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Regulation of miR-186-YY1 axis by the p53 translational isoform ∆40p53: 
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ABSTRACT
We have earlier shown that p53-FL and its translational isoform ∆40p53 are differentially regu
lated. In this study, we have investigated the cellular effect of ∆40p53 regulation on downstream 
gene expression, specifically miRNAs. Interestingly, ∆40p53 showed antagonistic regulation of 
miR-186-5p as compared to either p53 alone or a combination of both the isoforms. We have 
elucidated the miR-186-5p mediated effect of ∆40p53 in cell proliferation. Upon expression of 
∆40p53, we observed a significant decrease in YY1 levels, an established target of miR-186-5p, 
which is involved in cell proliferation. Further assays with anti-miR-186 established the interde
pendence of ∆40p53− miR-186-5p−YY1− cell proliferation. The results unravel a new dimension 
toward the understanding of ∆40p53 functions, which seems to regulate cellular fate independent 
of p53FL.
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Introduction

P53 is the tumor suppressor gene, known as the 
guardian of the genome. p53 has different iso
forms produced by different mechanisms. One of 
the isoforms of p53, which is the only translational 
isoform, is ∆40p53. Previous work from our 
laboratory has shown the presence of two 
Internal Ribosome Entry Sites (IRESs) within the 
p53 mRNA [1]. It was shown that translation 
initiation from the first IRES generates the full- 
length p53 protein, whereas initiation at the sec
ond IRES generates ∆40p53 [1]. We have also 
shown that several translation initiation factors 
like Polypyrimidine tract binding (PTB) protein 
are critical for the regulation of IRES activity [2]. 
The pattern of expression of p53 isoforms is tis
sue-specific and hence, can be specifically regu
lated. Moreover, p53 isoforms are expressed at a 
lower level than p53 protein and have distinct 
subcellular localizations within cells suggesting 
their distinct biochemical activities [3]. 
Cotransfection experiments of p53 protein with 
individual p53 isoforms suggest that wild-type 
p53 activity is modulated by its isoforms [3]. 

This can provide a probable justification for the 
multiple functions played by p53 protein within 
the cell.

∆40p53 can form homo- and hetero-oligomer 
complexes with the full-length p53. p53 has a strong 
affinity toward this isoform [4]. This binding alters 
the p53 activity, probably by changing the recruit
ment of the co-activators [5]. ∆40p53 acts as a nega
tive regulatory factor of p53 since coexpression of the 
two isoforms impairs the ability of p53 to transacti
vate target genes such as p21 and induce growth 
suppression [6]. The ratios between the levels of 
these two isoforms vary during the cell cycle. 
Recent findings suggest that the role of ∆40p53 is 
most likely more complicated. It is also known that 
an increased amount of ∆40p53 prolongs the plur
ipotency in embryonic stem cells in mice. It controls 
the switch from pluripotency to differentiated 
somatic cells by regulating the p53FL activity at 
critical targets such as Nanog and IGF-receptor [7]. 
∆40p53 was observed to induce many apoptosis- 
related genes that were not induced by p53, such as 
P53BP2 and TIAL1 [26]. Some studies on mice also 
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showed that ∆40p53 can induce senescence even in 
absence of p53 full length [9]. All these studies show 
that ∆40p53 is not just a negative regulator of full- 
length p53 but has more activity during both normal 
and stress conditions.

