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Abstract

In inflammatory rheumatic disorders, the immune system attacks and damages the connective 

tissues and invariably internal organs. During the past decade, remarkable advances having been 

made towards our understanding on the cellular and molecular mechanisms involved in rheumatic 

diseases. The discovery of IL-23/IL-17 axis and the delineation of its important role in the 

inflammation led to the introduction of many needed new therapeutic tools. We will present an 

overview of the rationale for targeting therapeutically the IL-23/IL-17 axis in rheumatic diseases 

and the clinical benefit which has been realized so far. Finally, we will discuss the complex 

interrelationship between IL-23 and IL-17 and the possible uncoupling in certain disease settings.
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Introduction

Inflammatory rheumatic disorders are a group of diseases with variable phenotypic 

presentation [1–5]. However, the presence of either systemic inflammation or organ-specific 

inflammation is a common feature of these diseases [6, 7]. During the past decade, the 

identification of the proinflammatory function of interleukin-17 (IL-17) [8–10] and the 

discovery of a novel subset of T helper cells termed Th17 cells [11, 12] which drive 

inflammation by producing IL-17, the signature cytokine, have led to important insights into 

chronic inflammation. Interleukin-23 (IL-23), a heterodimeric cytokine comprising two 

subunits (p19 and p40), controls the production of pro-inflammatory cytokines including 

IL-17, IL-22, and GM-CSF by promoting the development and expansion of pathogenic 

Th17 cells [13]. This relationship between IL-23 and Th17s has led to the concept of the 

IL-23–IL-17 axis as a pivotal pathway driving various autoimmune processes [13–15]

Rheumatic diseases are the most common cause of disability and over 50 million Americans 

are living with some form of rheumatic diseases [16–18].Until late twentieth century, the 

main drugs available for the treatment of rheumatic diseases were limited to the use of 

classical disease-modifying antirheumatic drugs (DMARDs) which were developed without 

full understanding of involved cellular or molecular mechanisms [19, 20]. The introduction 
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of biologic therapeutics at the end of the twentieth century has contributed significantly to 

the improvement in the management of these diseases [21]. However, considering the fact 

that no matter which novel biologics, there are always a significant proportion of patients 

who fail to respond; the effort to further understand the involved mechanisms and the 

identification of new targets should not abate.

Genetic and experimental data support the concept that the activation of IL-23/IL-17 axis 

contributes to the development of a series of inflammatory rheumatic diseases, including 

psoriasis, psoriatic arthritis (PsA), ankylosing spondylitis (AS), rheumatoid arthritis (RA), 

and systemic lupus erythematosus (SLE) [22–25]. Since IL-17 production is considered to 

be under the control of IL-23, it was expected that blockade of either IL-17 or IL-23 should 

have the same clinical effect [13, 14]. The encouraging clinical results in the treatment of 

psoriasis and PsA reinforce the blockade of this pathogenic axis [26–30]. However, the 

negative results in trials of patients with rheumatoid arthritis prompt the question whether 

synergistic blockade of IL-23/IL-17 axis with other biologics could lead to better therapeutic 

outcomes [31, 32]. Such a consideration will be discussed herein. Furthermore, the clinical 

trials in AS indicate that the interaction between IL-23 and IL-17 is more complicated than 

what we had speculated since blockade of IL-17 but not of IL-23 showed greater therapeutic 

efficacy in the treatment of patients with AS [33–37]. Therefore, further research is 

warranted to clarify the common and unique roles for IL-23 and IL-17 in the pathogenesis of 

inflammatory rheumatic diseases.

The IL-23/IL-17 Axis in Pathogenesis of Rheumatic Diseases

IL-23 is a heterodimeric cytokine composed of p19 and p40 two subunits and principally 

produced by dendritic cells (DCs) and macrophages [13, 38–40]. Comparative studies 

analyzing the susceptibility of mice with deficiency of either IL-12p40, IL-12p35, or 

IL-23p19 to autoimmunity revealed the crucial roles of IL-23 but not IL-12 in the 

development of EAE and CIA [41, 42]. Overexpression of IL-23 in mice through transgene 

or hydrodynamic delivery induces multiple organ inflammation [43–45], a fact which 

suggests the primary role of IL-23 in driving inflammation in autoimmunity [13, 14, 38].

The interleukin-17 (IL-17) family consists of six members, IL-17A through IL17F [9]. 

