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Abstract

Purpose of review—TCRα+CD4−CD8− double negative T (DNT) cells, a principal subset of 

mature T lymphocytes, have been closely linked with autoimmune/inflammatory conditions. 

However, controversy persists regarding their ontogeny and function. Here we present an overview 

on DN T cells in different autoimmune diseases to advance a deeper understanding of the 

contribution of this population to disease pathogenesis.

Recent findings—DNT cells have been characterized in various chronic inflammatory diseases 

and they have been proposed to display pathogenic or regulatory function. The tissue location of 

DN T cells and the effector cytokines they produce bespeak to their active involvement in chronic 

inflammatory diseases.

Summary—By producing various cytokines, expanded DNT cells in inflamed tissues contribute 

to the pathogenesis of a variety of autoimmune inflammatory diseases. However, it is unclear 

whether this population represents a stable lineage consisting of different subsets similar to CD4 T 

helper cell subset. Better understanding of the possible heterogeneity and plasticity of DNT cells is 

needed to reveal interventional therapeutic opportunities.
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Introduction

The most important hallmark of immune disorders is the activation and accumulation of T 

lymphocytes, the majority of which express both alpha and beta chains of the T cell receptor 

(TCR) and are therefore referred as αβ T cells[1]. Among αβ T cells, CD4+ helper or CD8+ 

cytotoxic T cells are most prevalent subsets[2]. However, a small population of αβ T cells 

which do not express both CD4 and CD8, termed “double negative” T (DNT) cells[3,4], 

have been considered to contribute to the pathophysiology of a series of autoimmune 

diseases[4].
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DN T cells were initially identified and characterized in lpr and gld mice (deficiency of 

either Fas or Fas ligand) in which lymphoproliferative syndrome developed due to impaired 

Fas-mediated apoptosis[5–9]. The massively expanded DNT cells results in the 

lymphadenopathy and splenomegaly which leads to the early hypothesis that DNT cells are 

immunopathogenic[5]. Later on, expanded DNT cells were observed in patients with 

different immune disorders including Autoimmune lymphoproliferative syndrome (ALPS)

[10,11], systemic lupus erythematosus (SLE)[12,13] and sjogren’s syndrome[14,15]. 

Although DN T cells only represent a small portion of αβ T cells compared to either CD4 or 

CD8 T cells in normal subjects[16,5], the expansion of DN T cells in various autoimmune 

diseases and the presence of DNT cells at sites of injury in different inflammatory conditions 

strongly suggest their critical roles in inflammation[4]. However, our understanding of DNT 

cell ontogeny and function still remains limited[17,3–5].

We propose that the discrepancy on the differentiation and function of DNT cells could be 

explained by the heterogeneity and plasticity of this type of cells.

Ontogeny of DNT cells

In healthy individuals, DNT cell only comprise a small portion of αβ T cells and are 

considered quiescent[5,4]. αβ T cells are derived from the developing progenitors within the 

thymus, the thymocytes. Developing thymocytes undergo a series of maturation steps before 

egressing from the thymus[18] and the earliest developing thymocytes lack the expression of 

the co-receptors CD4 and CD8 and are termed double negative (DN) population[18,19], 

which leads to the hypothesis that peripheral DNT cells may represent primitive αβ T cells 

which originate in the thymus but escape the late development followed by migration to the 

periphery (Fig. 1a)[20,3]. For late stage thymocyte development, TCR signal strength and 

duration determine the lineage commitment to either CD4+ or CD8+ T cells. Typically lower 

intensity TCR signals leads to full maturation of either CD4+ or CD8+ T cells while cells 

with high TCR strength are deleted during the development to avoid autoimmunity[21,22]. 

This process has be well recapitulated by in vitro cultured thymocytes in the presence of 

cortical epithelial cells[23]. Considering the fact that CD4 or CD8 expression is essential in 

augmenting TCR signaling by stabilizing interactions between TCR-MHC complex[24,25], 

it is reasonable to postulate that low or negative expression of CD4 and CD8 coreceptors 

protects thymocytes away from high intensity TCR signaling mediated depletion and 

promotes their thymic egress[26,27]. In contrast to low concentrations of ligands that induce 

maturation to single positive (SP) thymocyte, double positive (DP) thymocytes cocultured 

with cortical epithelial cells loaded with high concentrations of high affinity ligands acquire 

DNT phenotype with downregulation of both CD4 and CD8[20,28].