p53 protein is known to be the most frequently 
altered genes in human cancers [10,11]. p53 is also 
known to regulate different miRNAs [12–14]. 
Human cancer cells are often associated with a 
widespread decrease in miRNAs [15], which 
shows crosstalk between the p53 tumor suppressor 
pathway and the miRNA regulation system. The 
transcription of some pri-miRNAs is regulated by 
p53 through binding to consensus sites in their 
promoters. Also, p53 modulates miRNA proces
sing through interaction with the Drosha-p68 
complex [16]. miRNAs can target various tran
scripts, so they are involved in diverse processes 
such as cellular differentiation, metabolism, and 
cell proliferation [17]. miR-34 family, composed 
of miR-34a (from one transcript), miR-34b, and 
miR-34c (from another transcript) are direct 
transactivation targets of p53. They are induced 
following p53 activation, and their induction pro
motes apoptosis, cell-cycle arrest, and senescence. 
Some recent reports showed that p53 can also 
repress the expression of miRNAs. During senes
cence, p53 was shown to repress miR-106b and 
cause cell-cycle arrest because the miR-106b family 
is known to regulate p21/CDKN1A and promote 
cell-cycle progression [17]. Among several cancer- 
associated miRNAs, studies on miR-186 are intri
guing since it is found to be both upregulated and 
downregulated in numerous cancers. It is reported 
to be a tumor suppressor miRNA in the majority 
of the studies, while in others it is validated as an 
oncomir. These conflicting functions of miR-186 
are mostly explored in lung cancer, colorectal can
cer, hepatocellular carcinoma, prostate cancer, gas
tric cancer, etc. Among the several cancers, it is a 
well-known tumor suppressor in lung cancer, inhi
biting proliferation, migration, and invasion [18]. 
In patients with nonsmall cell lung cancer 
(NSCLC), low miR-186 levels in tissues are corre
lated with poor survival rate, suggesting miR-186 
may act as a diagnostic and prognostic marker 
[19]. It is also found to be downregulated in can
cers related to the lymphatic and skeletal system 
[20]. However, there are also reports of miR-186 

where it enhances cell proliferation and migration 
by targeting tumor suppressor genes. Thus, several 
reports suggest the conflicting role of miR-186-5p 
in various cancers [21]. Differential miRNA abun
dance and variable target levels are major factors 
contributing to diverse cellular outcomes in can
cer; therefore, it is important to identify the reg
ulatory molecules behind such regulation. The 
contradictory role of miR-186 in cancers is a hin
drance toward its promising role in therapeutics, 
and therefore it is crucial to explore the possible 
mechanisms behind such findings. Interestingly, 
one of the reports suggests that wild-type p53 
downregulates miR-186 while mutant p53 induces 
its expression [22]. The role of full-length p53 in 
controlling the expression of miRNAs is estab
lished but the role of ∆40p53 in regulating the 
miRNAs is not elucidated. Since both the isoforms 
have some unique transactivation features, which 
would further result in a differentiated and specific 
downstream gene expression pattern [13,17], we 
wanted to understand the role of ∆40p53 in the 
regulation of miR-186-5p expression and its 
downstream consequences.

Therefore, in the present study, we have focused 
on the changes in the expression of miR-186-5p in 
cells expressing either one of the isoforms or both 
the isoforms, p53FL and ∆40p53 in lung cancer 
and colon cancer cell lines with a different experi
mental approach. Results from our study showed 
that miR-186-5p is up-regulated only under 
∆40p53 expression as compared to p53 and the 
combination of both the isoforms. This shows 
∆40p53 alone could regulate miRNAs differentially 
independent of p53FL. Gene network analysis as 
well as literature reports further unraveled YY1 as 
the potential target for miR-186-5p. A concomi
tant decrease in the expression of YY1 the target of 
miR-186 and cell proliferation under ∆40p53 
expression elucidates that ∆40p53 can also mod
ulate cellular fate independent of p53FL.

MATERIALS AND METHODS

Plasmids and constructs

pGFP-hp-p53- 5'UTR-cDNA (14A): It expresses 
both p53FL and ∆40p53. It contains GFP cDNA 
preceding a hairpin, followed by p53 5'UTR and 
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cDNA in pcDNA3 backbone (a generous gift from 
Dr. Robin Fahraeus, INSERM, France). pGFP-hp- 
p53-5'UTR (A135T)-cDNA: It is the first ATG 
mutant (ATG/TTG), which expresses only 
∆40p53. It is a point mutant, in which 135th 
nucleotide is mutated (A135T), in the context of 
p53 cDNA, generated in this study. pGFP-hp-p53- 
5'UTR(A251G/T252 C/G253T)-cDNA: It is second 
ATG mutant (ATG/GCT), in context of 
p53cDNA, which expresses only full-length p53 
(p53FL) [23]. pmiRGLO-YY1-3'UTR: It contains 
YY1 3'UTR (region) cloned between PmeI and 
XbaI downstream of the luciferase gene. 
pmiRGLO-YY1-3'UTR mutant: It contains YY1 
3'UTR with a mutation in the miR-186-5p binding 
site. 5'CCGGGCCTCTCCTTTGTATATTATTC 
TCGAGAATAATATACAAAGGAGAGGCTTTT
T-3' sequence of shRNA was used to target YY1 3' 
UTR (procured from shRNA library available in 
Dr. Gangi Shetty Subba Rao’s Laboratory IISc, 
Bangalore).

