HA receptor [81]. 
Mechanically induced CD44 cleavage can lead to 
the loss of extracellular matrices in chondrocytes, 
which is mediated by TRPV4 in HCS-2/8 cells, 
a human chondrocytic cell line [81]. Treatment 
with the TRPV4 agonist 4�PDD improves the 
mechanical properties of articular cartilage con
structs [111]. Similar to the anti-inflammatory 
effects in cells and explants responding to osmotic 
loading, cyclic tensile strain inhibited IL-1β- 
mediated NO and PGE2 release by activating 
TRPV4 channels in articular chondrocytes [112]. 
Isolated chondrocytes present a regulatory volume 
decrease, and TRPV4 plays a significant role in 
this process [113].

GSK1,016,790A (a selective TRPV4 agonist) 
promoted chondrogenesis, as evidenced by the 
upregulation of SOX9 and ACAN via intracellu
lar adhesion molecule-1 [114], which demon
strated that the TRPV4 ion channel participates 
in cartilage growth. TRPV4 gene KO mice 
showed osteoarthritic knee joint degeneration 
and the isolated chondrocytes lost the capacity 
to respond to mechanical strain 
[29,30,103,115,116]. Chondrocytes from TRPV4 
KO mice failed to respond to hypotonic stress 
and showed inhibition of mechanically induced 
Ca2+ influx [29,30,103]. Adipose-derived stem 
cells from TRPV4 knockdown mice tend to 
undergo adipogenic and osteogenic differentia
tion and resist chondrogenic differentiation, and 
TRPV4 knockdown mice develop severe osteoar
thritis [117]. The TRPV4 agonist GSK1016790A 
in the absence of mechanical loading similarly 
enhanced anabolic and suppressed catabolic gene 
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expression, and potently increased matrix bio
synthesis and construct mechanical properties. 
Inhibition of TRPV4 during dynamic loading 
prevented acute, mechanically mediated regula
tion of proanabolic and anticatabolic genes, and 
furthermore, blocked the loading-induced 
enhancement of matrix accumulation and 
mechanical properties [33]. Pharmacological 
blockade and gene knockdown of TRPV4 
attenuate chondrocyte apoptosis and upregula
tion of FAS-associated protein and cleaved cas
pase-3, caspase-6, caspase-7, and caspase-8 in rat 
OA anterior cruciate-ligament transection mod
els [104]. Pharmaceutical activation of TRPV4 
inhibited IL-1β-mediated NO release and pre
vented cartilage degradation and loss of mechan
ical properties [112]. Furthermore, activation of 
TRPV4 increases TRPV4 cilia translocation and 
modulates the expression of soluble tubulin and 
cilia length, suggesting the potential of TRPV4 
manipulation as a novel therapeutic mechanism 
to suppress proinflammatory signaling and OA 
cartilage degradation [112]. TRPV4 contributes 
to the sensation of pain, which is due to hypoos
motic stimuli and inflammatory mechanical 
hyperalgesia, where TRPV4 sensitization by 
intracellular signaling leads to pain behaviors in 
mice [118,119]. A lack of TRPV4-mediated car
tilage mechanotransduction in adulthood mice 
attenuates the severity of aging-associated OA. 
However, depletion of chondrocyte TRPV4 
failed to block OA development following desta
bilization of the medial meniscus [116]. 
Impaired osmotic regulation and pressure sensa
tion and increased knee OA scores are observed 
in TRPV4 KO mice [120]. Intra-articular injec
tion of the TRPV4 antagonist RN-1734 into the 
knee joint appears to attenuate the responses of 
the sensitized C-fibers of the acutely inflamed 
joint to innocuous and noxious mechanical sti
mulation. These findings suggest that TRPV4 
ion channel localization to afferent nerves may 
be involved in OA mechanical allodynia [121].