However, there is sufficient evidence to suggest that DNT cells are generated in the 

periphery. For example, DNT cells can develop in thymectomized mice reconstituted with T 

cell-depleted bone marrow cells[29]. The fact that mice deficient in β2-microglobulin have 

reduced DNT cell lymphoproliferation[30] and polyclonal DNT cells regain CD8 expression 

in lymphopenic environment[31], indicates that DNT may derive from peripheral mature 

CD8 T cells[4]. Similar evidence was generated from human studies[32,33]. First, gene 

expression pattern analysis revealed that DNT display more similarities with CD8 rather 
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than CD4 T cells[32]. Second, the analysis of Vα and β usage of TCR revealed the high 

similarity between CD8 T and DNT in patients with ALPS[34]. The dysregulated DNT cell 

homeostasis in lpr, gld mice and ALPS patients[35–37] has directed the attention to 

defective apoptosis mediated by Fas dependent pathway[38,39]. The loss-of-function 

mutations in the Fas pathway in T cells lead to impaired apoptosis after repeated TCR 

engagement[9,11]. Activation-induced cell death (AICD), a Fas/FasL dependent negative 

regulator of activated T cells upon repeated TCR stimulation[40,41], is important for the 

maintenance of T-cell homeostasis and abnormalities in this process may result in 

autoimmunity[42]. The evidence above depicts a possible model for the pathogenic DNT 

cell expansion in autoimmunity in which autoreactive CD8 T cells skip antigen induced 

AICD by losing CD8, and execute their pathogenic role in vivo[5,4]. Along this line, 

TCRαβ+ CD8 T cells lost their CD8 expression upon stimulation with high concentration of 

anti-CD3 in vitro[32,33]. Adoptively transferred CD8 T cells with transgenic TCR acquired 

DNT like phenotype after encountering exogenous or endogenous antigens in 
vivo[43,44,16]. Moreover, increased Ki67 expression, narrowed TCR Vβ repertoire usage 

and diluted T-cell receptor excision circles (TRECs) observed in DNT cells indicated the 

clonal proliferation and expansion possibly driven by endogenous self-antigens[44–49]. Of 

note, in vivo antigen administration to MHC class I-restricted TCR transgenic mice on lpr 
background resulted in expansion of DNT cells[33], which further supported the concept 

that the expanded DNT cells under chronic inflammation might derive from antigen 

activated CD8 T cells[4,17]. However, it remains a mystery whether the absence of proper 

apoptotic signals or addition of supportive signals such as cytokines help activated CD8 T 

cells escape AICD and acquire DNT cell phenotype (Fig. 1b).

To date, the controversy on the origin of DNT cells continues. There are several possible 

scenarios which are worth of attention: (1) DN T cells directly originate from those 

immature DN thymocytes which could not recognize MHC class I or MHC class II 

molecules but for some reason are not appropriately depleted in thymic positive selection. 

(2) DN T cells represent a unique lineage which is selected by recognition of neither class I 

nor MHC class II but certain unknown MHC like molecules. (3) There are different types of 

DNT cells with either intrathymic or extrathymic origin, a model which we favor most since 

it fits the best for the above augments [17,5].

DN T cells, the evil or the angel in inflammation

Under naïve status, DNT cells represent a minor population in total αβ T cells with 

unrecognized roles in immune system. However, the lupus like symptoms in lpr or gld mice 

and disease-associated expansion of DNT cells lead to the supposition that DNT cells are 

assigned a pro-inflammatory role[50,9,6–8]. The findings that DNT cells are also expanded 

in patients with various inflammatory rheumatic disorders including ALPS and SLE 

reinforce this concept[12,11]. Evidence has emerged which supports the pathogenic role of 

DNT cells[4]. Ex vivo analysis on the cytokine profiles of DNT cells from various murine 

models has shown the great ability to produce various inflammatory cytokines including 

IL-2, IL-4, TNFα and IL-17A[43,31,51]. Similar results were also achieved from studies in 

human subjects with diverse autoimmune diseases[4]. In addition, DNT cells provide help to 

B cells to enhance autoantibody production in vitro[12]. Immune cell infiltration is generally 
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considered as a major contributor of tissue damages during chronic inflammation[52]. Along 

this line, DNT cells are present in inflamed kidney[13,44,48,47], skin[53], salivary 

gland[14], entheses[54] and ischemic brain[55], which suggests they present good 

therapeutic targets to control inflammation in various diseases.