Cell lines and transfections

In the current study, we have used the H1299 null 
p53 cell line, HCT116+/+, and HCT116 -/- cell 
line. These cells were maintained in DMEM 
(Sigma) with 10% Fetal Bovine Serum (GIBCO, 
Invitrogen). About 70%–80% confluent monolayer 
of H1299 cells were transfected with various plas
mid constructs using lipofectamine (Invitrogen) in 
OPTIMEM. Four hours later, the medium was 
replaced with DMEM (with antibiotic) and 10% 
FBS. After 48 hours, the cells were harvested for 
RNA isolation and western analysis.

siRNA and anti-miR transfections

HCT116 -/- cells were transfected with 25 nM si 
p53 RNA (IDT). 5 ' - AACCUCUUGGUGAA

CCUUAGUACCT-3' is the sequence for p53 
siRNA, directed against the 3'UTR of p53; there
fore, it targets both p53 as well as Δ40p53. A 
nonspecific siRNA (si nsp) (Dharmacon) was 
used in the experiments as control. Similarly, 
anti-miR-186-5p obtained from Ambion (Cat#: 
4464084, ID: MH11753) (Applied Biosystems) is 
also used (40 nM) to partially silence miR-186. A 
nonspecific anti-miR obtained from Dharmacon 

(Cat#: IN-001005-01-05) was used in experiments 
as control. After 48 h, the cells were harvested in 
passive lysis buffer for reporter gene assays and in 
RIPA lysis buffer for Western blot analysis.

Site-directed mutagenesis

First ATG mutant (ATG/TTG) and second ATG 
mutant (ATG/GCT) were generated using Mega 
Primer-A (5'GGATCTGACTGCGGCTCCTCC 
AAGGCAGTGACCCGGA3') and MegaPrimer-B 
(5'GGACAGCATCAAATCATCAGCTGCCTTG
GGACGGCAAG3') respectively, using 
QuikChange Lightning Multi Site-Directed 
Mutagenesis Kit (Stratagene, USA) as per manu
facturer’s protocol. DNA was isolated from trans
formed E. Coli XL-10-Gold colonies. pmiRGLO- 
YY1-3'UTR mutant for one of the miR-186 bind
ing site was generated by PCR amplification of 
template DNA (pmiRGLO-YY1-3'UTR) using 
two mutagenic primers:

Forward 
Primer:5'ATGAACTTCGCATCAAAAGACAAA
AGAAAATACAACAGTGCTAAAAATGG-3' 
Reverse Primer: 5'-CCATTTTTAGCACTGTTG 
TATTTTCTTTTGTCTTTTGATGCGAAGTTCA
T-3', followed by DpnI digestion. DNA was iso
lated from transformed E.coli DH5α colonies and 
was verified by DNA sequencing.

Western blot analysis

Protein concentrations of the extracts were assayed 
by Bradford (Bio-Rad) and equal amounts of cell 
extracts were separated by SDS 12% PAGE and 
transferred to nitrocellulose membrane (Sigma). 
Samples were then analyzed by Western blotting 
using a rabbit-raised anti-p53 polyclonal antibody 
(CM1, a kind gift from Dr. Robin Fahraeus, 
INSERM, France and Prof. J.C. Bourdon, of 
University of Dundee, UK), followed by secondary 
antibody (horseradish peroxidase-conjugated anti- 
mouse or anti-rabbit IgG; Sigma). Mouse-mono
clonal anti-β-actin antibody (Sigma) was used as a 
control for equal loading of total cell extracts. YY1 
antibody (Santa Cruz Biotechnology, Cat. No. SC- 
7341 H10) was used to detect YY1 protein. For 
WB quantitative comparison, the intensity of 
immunoblots was analyzed using Mutigauge V3.0 
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software (Fuji Photo Film). For blots, the quanti
fied densities of proteins were normalized against 
the respective actin band.