Other TRP channels

Continuous hydrostatic pressure promotes runt- 
related transcription factor 2 production and 
phosphorylation of SOX9 in ATDC5 cells 

accompanied by the upregulation of TRPP1 and 
TRPP2 in ATDC5 cells [84]. Rat TRPA1 channels 
transiently expressed in human embryonic kidney 
293 cells are activated by hypertonic solution sup
porting a role for TRPA1 in mechanosensation 
[122]. TRPA1 blockade by TCS 5,861,528 or gene 
depletion of TRPA1 inhibits acute inflammation, 
cartilage changes and joint pain by suppressing 
iodoacetate-induced upregulation COX-2 [123]. 
Upregulated expression of TRPA1 participates in 
the occurrence mechanism of mechanical hyperal
gesia induced by OA [119]. TRPA1 is associated 
with the OA driving inflammatory cytokine IL-6, 
which is supported by high expression of IL-6, IL- 
6 cytokine family leukemia inhibitory factor and 
IL-11 in WT chondrocytes and significant down
regulation of IL-6 in TRPA1 KO mice. 
Furthermore, treatment with a TRPA1 antagonist 
significantly downregulated the expression of IL-6 
in chondrocytes from WT mice and OA patients, 
which indicates that TRPA1 regulates the synthesis 
of the OA driven inflammatory cytokine IL-6 in 
chondrocytes and may serve as a possible thera
peutic target for OA [124]. TRPV3 receptors med
iate the mechanical transduction process and the 
uniaxial cyclic compressive force increases the 
expression of the TRPV3 receptor in chondrocytes 
[78]. The mRNA expression of TRPV3 is the high
est among TRPV family channels in chicken and 
mouse tissue samples [78]. Although the mRNA 
expression of TRPV3 is significantly induced by 
mechanical load as revealed by semiquantitative 
RT-PCR analyses, the mRNA expression of other 
TRPV channels fails to show any significant altera
tions upon mechanical load [78]. The resting 
membrane potential of chondrocytes may be par
tially controlled by TRPV5 and the positive resting 
membrane potential may play a protective role in 
chondrocytes responding to hypotonic solution 
with minimum changes in cell volume [71,125].

Mechanical responses of Piezo1/2 channels in 
chondrocytes

Piezo is a type of mechanically sensitive ion chan
nel that is necessary for cells to respond to 
mechanical stimuli and can convert mechanical 
signals sensed by the membrane into intracellular 
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electrical or chemical signals. Crosslinking 
between the cap and blade residues inhibits 
mechanical gating of the Piezo1 channel [126]. 
Cyclic stretch increased the expression of Piezo1 
channels in human articular chondrocytes from 
OA patients [127]. Cholesterol enrichment or 
depletion by methyl-β-cyclodextrin or disruption 
of membrane cholesterol organization by dynasore 
can impair the function of Piezo1 channels. These 
findings highlight the importance of plasma mem
brane localization and organization of Piezo1 
channels and indicate that mechanical activation 
of the Piezo1 channel is directly dependent on the 
membrane composition and lateral organization of 
membrane cholesterol domains [128]. Similar to 
mechanically induced Piezo1 activation, Piezo1 
activation is countered by the K+ channel 
TRAAK (K2P4.1). This action is also responsive 
to mechanical forces [129]. This finding suggests 
that although membrane tension is the direct med
iator of force, other mechanosensitive ion channels 
can actually play important indirect roles by influ
encing which regions of the cell membrane experi
ence changes in tension when forces are applied to 
a cell. Interestingly, mechanical stimulation of the 
lipid bilayer alone is sufficient to activate Piezo1 
channels, which indicates that Piezo1 channels 
functioning as molecular force transducers in the 
cellular membrane may not rely on alternate cel
lular components to sense mechanical stimuli 
[130,131]. Electrophysiology experiments of 
Piezo1/2 channels confirm that Piezo1/2 channels 
function as significant frequency filters. The effec
tiveness of mechanical transduction varies with the 
stimulus frequency, waveform, and duration pre
sented by patch-clamp recordings, which suggests 
the potential contributions of Piezo1/2 channels in 
transducing repetitive mechanical stimuli [132]. In 
addition to transduction of extracellular mechan
ical forces, Piezo1 channels may be activated by 
cell-generated forces induced by Myosin II phos
phorylation by Myosin Light Chain Kinase [133]. 
Application of a negative pressure failed to activate 
Piezo2 channels in human Merkel cell carcinoma 
cells and human embryonic kidney 293 T cells, but 
both positive and negative pressure activated 
Piezo1 channels in a similar manner [134]. We 
also note that moderate cold can potentiate the 
conversion of mechanical force into excitatory 

current because of the cold sensitivity of Piezo2 
channels and Piezo2 channels are evolutionarily 
conserved as cutaneous mechanoreceptors [135], 
which may provide evidence for the involvement 
of Piezo2 channels in chondrocyte mechanotrans
duction process. TRPV4 and Piezo1 channels 
mediate compression-induced chondrocyte mem
brane strain and result in intracellular Ca2+ con
centration oscillation in the cytoplasm [35,86]. The 
physiological level of intermittent tensile strain 
caused TRPV4-dependent membrane potential, 
but injurious levels of intermittent tensile strain 
triggered Piezo2-dependent membrane potential. 
In conclusion, these findings thus reveal the key 
role of TRPV4 and Piezo2 ion channels in 
mechanoelectrical transduction in primary murine 
chondrocytes [85].