The activation of T cells requires signaling through TCR and the coreceptors CD4 and CD8 

are essential augmenting TCR signaling[1,24,56,25]. It has been argued that the cognate 

TCR-antigen interaction without proper augmentation by CD4 and CD8 molecules is 

sufficient to drive DNT cell activation in vivo. Mice with concomitant deficiency of both 

CD4 and CD8 developed inflammatory responses and immunopathology compared to wild 

type mice during acute Staphylococcal enterotoxin B infection (SEB)[57]. Of note, chronic 

exposure to SEB precipitated a lupus-like inflammatory disease characterized by lympho-

monocytic infiltration in multiple tissues along with production of autoantibodies in these 

double gene deficient mice[57]. Interestingly, disease development was accompanied with 

the expansion of DNT cells[57]. In line with their response to SEB, in the lung of mice 

challenged with live vaccine strain (LSV) of Francisella tularensis, DNT cells represent the 

major responding T cell subset[58]. Also in HIV-infected patients, DNT cells represent a 

significant portion of the cellular viral load in T cells[59,60], which suggest in vivo they 

might function similar to CD4 T cells.

In contrast to above studies, evidence has been generated suggesting that at least subsets of 

DNT cells exert regulatory activity[17,46]. In skin or bone marrow allograft murine model, 

DNT cells were capable of suppressing syngeneic CD4 or CD8 T cells in both Fas-

dependent and Fas-independent manners[17]. In addition, DNT cells were also capable of 

inhibiting NK cell-mediated rejection of allogenic bone marrow through perforin-dependent 

killing[61]. In agreement with their role in transplantation, a number of studies in 

autoimmune diabetes revealed that transferred DNT cells can efficiently prevent diabetes 

onset in non-obese diabetic (NOD) mice by producing IL-10[62,63,17]. The phenotypic 

counterparts of murine suppressive DNT cells have been identified also in humans[63,46]. 

Interestingly, in a small cohort of patients with allogeneic bone marrow transplantation, 

there was an inverse correlation between the frequency of circulating DN T cells and the 

severity of graft versus host diseases[64] although further mechanistic studies are needed.

Heterogeneity and possible plasticity of DNT cells

Variable phenotypes of DN T cells with diverse cytokine profiles have been reported[4,17], 

which indicates that DN T cells, similar as CD4 helper T cells[65,66], may be divided into 

different subsets. Five major CD4 helper T cell lineages, Th1, Th2, Th17, Tfh and Treg have 

been identified based on the expression of specific transcription factors and cytokine profile 

essential for fate determination and function[66,67]. DNT cells represent a relatively small 

population among total CD3+ T lymphocytes with polyclonal repertoire[44,34,45] but they 

are selectively expanded under various inflammatory conditions. Of note, expanded DNT 

cells display many terminal differentiation characteristics including Ki67 expression, a 

narrowed TCR Vβ repertoire and a low content of TRECs[44,47,48,46]. In different disease 

models, DNT cells exhibit completely divergent cytokine profiles. For instance, in lupus and 

chronic infection settings, DNT cells produce pro-inflammatory cytokine IL-17, which plays 
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an essential role in the clearance of extracellular pathogens but also contributes heavily to 

inflammation mediated tissue damages. Moreover, in lupus prone mice and SLE patients, 

DNT cells can be sub-grouped based on PD1 expression[43]. Notably, PD1+ but not PD1− 

DNT cells contain a large portion subset with self-reactive TCRs and they are the main 

source of IL-17[43], which is the first solid evidence of heterogeneity among DNT cells. 

Similar as Th17s[68], IL-23 promotes but IL-2 attenuates IL-17 producing DNT 

cells[69,44,70].

In contrast, in allograft rejection and non-obese diabetes, DNT cells produce high amounts 

of immunosuppressive IL-10, which is essential for their regulatory capacity[17,62,46]. 