RNA isolation and real-time PCR

Total RNA was extracted using TRIzol reagent 
(Sigma). RNA amount was quantified with 
Nanospectrophotometer and reverse transcribed 
(ABI). miRNAs were quantified with the 
Taqman-based method. The TaqMan microRNA 
Assay System was used for miRNA detection and 
quantification. The RT reaction was performed in 
a final volume of 15 μl containing 1.5 μl of 10X RT 
buffer, 5 μl of total RNA (10 ng), 3 μl of 5X 
miRNA-specific RT .primer, 0.15 μl of 100 mM 
dNTP, 0.19 μl of 20 U/μl RNase inhibitor, and 1 μl 
of MultiScribe reverse transcriptase (50 U/μl). The 
reaction condition was 30 min at 16°C, 30 min at 
42°C, and 5 min at 85°C. Real-time PCR was then 
performed in a 20 μl reaction containing 1.33 μl of 
1:10 diluted RT product, 10 μl of 10X TaqMan 
Universal PCR master mix, and 1 μl of the primer 
and probe mix from the TaqMan MicroRNA 
Assay Kit. The reaction condition for miRNA 
(TaqMan) was 95°C for 10 min followed by 40 
cycles of 95°C for 15 s and 60°C for 60 s. The 
expression of the RNU6B gene was used as the 
endogenous control. The thermocycling condi
tions for SYBR green include 1 cycle of 95°C for 
10 min, and 45 cycles of 95°C for 15 s, and 60°C 
for 30 s and 72°C for 30 s (Applied Biosystems). 
2−ΔΔCt method algorithm was used to analyze the 
relative changes in expressions, where actin/ 
RNU6B served as an endogenous control. The 
fold change was calculated using 2−ΔΔCt. 

ΔCt = Ct (a target gene) −Ct (endogenous control) 
and ΔΔCt = ΔCt (a target sample) −ΔCt (control 
sample). Melting curve analysis of every qPCR was 
conducted after each cycle.

Luciferase assay

Firefly luciferase activity was measured using the 
Dual-Luciferase Reporter Assay System (Promega, 
USA Cat#1910) according to the manufacturer’s 
protocol. The transfected cells were harvested in 
Passive lysis buffer (PLB) after 48 hours of trans
fection and luciferase activity was measured.

Wound-healing assay

Wound-healing assay (scratch wound-healing 
assay) was performed as described previously 
[24]. Briefly, H1299 cells were co-transfected with 
p53FL/∆40p53/14A/GFP and anti-miR-186-5p. 
About 36 h post transfection, these cells were 
reseeded in 12 well plates to create a confluent 
monolayer. The cell layers were scratched using a 
10 µl pipette tip to produce a wound and further 
incubated for 24 h at 37⁰C. The rate of closure of 
the wound (gap reduction) was used to determine 
the wound-healing rate. Percentage gap reduction 
was calculated as follows: [(mean wound width- 
mean remaining width)/mean wound width] 
*100 (%).

BrdU cell proliferation assay

BrdU cell proliferation assay was performed as 
described in BrdU cell proliferation protocol men
tioned in ab126556-BrdU Cell Proliferation ELISA 
Kit (colorimetric). Briefly, H1299 co-transfected 
with p53FL/∆40p53 and anti-miR-186-5p. About 
36 h post transfection, these cells were reseeded in 
96 well plate. After 12 h of reseeding BrdU solu
tion was added and cells were incubated for 8 h, 
followed by the protocol as mentioned in the 
manual. Similar experiment was also performed 
in HCT116 -/- cells transfected with anti-miR- 
186-5p and sh YY1.