IL-17A, the founding member of this family, exists as either homodimers or heterodimers 

paired with IL-17F and is mainly produced by T helper 17 (Th17) cells [11, 12, 46], a 

distinct T cell subset [47]. IL-17 has been implicated in the immunopathology of many 

autoimmune or chronic inflammatory diseases, by acting on many cell types of non-

hematopoietic origin, including fibroblasts, epithelial cells, and synoviocytes [48, 49], which 

lead to the secretion of a range of pro-inflammatory cytokines (including IL-6, TNFα, and 

IL-1) and T cell- and neutrophil-attracting chemokines including CCL2, CCL7, CXCL1, and 

CXCL2 [9, 15, 50, 51]. Additionally, IL-17 works in concert with other pro-inflammatory 

molecules, particularly TNFα, which in turn amplifies the inflammatory signaling in 

inflammatory environments [15, 52, 53]. Moreover, IL-17 promotes antibody production 

during inflammation by acting on IL-17 receptor expressing follicular dendritic cells, T cells 

and B cells [54–56]. As IL-23 is known to be important in sustaining IL-17 production from 

Th17 cells [57] and disturbing the Th17/Treg balance [58, 59], the evidence generated in 
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animal models positioned IL-23/IL-17 axis as a pinnacle therapeutic target for rheumatic 

diseases characterized by chronic inflammation [13].

Genetic studies in human subjects have linked IL-23 receptor (IL-23R) polymorphisms with 

susceptibility to autoimmune diseases such as psoriasis, PsA, AS, and multiple sclerosis [22, 

24, 25, 60, 61]. Later, more variants in genes encoding critical molecules involved in the 

IL-23/IL-17 pathway, such as IL-12B, CCR6, STAT3, and TYK2, were identified [24, 62–

64]. The functional impact of some variants has been verified using genetically engineered 

cells or mice carrying orthologous amino acid substitutions [65–67]. Moreover, the presence 

of IL-17 and IL-23 in the circulation or locally inflamed tissues has been documented in 

patients with various inflammatory rheumatoid diseases and elevated levels correlate 

positively with disease severity, a fact that further supports a pathogenic role for the IL23/

IL-17 axis in patients with inflammatory rheumatoid diseases [13, 37, 49, 59, 68].

Biologics Targeting IL23/IL-17 Axis

Although experimental data from animal models of chronic inflammatory diseases including 

uveitis, lupus, multiple sclerosis, collagen-induced arthritis, and AS have provided insights, 

the clinical data generated from trials in humans for this therapeutic concept are still limited. 

Currently, a series of antibody-based drugs targeting IL-23/IL-17 axis have been developed 

including those blocking IL-17A (Ixekizumab, Secukinumab, and Netakimab), the IL-17 

receptor A subunit (brodalumab and KHK4827), IL-23p19 (Guselkumab, Risankizumab, 

Tildrakizumab, Mirikizumab, and Brazi-kumab), or IL-23p40 (Ustekinumab) [37, 69, 70] 

(Fig. 1). Despite the success of these biologics targeting individual cytokines or cytokine 

receptors (Table 1), bispecific antibodies targeting two cytokines with nonoverlapping 

proinflammatory roles present an attractive opportunity. COVA 322 and ABT-122, two 

bispecific antibodies targeting both TNF-α and IL-17A, are currently being tested in clinical 

studies in patients with rheumatoid arthritis and the results appear encouraging [71, 72] (Fig. 

1). Besides the synergism with TNF-α, IL-17A effects could also be potentiated by IL-17F, 

which displays 50% sequence homology and signals through the same receptor [73]. Related 

trials with different antibodies synergistically targeting two isoforms of IL-17 

(Bimekizumab, ALX-0761 and NI-1401) (Fig. 1) are ongoing [73–75].