Piezo1 and Piezo2 gene KO mice presented 
articular cartilage defects, which indicated that 
Piezo1 and Piezo2 ion channels are vital to 
articular cartilage growth and regulate the 
mechanical properties of the ECM and 
embedded chondrocytes [136]. GsMTx4 
(Piezo1/2 channel inhibitor) attenuated the 
deteriorated response of chondrocytes to injur
ious mechanical strain [105]. GsMTx4 and 
Piezo1/2 siRNA attenuated injurious levels of 
strain-induced maladaptive murine chondrocyte 
responses, which demonstrated that piezo1/2 
participates in cartilage injury and posttrau
matic OA [105,137]. GsMTx4 may play 
a chondroprotective role in mechanically 
induced articular cartilage deterioration by 
joint disability [33,105]. The endogenous pep
tide urocortin1 can maintain Piezo1 channels in 
a closed conformation and firmly protect 
articular cartilage and chondrocytes against 
corticotropin-releasing factor receptor 1 selec
tive antagonist CP-154,526–induced accumula
tion of intracellular Ca2+, which is due to 
opening nonselective cation channels and cell 
death [138].

Mechanical responses of P2 receptors and 
CRACs in chondrocytes

Membrane depolarization in OA chondrocytes 
and membrane hyperpolarization in normal 
chondrocytes suggested that the purinergic 

348 K. ZHANG ET AL.



signaling pathways are important mediators in 
OA progression [139]. Mechanically induced 
ATP release and an increase in extracellular 
ATP levels activate ligand-gated ion channel 
P2X receptors and some G-protein-coupled 
P2Y receptors, and these effects can regulate 
chondrocyte function and modulate intercellular 
communication [140]. Dynamic compression- 
induced ATP release in chondrocytes activates 
P2 receptor ion channels. For instance, the 
P2X7 receptors and subsequent purinergic sig
naling pathways, including the Ca2+ influx and 
Ca2+ signaling pathways, are activated, which 
then stimulate the synthesis and release of pro
teoglycans in chondrocytes and prevent com
pression-induced NO release of chondrocytes 
and articular cartilage degeneration [24,141]. 
Unlike other ion channels that are stimulated 
or activated directly by mechanical forces, P2X 
and P2Y receptor ion channels are both acti
vated indirectly by a mechanically induced 
release of nucleotides such as ATP. 
Mechanically induced ATP release activates 
P2Y2 receptors and alters membrane potential 
in human chondrocytes [139]. Purinergic recep
tors can also confer the mechanosensitivity of 
the voltage-gated K+ channel KCNQ1 (also 
known as Kv7.1 or KvLQT1). Static compression 
induced the expression of ACAN mRNA in 
BACs, which can be dose-dependently or com
pletely blocked by antagonists of the Ca2+/CaM 
signaling pathway and thapsigargin that deplete 
IP3-sensitive intracellular Ca2+ stores [53]. Both 
the amplitude and the maximal rate of rise of 
SOCE are significantly reduced by SOCE block
ers, which decrease the mRNA expression of 
ACAN and collagen 2 decreases severely in 
chicken chondrogenic mesenchymal cells [73], 
which may provide substantial evidence that 
intracellular Ca2+ stores are vital for Ca2+ oscil
lations and chondrogenesis. Orai1, Orai2 and 
STIM1 form functional CRACs in OUMS-2 
cells, and these complexes are responsible for 
sustained Ca2+ entry in response to histamine 
stimulation [74]. Histamine-induced SOCE 
through CRACs may also contribute to 
mechanically induced intracellular Ca2+ 

increases in chondrocytes.