Statistical analysis

The data were expressed as mean ± SD. Statistical 
significance was determined using a two-sided 
Student’s t-test. The criterion for statistical signifi
cance was p ≤ 0.05 (*) or p ≤ 0.01 (**) or 
p ≤ 0.001(***) or p ≤ 0.0001(****).

RESULTS

miR-186 is upregulated under ∆40p53 expression

To further investigate and validate the above 
observation in mammalian cell culture system we 
transfected H1299 cells (p53 null) using four dif
ferent constructs: (i) vector expressing only full- 
length p53 protein (p53FL), (ii) vector expressing 
only ∆40p53, (iii) vector that expresses both p53 

564 A. KATOCH ET AL.



and ∆40p53 (14A), and (iv) vector control expres
sing only GFP (C). Interestingly, miR-186-5p 
showed significant upregulation upon expression 
of ∆40p53 as compared to p53 alone or the com
bination of both. (Figure 1a, B). The upregulation 
of miR-186 by ∆40p53 expression was further 
validated in HCT116+/+ and HCT116-/- cells 
(Figure 1c), where HCT116+/+ expresses both 
p53FL and ∆40p53 and HCT116-/- expresses 
only ∆40p53 (Figure 1d). The upregulation of 
miR-186 as observed in HCT116-/- is mediated 
by ∆40p53 was further confirmed by the partial 
silencing of ∆40p53 using si p53 (25 nM) in 
HCT116-/- cells. The partial silencing of ∆40p53 
in HCT116-/- cells reduced the levels of miR-186 
as compared to the nonspecific si (si nsp) (Figure 
1e, F).

∆40p53 inhibits YY1 expression mediated by 
miR-186

In this study, we focused on the miR-186 mediated 
effect of ∆40p53 in cell proliferation. In order to 
understand the physiological relevance of upregula
tion of miR-186 under ∆40p53 expression, we vali
dated the change in the levels of one of the targets of 
miR-186, i.e. YY1, which is known to promote cell 
proliferation. RNA isolated from H1299 cells expres
sing p53, ∆40p53, or both (14A) and GFP as vector 
control was used for determining the change in YY1 
mRNA and protein levels (Figure 2a, B). But to 
confirm if the change in levels of YY1 under 
∆40p53 expression is because of upregulation of 
miR-186, a similar experiment was performed 
using anti-miR-186 (Figure 2c, D, E). Further to 
establish a direct link of miR-186 toYY1 3'UTR, a 
luciferase experiment was performed. H1299 cells 
were transfected with luciferase construct with YY1 
3'UTR wild-type (pmiRGLO-YY1-3'UTR WT) and 
YY1 3'UTR mutant for the miR-186 binding site 
(pmiRGLO-YY1-3'UTR Mut) in the background of 
overexpression of ∆40p53 or the vector control. The 
overexpression of ∆40p53 increased the levels of 
miR-186 (Figure 2i) which decreased the luciferase 
activity as compared to the control in case of wild- 
type 3'UTR. But, in the mutant 3'UTR, the inhibitory 
effect on the luciferase activity was reduced which 
resulted in increased luciferase activity (Figure 
2Figure 2f, G, H). This suggests that miR-186 

directly binds to YY1 3'UTR thereby regulating its 
levels.

Experiments performed in HCT116+/+ and 
HCT116-/- cells also displayed downregulation of 
YY1 under ∆40p53 endogenous expression (Figure 
3, Figure 3B). The downregulation of YY1 mRNA 
and protein levels as observed in HCT116-/- is 
mediated by ∆40p53 was further confirmed by the 
partial silencing of ∆40p53 using si p53 (25 nM) in 
HCT116-/- cells. After partial silencing of ∆40p53 in 
HCT116-/- cells the mRNA and protein levels of 
YY1 showed an increase as compared to the non
specific si (si nsp) (Figure 3c, D). The anti-miR-186 
experiments determined that the downregulation of 
YY1 under ∆40p53 expression is mediated by miR- 
186 (Figure 3e, F, G, H, I, J, K). The effect of anti- 
miR-186 on the levels of YY1 mRNA and protein 
was further established using a nonspecific anti-miR 
(Nsp anti-miR), which showed no significant change 
in the YY1 expression (Figure 3l, M, N).