Successful identification of bonafide markers to separate functionally distinct DNT subsets 

will help reconcile the observed discrepancies. It is possible to postulate that under naïve 

status, the regulatory DNT cells are predominant and essential for self-tolerance. During 

chronic inflammation, the balance of regulatory DNT cells with proinflammatory DNT cells 

is disturbed and pathogenic DNT cells characterized by IL-17 or other proinflammatory 

cytokine production become prevalent instead[67]. Although evidence suggests that DNT 

cells display a terminal differentiation status and proliferate poorly upon anti-CD3 

stimulation[4], the possibility can not be excluded that DNT cells are plastic. The de novo 

generation of DN T cells from CD8+ T lymphocytes[44,43,32] and the observation that 

DNT cells regain CD8 expression in lymphopenic environments pinpoint cell plasticity at 

least between DNT and CD8 T lineages[31]. Moreover, the key factors controlling the 

transition between different CD4 helper T subsets are various combinations of cytokines, 

which suppress or reinforce lineage specific transcription factors[67]. Considering the fact 

that reduction of TGFβ and increase of IL-23 create a milieu which favors the expansion of 

IL-17 producing DNT cells[44], the cytokine environment appears to tightly control the 

pathogenesis of DNT cells in chronic inflammation. It is highly possible that DNT cells, 

similar as their CD4 counterparts, are relatively unstable and reshaped cytokine environment 

may result in the fate plasticity with potential ability to switch between anti- and pro-

inflammatory phenotypes, although more evidence is needed to support this postulate.

In addition, cell plasticity relies on cell heterogeneity. DNT cell pool might not represent a 

“pure” differentiating population. Some of them might be fully differentiated with limited 

plasticity, whereas others may retain the flexibility because of their partial differentiation 

state. Exploring the key factors controlling the redifferentiation holds the promise for future 

treatment of DNT cell involved inflammatory diseases.

DNT cells in autoimmune disorders

Autoimmune lymphoproliferative syndrome (ALPS) and ALPS-like diseases—
ALPS is an autoimmune disorder with a progressive lymphoproliferation, massive 

lymphadenopathy and splenomegaly[71,50], phenotypically similar to the autoimmunity 

predisposed lpr and gld mice[6,8]. The massive accumulation of DN T cells in the blood and 

secondary lymphoid organs, the main manifestation of chronic nonmalignant 

lymphoproliferation, now is considered a key requirement for ALPS diagnosis[71–73], and 

this elevation results from a primary defect in Fas-mediated apoptosis[72,9,41,11]. In 

patients who develop some features of ALPS but do not fulfill the diagnostic criteria for 
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ALPS, mutations in other components of pathways central to lymphocyte growth, activation 

and apoptosis have been identified including Caspase-8 and FADD[74,71]. These have been 

grouped into ALPS-like diseases and some patients in this category have increased DNT 

cells also[74,71].

Interestingly, CDR3 sequencing has revealed a significant overlap of TCR Vβ-Jβ transcripts 

between DNT cells and CD8 T cells from ALPS patients[34,49], which strongly suggest the 

at least partial CD8 origin of DNT cells in ALPS. The concept that DNT cells contribute to 

autoimmune symptoms in ALPS patients and autoimmunity predisposed lpr and gld mice 

comes from the following facts: (1) The progressive expansion of DNT cells is closely 

associated with disease development[75]. (2) The presence of autoantibodies in most ALPS 

patients correlates with the number of DN T cells[76,77]. (3) Effective treatment ameliorates 

autoimmune symptoms in ALPS with significant elimination of abnormal DNT cells[78–

80]. Although the elevation of DNT cells in ALPS is not in dispute, further evidence is 

needed to validate their pathophysiological significance.

Systemic lupus erythematosus (SLE)—SLE is a clinically heterogeneous 

autoimmune disease with systemic inflammation and organ damage[81]. Various T cell 

abnormalities were reported and the expansion of DNT cells represents a prominent 

one[12,13,82]. The early observation that SLE patients have expanded numbers of DNT 

cells in the peripheral blood and this expansion correlates with disease activity leads to the 

supposition that expanded DNT cells contribute to the pathophysiology of SLE[83,13]. The 

first evidence was from in vitro co-culture assays which clearly demonstrated that DNT cells 

provide help to B cells to promote antibody production[12]. IL-17A, a pro-inflammatory 

cytokine, has been documented with crucial contribution for systemic inflammation and 

tissue damage in SLE[84–86,13]. The findings that DNT cells represent a major source of 

IL-17A in SLE patients reinforced the concept on DNT cell pathogenesis in SLE[13,4]. 