Mechanical responses of NMDA receptors, 
ASICs, chloride channels and DEG/ENaCs in 
chondrocytes

One of the ionotropic glutamate receptors, the 
NMDA receptor, is expressed in human articular 
chondrocytes. This receptor may mediate mechani
cally induced membrane hyperpolarization [142]. 
Ca2+/calmodulin-dependent protein kinase II 
(CaMKII), which is associated with NMDA signal
ing, has four subunit isoforms (alpha, beta, gamma, 
delta). CaMKII may mediate a mechanically induced 
increase in intracellular Ca2+ in a wide variety of cells 
and tissues. The alpha – and beta-isoforms have 
narrow distributions restricted mainly to neuronal 
tissues, but the gamma – and delta-isoforms are 
ubiquitously expressed within neuronal tissue and 
articular cartilage. The CaMKII isoforms gamma 
and delta are expressed in both normal and OA 
chondrocytes and are only involved in the response 
of normal chondrocytes to mechanical stimulation 
[142]. ASIC3 is present in murine articular chondro
cytes and participates in OA progression, and mur
ine ASIC1b is permeable to K+ and functions as 
a mechanogating ion channel responding to mem
brane stretching [143]. Hypotonic stimuli signifi
cantly enhance acid-evoked membrane currents via 
ASIC1b in oocytes [143]. Cl – channels are known to 
be expressed in mammalian chondrocytes, such as 
voltage-dependent Cl – channels and swelling- 
activated Cl – channels, and these Cl – channels can 
participate in the regulation of resting membrane 
potential, cell volume, cell survival, and endochon
dral bone formation [144]. Chloride channels regu
late chondrogenesis in chicken mandibular 
mesenchymal cells [145]. Hypotonic solution and 
extracellular acidification elicited a volume- 
sensitive outwardly rectifying Cl – current followed 
by a regulatory volume decrease and an acid- 
sensitive outwardly rectifying Cl – current, respec
tively [146]. Hypotonic solution-induced Cl – cur
rent and regulatory volume decrease responses 
occurred in isolated rabbit and articular chondro
cytes [89,147,148]. The CIC-3 chloride channel is 
responsible for hypotonic solution-induced Cl – cur
rent and regulatory volume decrease in response to 
hypoosmotic environments [149]. Anterior cruciate 
ligament transection treatment results in a large 
increase in hypotonic-activated chloride 
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conductance in rabbit chondrocytes and enhanced 
caspase-3/7 activity followed by the onset of appar
ent cartilage loss [150]. Hypotonic solution decreases 
the expression level of the ClC-7 chloride channel, 
which may participate in OA progression in human 
chondrocytes [151]. Tyrosine phosphorylation 
induced by the protein tyrosine kinase regulates the 
functional role of hypotonic solution-induced Cl – 

current in the regulatory volume decrease of isolated 
rabbit articular chondrocytes [152]. The DEG/ENaC 
(degenerin/epithelial sodium channel) protein 
family comprises related ion channel subunits from 
all metazoans, including humans. Members of this 
protein family play roles in mechanotransduction. 
DEG/ENaC-like ion channels participate in the 
modulation of canine chondrocyte volume, which 
can be inhibited by benzamil by reducing the influx 
of Na+ ions [153]. The DEG/ENaC ion channel 
complex may contribute to mechanically induced 
chondrocyte dysfunction and OA pathological 
changes [154].

Articular joint response to hind limb 
unloading or simulated microgravity

In addition to different mechanical stimuli, 
decreased mechanical forces or mechanical 
unloading situations simulated by the hind limb, 
joint immobilization and the random positioning 
system (RPM) also regulated the functions of 
articular chondrocytes and were accompanied by 
altered expression of mechanosensitive ion chan
nels. Mechanically induced lubricant HA secretion 
by synoviocytes can maintain articular cartilage 
[155,156], which may contribute to the effects of 
mechanical loading of articular cartilage on the 
metabolism of resident chondrocytes and the 
synthesis of molecules to maintain the integrity 
of the cartilage. Moderate exercise promotes 