∆40p53 inhibits cell proliferation

From different studies, it is known that YY1 promotes 
proliferation in cells and miR-186 inhibits cell prolif
eration by downregulating YY1 levels [24,25]. 
Observations from the experiment using sh YY1 in 
HCT116-/- cells also showed the role of YY1 in pro
moting cell proliferation (Figure 4 A, B). To investi
gate if ∆40p53 can regulate cell proliferation, H1299 
cells were co-transfected with different constructs 
expressing p53, ∆40p53, or both (14A) or GFP as 
vector control and anti-miR-186. p53 is a positive 
control of the inhibition of cell proliferation because 
it is known that p53 can inhibit cell growth. The 
wound-healing assay and BrdU cell proliferation 
assays were performed to demonstrate the role of 
miR-186 in cell proliferation and migration. The 
results show that ∆40p53 can inhibit cell migration 
and proliferation by upregulating miR-186 which in 
turn inhibits YY1 expression (Figure 4 C, S1 D, E). The 
results were further strengthened by similar observa
tion in HCT116-/- cells BrdU cell proliferation assay 
with and without anti-miR-186 (Figure 4 F).

DISCUSSION

There are different reports which have identified 
p53 regulated miRNAs and their roles [11]. 
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transfection of YY1 3'UTR WT and YY1 3'UTR Mutant, probed with CM1. (H) Effects of ∆40p53 mediated miR-186 expression on the 
activity of wild-type and mutant 3'-UTRs of YY1 was analyzed by luciferase reporter assay 48 h post transfection [The luciferase 
values for each condition were normalized with protein concentration. The relative luciferase activity for each condition was 
calculated in comparison to the YY1-3'UTR WT control samples.] (I) Quantitative PCR using Taqman probe for miR-186 from RNA 
extracted from H1299 cells transfected with Control and ∆40p53 followed by transfection of YY1 3'UTR WT and YY1 3'UTR Mutant. 
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Figure 3. Endogenous ∆40p53 inhibits YY1 expression mediated by miR-186-5p. 

(A) Quantitative PCR of YY1 mRNA levels normalized to actin in HCT116+/+ (expresses both p53FL and ∆40p53) and HCT116-/-cells 
(expresses only ∆40p53) (n = 3). (B) Western blot analysis of cell extracts from HCT116-/-cells (expresses only ∆40p53) and HCT116 
+/+ (expresses both p53FL and ∆40p53), probed with anti YY1 antibody and anti-actin antibody. (C) Quantitative PCR of YY1 mRNA 
levels normalized to actin in HCT116-/- (expresses only ∆40p53) cells transfected with either si p53(25 nM) or nonspecific si (si nsp). 
(D) Western blot analysis of cell extracts from HCT116-/- (expresses only ∆40p53) cells transfected with either si p53(25 nM) or 
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However, there are no studies on the shorter iso
form, ∆40p53 regulated miRNAs. In this study for 
the first-time function of ∆40p53 in regulating 
miRNAs expression has been investigated. Several 
literature reports on miRNAs provided functional 

significance for the selection of a specific miRNA 
for this study. Since miR-186 was found to be 
differentially regulated in different cancers we 
were interested to study its role in the context of 
p53 isoforms that orchestrate cellular fate.
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Figure 3b. continue