Moreover, DNT cell invasion in the kidneys of patients with lupus nephritis has also been 

recorded[37]. A series of experiments reported from our laboratory have demonstrated that a 

large portion of expanded DN T cells in SLE were derived from self-reactive CD8 T 

cells[44,32,16,31]. Self-antigens derived from apoptotic cells can activate self-reactive CD8 

T cells, which give rise to DN T cells through the downregulation of CD8 expression on the 

cell surface. These cells displayed acquired proliferating or proliferated phenotype (Ki67 

expression, diluted TREC, and narrowed TCR repertoire)[44]. CD8 Treg cells have been 

described as CD8 T cells specific for antigen delivered to immune-privileged sites and to 

control the effector T-cell responses by CD8 and perforin dependent killing[87–89]. The 

whole process of conversion from CD8 T cells into DNT cells contributes to the 

pathogenesis of lupus based on the loss of CD8-dependent immunosuppressive potentials 

and the acquisition of ability to produce different pro-inflammatory cytokines and especially 

IL-17[44]. In addition to TCR signaling and co-receptor signaling, cytokines provide the 

third signal for T cell activation and surviving[90]. The fact that skewed inflammatory 

cytokine environment in lupus favors the expansion of DNT cells suggests that cytokines 

compensate reduced TCR signaling strength due to the loss of CD8 for cell activation and 

survival[44].
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Sjögren’s syndrome, Psoriasis, Axial spondylarthritis and other rheumatic 
diseases—Sjögren’s syndrome is a systemic autoimmune disease characterized by 

lymphocytic infiltration in salivary and tear glands[91]. Sjögren’s syndrome may occur as 

primary disease but most often occurs in the context of other autoimmune disorders[91], 

including SLE and rheumatoid arthritis. Similar as in SLE, DNT cells are expanded and 

become the main source of IL-17 in patients with primary Sjögren’s syndrome[92,14,15]. 

The expansion of DNT cells correlates well with disease activity and IL-17+ DNT cell 

infiltration was detected in inflamed salivary glands[14,15].

Psoriasis is a complex inflammatory skin disease characterized by immune cell infiltration to 

the skin[93]. IL-17-producing DNT cell infiltration was found in the epidermis of mice with 

induced psoriasis[94] and patients with plaque-type psoriasis[53]. Axial spondylarthritis is 

another chronic inflammatory disease which affects primarily the spine and the sacroiliac 

joints[95] but shares many genetic features with psoriasis[96]. Interestingly, in a widely 

accepted murine model of spondyloarthropathy, IL-23R+ DNT cells were detected in the 

inflamed entheses[54]. Again, these observations reinforce the perception that DNT cells 

contribute heavily to pathogenesis of many inflammatory rheumatoid disorders. 

Furthermore, DNT cells are expanded in a subset of pediatric patients with various 

autoimmune diseases including mixed connective tissue disease (MCTD), juvenile 

idiopathic arthritis (JIA) juvenile dermatomyositis[97] and Behcet’s disease[98] although 

additional investigations are required for their precise role in these patients.

Type 1 diabetes (T1D)—Type 1 diabetes (T1D) is an organ-specific autoimmune disease 

with severe loss of pancreatic β cells[99]. Both CD4 and CD8 T cells play distinct and 

highly pathogenic roles in β cell destruction[100]. In contrast to the pathogenesis of DNT 

cells in inflammatory rheumatoid disorders listed above, a number of studies have 

demonstrated the immunosuppressive ability of DNT cells and their ability to inhibit the 

development of autoimmune diabetes[17,3]. First, a progressive loss of DNT cells with age 

was observed in non-obese diabetic (NOD) mice[62]. Second, adoptive transfer of DNT 

cells efficiently inhibited the development of autoimmune diabetes in several different 

diabetic mouse models[63,101,102]. Third, transfer of NOD CD8 T cells resulted in diabetes 

but co-transfer of NOD CD8 T cells with DNT cells did not, which indicates that DNT cells 

act directly on pathogenic T cells to exercise theirs immunosuppressive function[62,17]. 