proteoglycan synthesis and maintains articular 
ECM homeostasis. However, articular joint immo
bilization may reduce HA secretion and result in 
decreased cartilage thickness and inhibited proteo
glycan synthesis leading to ECM degeneration, 
which will make the articular cartilage more vul
nerable to excessive mechanical stimulation. The 
chondrocyte phenotype was preserved when sus
pended clustered chondrocytes maintained 
a round morphology under simulated micrograv
ity induced by RPM [157]. Progressive dedifferen
tiation which includes the production proportion 
of collagen 2/collagen 1, proteoglycan proportion 
of ACNA to versican (ACNA/VCAN) and 
a transition to fibroblast-like morphology was 
observed in monolayer in vitro cultured BACs 
except for decreased expression of the TRPV4 
ion channel, which was attenuated by the RPM 
system that induced the suspension status of 
in vitro BACs [157]. Rats subjected to mechanical 
unloading induced by the hind limb presented 
increased expression of inducible NO synthase, 
enhanced chondrocyte apoptosis, decreased thick
ness of articular cartilage and compromised joint 
biomechanics [33]. Male C57BL/6 J mice under 
mechanical unloading conditions such as hind 
limb and joint immobilization presented with sub
chondral bone atrophy accompanied by osteoclast 
differentiation of bone marrow cells and degenera
tion of the cartilaginous layer without chondrocyte 
hypertrophy [158]. In addition, increased ALP and 
aggercanase activity, decreased ACAN content in 
calcified cartilage and decreased ALP activity in 
calcified cartilage were observed in male C57BL/ 
6 J mice in the hind limb and joint immobilization 
groups [158]. As shown in Table 2, the expression 
of mechanosensitive TRPV4 channels present in 
articular chondrocytes is changed during progres
sive osteoarthritis cartilage degeneration, which is 

Table 2. Articular chondrocytes in response to hind limb unloading or simulated microgravity.

Study Cell/Tissue
Decreased mechanical 

stimulation Results

Wuest et al. 
(2018)

BACs TRPV4, simulated microgravity 
induced by RPM

Altered expression of TRPV4, preserved chondrocyte phenotype

Basso et al 
(2006)

Articular and growth 
plate cartilage

Hind limb Increased expression of iNOS, impaired articular cartilage, deteriorated 
joint biomechanics

Nomura 
et al. 
(2017)

Male C57BL/6 J mice Hind limb, joint 
immobilization

Altered ALP and aggercanase activity, decreased ACAN content 
subchondral bone atrophy, cartilage degeneration
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consistent with these important roles of mechan
osensitive ion channels in OA progression.

Chondrocytes in OA

Chondrocytes are the cells within cartilage that 
produce and maintain the extracellular matrix. 
Volume regulation of chondrocytes is vital to 
their function and occurs in OA [113]. Articular 
chondrocytes are exposed to changing osmolarity 
and compressive loads. Ion channels implicated in 

volume control are changed in chondrocytes from 
osteoarthritic cartilage [113]. In addition to 
mechanically induced chondrocyte phenotype 
changes, some specific mechanosensitive ion chan
nel agonists or antagonists and gene knockdown 
technology can also alter the chondrocyte pheno
type and may be involved in OA pathological 
progression and OA pain. As shown in Table 3, 
some mutations in TRPV4 cause severe develop
mental abnormalities, such as skeletal dysplasia 
and arthropathy [118]. Differential regulation of 
ion channels such as BKCa and TRPV4 at the 

Table 3. The role of ion channels in osteoarthritis.
Study Cell/Tissue Ion channel and intenvention Results

Funabashi et al. 
(2010)

OUMS-27 cell line SK channels, CRAC channels, histamine K+ efflux through SK channels, increased intracellular Ca2 

+ concentration via nonselective cation channels 
including CRAC channels, membrane hyperpolarization

Li et al. (2017) Human chondrocytes 
from OA patients

Piezo1, GsMTx4, a PIEZO-blocking 
peptide

Suppressed expression of apoptosis-related genes

Sooampon et al. 
(2013)

Human periodontal 
ligament (HPDL) cells, 
human osteoblasts

Piezo1, GsMTx4 Ca2+ influx, attenuated deteriorated response of 
chondrocytes to injurious mechanical strain

O’Conor et al. 
(2016)

Conditional knockout 
(cKO) mice

Gene knock down of TRPV4 channel Decreased total periarticular bone volume, reduced 
severity of aging-associated OA

Ogawa et al. 
(2019)

The ATDC5 cell line TRPV4, GSK1016790A, a selective TRPV4 
agonist

Activation of TRPV4-ICAM-1-up-regulation of 
chondrogenic marker genes including SOX9 and ACAN, 
HA facilitated TRPV4-induced chondrogenesis