nonspecific si (si nsp), probed with anti YY1 antibody and anti-actin antibody. (E) Quantitative PCR of YY1 mRNA levels normalized to 
actin in HCT116-/-cells transfected with anti-miR-186-5p, 48 h post transfection (n = 3). (F) Western blot analysis of cell extracts from 
HCT116-/- (expresses only ∆40p53) cells transfected with anti-miR-186-5p, 48 h post transfection probed with anti YY1 antibody and 
anti-actin antibody. (G) Quantitative PCR using Taqman probe for miR-186-5p in HCT116-/-cells (expresses only ∆40p53), transfected 
with anti-miR-186-5p. (H) Quantitative PCR of YY1 mRNA levels normalized to actin in HCT116+/+ cells transfected with anti-miR- 
186-5p, 48 h post transfection (n = 3). (I) Western blot analysis of cell extracts from HCT116+/+ (expresses only ∆40p53) cells 
transfected with anti-miR-186-5p, 48 h post transfection probed with anti YY1 antibody and anti-actin antibody. (J) Quantitative PCR 
using Taqman probe for miR-186-5p in HCT116+/+ (expresses both p53FL and ∆40p53), transfected with anti-miR-186-5p. (K) 
Western blot analysis of cell extracts from HCT116-/-cells (expresses only ∆40p53) and HCT116+/+ (expresses both p53FL and 
∆40p53), transfected with anti-miR-186-5p, probed with CM1. (L) Western blot analysis of cell extracts from HCT116-/- (expresses 
only ∆40p53) cells transfected with nonspecific anti-miR (Nsp anti-miR) anti-miR and anti-miR-186-5p, 48 h post transfection probed 
with anti YY1 antibody and anti-actin antibody. (M) Quantitative PCR of YY1 mRNA levels normalized to actin in HCT116-/-cells 
transfected with nonspecific anti-miR (Nsp anti-miR) and anti-miR-186-5p, 48 h post transfection. (N) Quantitative PCR using Taqman 
probe for miR-186-5p in HCT116-/-cells (expresses only ∆40p53), transfected with nonspecific anti-miR (Nsp anti-miR) and anti-miR- 
186-5p.  
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A significant change was observed in the levels of 
miR-186-5p under overexpression of p53FL, ∆40p53, 
and both the isoforms together. This regulation of 
miRNAs could be at the level of their transcription 
or processing stage, but this study focuses on the 
downstream functions. The observation of upregula
tion of miR-186-5p by ∆40p53 expression was further 
strengthened in other cell lines expressing only 
∆40p53 endogenously (HCT116-/-) as compared to 
the cell line expressing both the isoforms 
(HCT116+/+).