However, controversies remain on the nature of immunosuppression of DNT cells. Distinct 

mechanisms with different molecules involved have been proposed for DNT cell mediated 

suppression including elimination of effector T cells by either Fas/FasL-mediated 

apoptosis[103,104] or perforin mediated killing[102,105,106,46] and modulation on antigen 

presenting cells by producing IL-10[63,62] or IFNγ[107,46,108]. Of note, both IL-10 and 

IFNγ function as a double-edged sword in autoimmune diseases[109,110] and the immune 

environments determine whether they are beneficial or detrimental. Therefore, more 

mechanistic studies are needed.

Therapeutic interventions targeting DNT cells

In autoimmune diseases where expanded DNT cells display distinct pathogenic capacity 

their selective ablation or specific modulation of the processes that render them less 
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pathogenic should be considered for therapeutic purposes. More attention should be given to 

the design of specific drugs able to limit the expansion pathogenic DNT cells or if possible 

favor regulatory DNT activation. In light of understanding of DNT cell generation in lupus, 

more and more approaches directly or indirectly targeting DNT cells have been tested. In 

lupus prone mice and SLE patients, a large portion of DNT cells were derived from antigen 

stimulated CD8 T cells. The activation induced chromatin remodeling and epigenetic 

silencing on various promoters and enhancers of Cd8 locus might be responsible for the de 

novo generation of DNT cells from CD8 T cells. As expected, the methylome of DNT cells 

affirmed hypermethylation on regulatory elements of Cd8 locus[111]. In brief, the 

transcription factor cAMP responsive element modulator (CREM)α orchestrates DNA 

methyltransferase (DNMT)3a and histone methyltransferase G9a to directly enhance DNA 

and histone methylation on Cd8 locus[112,113], which results in stable epigenetic 

silencing[113,114]. Accordingly, genetic deficiency of Crem in lupus prone mice 

significantly ameliorates disease manifestations by reducing IL-17+ DNT cells[115]. DNA 

methylation patterns in SLE T cells are complex with both hypomethylated and 

hypermethylated cytosine-guanine sites[116,117]. Generalized DNA hypomethylation in 

CD4 T cells has been well linked to the disease manifestation[118,119]. Surprisingly, in 

contrast to systemic delivery of 5-azacytidine[120], a DNA methyltransferase inhibitor, 

which profoundly augments disease progression[121], its targeted delivery to CD8 T cells 

using a nanolipogel delivery system significantly ameliorated disease severity in lupus prone 

mice by restraining the expansion of pathogenic DNT cells[122]. This result is consistent 

with the proposition that CD8 T cells acquire pro-inflammatory DNT cell phenotype 

through enhanced DNA methylation mediated CD8 loss[4]. In line with these observations, 

well controlled CD8 expression on CD8 T cells and DNT cells by proper modulation of 

epigenetic modification on Cd8 locus should present a valuable therapeutic strategy for the 

treatment of autoimmune disease with involvement of DNT cells (Fig. 2a).

The expanded DNT cells in human and mice with defective Fas-mediated pathway depicted 

another picture, in which DN T cells were derived from mature T cells with failed 

apoptosis[5]. Along this line, DNT cells with resistance to AICD could be generated in vitro 
from Fas-sufficient T-cells with repeated anti-CD3 stimulation[33,32]. However, further 

studies are warranted to validate whether addition of FasL or other apoptosis inducing 

molecules could modulate the generation of DNT cells as expected in vitro and in vivo (Fig. 

2b) since the controversies persist on the therapeutic values of FasL in autoimmune 

disease[123]. Fas and FasL play essential immunosuppressive roles in controlling T cell 

homeostasis, as recorded with the development of autoimmunity in lpr or gld mice[5]. 

Paradoxically, Fas also plays a proinflammatory role in certain settings since lpr or gld mice 

are resistant to induced rheumatoid arthritis[124] and type I diabetes[125]. The constitutive 

expression of Fas in many types of cells may explain the observed complexity of Fas-

mediated immune response[126]. Therefore, further insights into Fas-dependent and Fas-

independent DNT cell homeostasis are needed for better therapeutic strategies.

The requirements for signal 3 provided by cytokines to DNT cell activation and 

differentiation link the cytokine milieu to loss of CD8 expression in CD8+ T cells[90,44]. It 

has been reported that IL-4-induced STAT6 orchestrates GATA3 for transcriptional 

repression of Cd8[114]. Interestingly, IFN-γ partially recovered CD8 expression in a subset 
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of DN T cells[114] which is consistent with the observation that DNT cells could re-attain 

CD8 expression in the proper cytokine milieu in lymphopenic hosts[31]. Furthermore, in 
vivo, elevated IL-23 along with reduced TGFβ facilitate self-reactive DN T-cell activation, 

expansion, and survival[44]. Targeting cytokines, specific intracellular kinases or 

transcription factors provides an alternative therapeutic choice (Fig. 2c) although caution has 

to be applied because of shared components between different pathways.