Srinivasan et al. 
(2015)

KO and WT mice Gene knock down of T-type VGCCs Enhanced cartilage degeneration and subchondral bone 
resorption

Kuduk, S. D., et al. 
(2010), Izumi, 
M., et al. (2012)

KO and WT mice, rat 
osteoarthritis models

Gene knock down of ASIC-3, the ASIC3 
inhibitor A-317,567, ASIC3 selective 
peptide blocker (APETx2)

Altered expression of ASIC3 in knee joint afferents, 
reversed osteoarthritis pain and mechanical hyperalgesia

Schuelert, N., et al. 
(2010)

Rat osteoarthritis 
models

The cannabinoid CB2 receptor agonist 
GW405833

Reduced mechanosensitivity of afferent nerve fibers in 
control joints, nociceptive responses in OA joints

Shimazaki, A., 
et al. (2006)

Human normal and OA 
articular chondrocytes

NMDA receptor(ligand-gated ion 
channels), CaMKII inhibitor

Inhibited membrane potential, upregulation of aggrecan 
mRNA

Clark et al. (2010) KO mice Gene knock down of TRPV4 Severe OA degeneration
Lee et al. (2014) Murine chondrocytes Piezo1, GsMTx4, siRNA Attenuated maladaptive chondrocyte responses
Zelenski et al. 

(2015)
Murine articular 
chondrocytes

Gene knock down of TRPV4 Suppressed mechanically induced Ca2+ influx and 
formation of pericellular matrix

Moilanen, L. J., 
et al. (2015)

Murine articular 
chondrocytes

Pharmacological blockade and gene 
knock down of TRPA1

Suppressed iodoacetate-induced OA

O’Conor, C. J., 
et al. (2016)

cKO mice Gene knock down of TRPV4 Reduced severity of aging-associated OA

He, B. H., et al. 
(2017)

OA mice Mechanosensitive ion channels, the 
selective inhibitor GsMTx4

Reduced activation of dorsal horn nociceptive circuits 
and primary mechanical allodynia

Xing, R., et al. 
(2017)

OA mice TRPA1, TRPV4 Upregulation of TRPA1 and TRPV4 mechanical 
hyperalgesia induced by OA

Parisi, C., et al. 
(2018)

Chick joint Pharmacological blockade of SACs, 
VGCCs,

Removed effects of mechanical stimulation on joint 
cartilage growth and shape development

Raouf, R., et al. 
(2018)

Rat DRG nerons Piezo2, overexpression and gene knock 
down of annexin A6

Attenuated mechanical hyperalgesis induced by OA

Richter, F., et al. 
(2019)

Rat DRG nerons TRPV4, agonist 4αPDD, GSK 1016790 A 
and antagonist RN-1734

Altered mechanonociception of the normal and inflamed 
joint

Xu, B., et al. (2019) Rat articular 
chondrocytes

Pharmacological blockade and gene 
knock down of TRPV4

Attenuated cartilage degeneration in rat OA anterior 
cruciate-ligament transection (ALCT) models

Nummenmaa, E., 
et al. (2020)

Rat articular 
chondrocytes, human 
OA chondrocytes

Pharmacological blockade and gene 
knock down of TRPA1

Downregulation of the pro-inflammatory cytokine 
interleukin-6 (IL-6), IL-6 family cytokines leukemia 
inhibitory factor (LIF) and IL-11

Fu, S., et al. (2021) Rat articular 
chondrocytes

Pharmacological blockade or activation 
of TRPV4

Pro-inflammatory signaling and cartilage degradation
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functional level and expression level is observed in 
early OA synovial fluid mesenchymal progenitor 
cells [159,160], which suggests that mechanosensi
tive ion channels participate in OA progression.