Not much detailed studies have been done to 
understand the functions of ∆40p53, but some studies 
have revealed the importance of this isoform by recog
nizing its role in different cellular functions like apop
tosis [26], senescence [8], and differentiation [7]. 
Knowing that ∆40p53 has different trans activation 
properties from the previous studies, the current study 
explores different functions of ∆40p53 mediated 
through the miRNAs. miR-186 is known to have 
tumor suppressor properties. It regulates different tar
get genes that have oncogenic properties [18,24,27]. It 
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Figure 4. ∆40p53 inhibits cell proliferation mediated by miR-186-5p.
(A) BrdU cell proliferation assay performed in HCT116-/-cells transfected with sh YY1 and scrambled sh RNA as a nonspecific control 
(sh scramble) (n = 3). (B) Western blot analysis of cell extracts from HCT116-/- (expresses only ∆40p53) cells transfected with sh YY1 
and scrambled sh RNA as a nonspecific control (sh scramble) probed with anti YY1 antibody and anti-actin antibody. (C) Wound- 
healing assay performed in H1299 cells co-transfected with C: GFP (vector control)/p53FL only/∆40p53 only/14A (expresses both 
p53FL and ∆40p53) and anti-miR-186-5p. The graph represents the percentage gap reduction in the wound n = 3). (D, E) BrdU cell 
proliferation assay performed in H1299 cells co-transfected with C: GFP (vector control)/p53FL only/∆40p53 only and anti-miR-186- 
5p. The graph represents the change in proliferation (n = 3). (F) BrdU cell proliferation assay performed in HCT116-/-cells transfected 
with anti-miR-186-5p. 
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is involved in functions like regulation of cell cycle, 
apoptosis, and cell proliferation. Literature from our 
laboratory has shown that synchronized, ∆40p53 
transfected H1299 cells have a higher proportion of 
S-phase cells 8 h and 24 h post-starvation, suggesting 
an anti-proliferative effect of ∆40p53 [22]. Taken 
together the knowledge of previous studies for miR- 
186, the role of ∆40p53 in regulating cell proliferation 
mediated by miR-186 is investigated. The downstream 
significance of miR-186 upregulation under ∆40p53 
expression was determined by checking the change in 
the YY1 mRNA and protein levels by overexpression 
of ∆40p53 and under endogenous expression of 
∆40p53. YY1 is a transcriptional factor that is known 
to target several genes involved in proliferation and 
differentiation. YY1 has dual roles to play and its 
activity varies according to the cellular conditions. 
YY1 comprises one of the Polycomb group proteins 
that maintain transcriptional repressor complexes 
during embryogenesis. It forms a transcription repres
sion complex with HDACs, which when released leads 
to the activation of cyclin D1 gene promoter which 
drives G1-phase completion [28]. On the other hand, 
YY1 negatively regulates p53 in different ways. YY1 
inhibits the transcriptional activity of p53 by inhibiting 
its interaction with its coactivator p300 [29]. In addi
tion to this regulation, YY1 can also act as a negative 
regulator under genotoxic stress, by enhancing p53 
interaction with its negative regulator Mdm2, hence 
leading to its ubiquitination [29,30]. Downregulation 
in the YY1 levels under ∆40p53 expression and con
trary upregulation in the levels after silencing of miR- 
186 along with the ∆40p53 expression gave evidence 
of regulation of YY1 by ∆40p53 mediated via miR-186 
regulation. The change in the luciferase activity of the 
luciferase constructs (with YY1 3'UTR wild type and 
YY1 3'UTR mutant for the miR-186 binding site) 
under the overexpression of ∆40p53 also validated 
the direct interaction of miR-186 to the YY1 3'UTR. 
There was a decrease in levels of YY1 under p53FL and 
with the 14A (a combination of p53FL and ∆40p53). 
Also, the levels of miR-186 get downregulated under 
p53FL and with 14A as observed in Figure 1a. It 
appears that this decrease in YY1 level is not mediated 
through miR-186, as it did not change after anti-miR- 
186 treatment. As known from the literature YY1 
negatively regulates p53, the decrease in steady-state 

YY1 mRNA and protein levels under p53 overexpres
sion could be a survival strategy by p53. Additionally, 
the decrease in the YY1 expression by both the iso
forms of p53 points toward a novel strategy, where 
both the isoforms can regulate YY1 expression but 
through different mechanisms. In a consequence of 
downregulation of YY1 expression by ∆40p53, there 
was a reduction in cell proliferation and the reverse 
was observed with the silencing of miR-186 along with 
∆40p53 expression. The experiments with anti-miR- 
186 established the interdependence of ∆40p53− miR- 
186-5p−YY1− cell proliferation. This unfolds that 
∆40p53 can also regulate cellular fate independent of 
p53FL (Figure 5).

This study not only helps us understand the role 
of ∆40p53 in regulating cell proliferation but also 
indicates toward other functions of ∆40p53 indepen
dent of p53FL functions. The known literature of the 
miR-186 tells us about its other functions like reg
ulation of cell cycle at the G1-S stage and senescence 
by regulating its target genes like CDK6, cyclin D1, 
and CK2α, respectively. From our laboratory, we 
have shown that the IRES element 2 in p53 mRNA 
responsible for ∆40p53 synthesis is more active in 
the G1-S phase of the cell cycle [1]. With this obser
vation, we could speculate that ∆40p53 can also 
regulate the cell cycle at the G1-S stage by regulating 
miR-186. Separate studies tell about the role of 
∆40p53 and miR-186 in senescence individually 
[8,31]. Our observation that ∆40p53 can regulate 
the expression of miR-186 helps us hypothesize 
that one of the pathways by which ∆40p53 regulates 
senescence could be mediated by miR-186.

Taken together, this study unfolds the impor
tance of these isoforms in the differential expres
sion of miRNAs. It also contributes to the novel 
role of Δ40p53 in regulating miRNAs independent 
of p53 and hence the cellular fate. It will be inter
esting to understand the mechanism of the regula
tion of miRNAs by ∆40p53 alone in future studies.
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