It has become clear that metabolic processes control the fate decision of T cell 

differentiation and further the function of T cells. In autoimmune diseases, the disturbed or 

skewed metabolic pathways in T cells have been frequently reported[127,128]. However, 

most studies focus on CD4 T cells and very little attention has been given to DNT cells. 

Observation made in a clinical trial of sirolimus in patients with active SLE showed dramatic 

reduction of IL-4+ and IL-17+ producing DNT cells 12 months after treatment[129], which 

strongly suggests that mTOR blockade corrects pro-inflammatory DNT cell differentiation 

and activation. Consistently, PP2A, a serine/threonine phosphatase, plays a key role in 

restraining the activation of the metabolic checkpoint kinase mTOR and the PP2A activating 

molecule FTY720 induced DNT cell apoptosis in lupus prone murine[130]. Thus, the 

development of novel therapies to control the activity of metabolic enzymes in DNT cells 

represents a promising exercise for treatment of autoimmune diseases (Fig. 2d).

Conclusion

DNT cells represent important component of the immune system[5]. Although the 

possibility can not be excluded that some DNT cells are direct thymic escapes, a great 

portion of DNT cells are generated from peripheral CD8 T cells which lose CD8 expression 

on cell surface following the stimulation with combination of various signals including TCR 

engagement and cytokine stimulation[32,43,44,17]. Distinct epigenetic processes are 

responsible for this process and more studies are wanted for more details[4]. The fact that 

DNT cells infiltrate various inflamed organs including the skin and the kidney in different 

diseases[4] along with their ability to help B cells to produce autoantibody[12] and various 

pro-inflammatory cytokines including IL-17[13] underwrites their important contribution to 

the pathogenesis of autoimmune diseases. It is highly possible that a subset of DNT cells 

may instead have regulatory capacity in certain disease settings like organ transplantation 

and non-obese diabetes[17]. A growing understanding of DNT cell origin and functional 

features has prompted the consideration of therapeutic approaches including targeted 

reopening of the CD8 locus, precise modulation of cell activation and survival, inhibition of 

proinflammatory metabolic pathways and blockade of the inflammatory milieu which 

enables their generation or enabling their demise.

A number of questions needs urgent attention. A clear characterization of DNT subsets is 

needed through novel spectral cytometry and single cell sequencing technologies. The 

factors which enable the expansion of proinflammatory or regulatory DNT cells in various 

diseases need to be defined. Using advanced protocols, including Slide-Seq[131], the exact 

interaction between DNT cells and other immune cells or tissue resident cells should be 

defined. Prospective clinical studies are needed to define their appearance during the 
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evolution of the disease process. Such studies may reveal that certain characteristic of DNT 

cells in the periphery can serve as biomarkers of organ inflammation and disease activity.
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Key bullet points

• DNT cells are expanded in various chronic inflammatory diseases and they 

display pathogenic or regulatory function.

• DNT cells are present in inflamed tissues and produce effector cytokines 

through which they exercise their function.

• It is unclear whether they represent a distinct lineage or they originate from 

single positive cells, whether they represent a homogenous group of cells and 

whether they display plasticity.
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Fig. 1. Ontogeny of DN T cells.
a. Peripheral DNT cells derive directly from immature DN thymocytes or from DP 

thymocytes through the downregulation of both CD4 and CD8.

b. Left: Activated CD8 T cells without proper apoptotic signals escape AICD and give rise to 

DNT cells. Right: Cytokine signal inputs help the conversion from CD8 T cells to DNT 

cells.
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Fig. 2. Therapeutic interventions targeting DNT cells
a. Regulate the conversion between DNT cells and CD8 T cells through epigenetic 

modulation.

b. Eliminate DNT cells by adding missing signals for apoptosis.

c. Regulate the conversion between DNT cells and CD8 T cells by reshaping the cytokine 

milieu.

d. Inhibit DNT cell activation and expansion by targeting DNT cell metabolism.
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