GsMTx4 inhibits the activation of nociceptors 
followed by mechanical allodynia by weakening 
the sensitization of mechanosensitive ion chan
nels in OA mice [161], which indicates that 
Piezo1/2 channels also participate in OA 
mechanical hyperalgesia in addition to OA car
tilage degeneration. Annexin A6 is a membrane- 
associated Ca2+-binding protein. Annexin A6- 
deficient mice showed increased sensitivity to 
mechanical stimuli and increased activity of 
Piezo2 channels that mediate a rapidly adapting 
mechanogated current linked to proprioception 
and touch in sensory neurons. Overexpression of 
Annexin A6 may attenuate OA mechanical pain 
by inhibiting rapidly adapting currents induced 
by Piezo2 channels [162]. Intra-articular injec
tion of VGCC inhibition may lessen OA 
changes, such as enhanced cartilage degeneration 
and subchondral bone resorption, in both post
traumatic and age-related OA [34]. 
Dysregulation of NMDA-CaMKII signaling may 
contribute to the onset and progression of 
osteoarthritis [142]. Upregulation of pain- 
related neurochemical markers such as ASIC3 
is observed in joint afferents of a rat OA 
model induced by intra-articular injection of 
monoiodoacetate [163]. The ASIC3 inhibitor 
attenuated mechanical hyperalgesia by inhibiting 
the expression of ASIC3 in knee joint afferents 
and ASIC3 KO mice reversed mechanical hyper
algesia in a rat osteoarthritis model, which indi
cates the involvement of ASICs in osteoarthritis 
pain via the central nervous system [164,165]. 
The intracellular injection of the CB2 receptor 
agonist GW405833 into synoviocytes attenuates 
osteoarthritis knee joint pain in a rat osteoar
thritis model [166].

In summary, mechanical stimulus mechanically 
induced intracellular cation mobilization via ion 
channels, such as TRPV4, ASIC3 and Piezo1/2, 
and these mechanosensitive channels participate 
in mechanically induced alteration of articular 
chondrocytes and the maintenance of ECM home
ostasis in joints. Ion channels may serve as poten
tial biomarkers for OA [167]. The intensification 

of ion channels may prevent or attenuate osteoar
thritis progression. Dysregulation of the mechan
ical responses of chondrocytes may participate in 
the progression of OA [100].

Conclusion and perspectives

During joint movement, the mechanical load of 
body weight is the most physiological stimulus 
affecting cartilage. Body weight can influence of 
the ECM in applied animal experiments. Excessive 
obesity may induce injurious levels of mechanical 
stimulation and thus accelerate joint aging. 
However, significantly decreased mechanical sti
muli, such as hind limb unloading, can also cause 
pathological degeneration of articular cartilage 
because of a lack of sufficient physiological 
mechanical stimulation. Moderate exercise under 
healthy body weight may exert chondroprotective 
effects and stimulate the anabolic metabolism of 
articular cartilage in physiological mechanical con
texts. Obesity or fracture of the articular surface 
can result in a quantitative imbalance between 
anabolic and catabolic activity, along with ECM 
catabolic metabolism, particularly in swelling 
articular cartilage tissue, which leads to the devel
opment of OA and compromised mechanical resi
lience of articular cartilage. As a result, it is 
important to investigate the effects of deformation 
pressure or shear force on articular cartilage 
homeostasis. These data can unveil the pathophy
siological properties of OA progression by explor
ing the molecular mechanism by which 
mechanoreceptors participate in the mechano- 
adaptation process.

In many different cell biomechanical studies, 
there is a direct link between mechanoreceptors 
at the cell surface and intercellular biochemical 
signaling, which in turn controls downstream 
effector molecules [168]. Among the mechanore
ceptors in the cell membrane, mechanosensitive 
ion channels are essential for the transduction of 
mechanical stimuli into biologically relevant sig
nals. The innate force-sensing ability of mechan
osensitive channels transduces mechanical signals. 
Furthermore, mechanical stimuli can induce 
alteration in chondrocyte metabolism and influ
ence the homeostasis of articular cartilage. 
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Although physiological expression of ion channels 
is essential for articular ECM formation, differen
tially expressed transmembrane channels on chon
drocyte surface membranes (plasmalemma) are 
relevant to OA [27,83,141]. The effects of mechan
osensitive ion channels may delay OA cartilage 
degeneration and attenuate OA-induced mechan
ical allodynia. The molecular mechanisms by 
which ion channels participate in the mechano
transduction process are not clear, and the inter
action relationships among some of these ion 
channels are unknown. More research is needed 
to define the electrophysiological properties of 
individual ion channels that can participate in 
mechanically altered metabolism of chondrocytes. 
The molecular mechanisms by which mechanical 
stimuli prevent articular cartilage degeneration 
and promote articular cartilage repair may yield 
insights into the rationale of possible mechanical 
therapy, such as the potential for therapeutic low- 
intensity pulsed ultrasound for OA [169,170].
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