Understanding of the IL-23/IL-17 axis-mediated signal cascades advances the search for 

additional targets for inflammatory rheumatic diseases. Although this axis shares many 

signaling molecules with other inflammatory pathways like IL-1R and TLR-mediated 

pathways, there are also distinct molecules which are specific and could represent novel 

treatment targets [13, 76, 77]. Similarly, deciphering the epigenetics and transcriptional 

requirements of Th17 cell development also will help identify novel therapeutic candidates 

[78, 79]. Indeed, small molecules which directly disrupt IL-23 signaling and modulate Th17 

linage stability by targeting JAK2 and TYK2-dependent STAT3 activation, displayed 

impressive efficacy in preclinical disease models [80–83] (Fig. 1). Moreover, functional 

suppression by targeting downstream signaling molecules (JAK1 and JAK3) of 

proinflammatory cytokines produced by Th17 (IL-22, IL-21, and GM-CSF) also affords 

tremendous therapeutical values [81, 82]. Although until now, only limited numbers of JAK 

inhibitors have been approved for the treatment of rheumatic diseases [84–87] (Table 1), it is 
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just a matter of time that these new therapeutic reagents will be shown to improve the life 

quality of patients with various autoimmune diseases, including AS, lupus, psoriasis, and 

other skin diseases such as atopic dermatitis.

Clinical Trial Data

Psoriasis and Psoriatic Arthritis

Psoriasis is a complex inflammatory skin disease typified by the presence of large, 

erythematous, scaly plaques [18, 88, 89]. Histology examination frequently reveals the 

presence of T lymphocyte infiltrates under the cutaneous lesions [90]. Around 30% of 

patients with psoriasis develop PsA, characterized by inflammation-mediated progressive 

damage of the peripheral joints, spine, and the entheses [91–95]. Common DMARDs 

including methotrexate, leflunomide, sulfasalazine, and the more recently included anti-

TNF-α biologic agents have significantly slowed down the disease progression and relieved 

the symptoms [96–99]. However, a considerable proportion of patients do not adequately 

respond to currently approved therapies; therefore, there is need for the development of 

novel therapies [96, 100].

Genetic, mechanistic, and clinical data support the concept that activation of IL-23–IL-17 

axis contributes to the development of psoriasis and PsA [91, 101–105]. First, genome-wide 

association studies revealed the association of single-nucleotide polymorphisms (SNPs) 

mapping to Il12b, Il23a, Il17a, and Il17ra genes with susceptibility to psoriasis and PsA [60, 

106, 107]. A current pathogenic model of psoriasis depicted that the inflammation started 

with the activation of IL-23-producing dermal dendritic cells [108–110], which in turn 

activates Th17 cells which release key cytokines including IL-17 and TNF-a [111]. These 

cytokines act on epidermal keratinocytes and lead to observed tissue lesions [112–116]. Of 

note, overexpression of IL-17 in mice leads to epidermal hyperplasia and bone destruction 

which are often observed in humans with psoriasis and PsA [113]. The occurrence of both 

psoriasis and PsA and the presence of Th17 cells in psoriatic synovium [68, 91, 117] lead to 

the hypothesis for similar immune responses in synovial tissues although it remains 

unknown whether there were specific autoantigens shared between the joint and the skin. 

Furthermore, the assessment of the expression of IL-23, IL-17, and their related receptors in 

psoriatic skin lesions and inflamed synovium did confirm significantly increased expression 

of these molecules and their positive correlation with disease severity, which strongly 

suggests the pivotal role of IL-23/IL-17 axis [91, 103].

The above findings have led to a substantial increase of testing novel IL-17 and IL-23 

antagonists in people with psoriasis and PsA. Recently, different highly effective therapies 

that disrupt interleukin-17 (Secukinumab, Ixekizumab, and Brodalumab) and interleukin-23 

(Ustekinumab and Guselkumab) signaling has been approved by FDA for both psoriasis and 

PsA management [26, 91, 118–124]. Another two agents targeting IL-23 (Risankizumab and 

Tildrakizumab) have been approved for psoriasis while the clinical trials for PsA are still 

ongoing [125]. These new biologic therapies have proven to be highly effective and result in 

significant improvements in approximately 70–90% psoriasis or PsA patients with excellent 

safety profiles [91, 126]. The unprecedented success of these antagonists validated the 

essential role of this inflammatory axis in driving chronic inflammation. The reported 
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common adverse events include headache, upper respiratory tract infection, nasopharyngitis, 

arthralgias, and infections; however, the safety profiles are still comparable with more 

classical biologics like etanercept [91, 124, 127]. It should be noted that unlike anti-TNFα 
reagents which deliver comparable rates of amelioration on both skin and joint pathology, 

the selective blockade of IL-23/IL-17 axis is more effective in treating psoriatic skin over 

psoriatic joints. These differential responses bespeak to the complexity of involved processes 

in the development of psoriatic diseases [91].

The JAK/STAT pathway is well linked to the IL-23/−17 axis [13, 128], for example, IL-23 

acts through JAK2-TYK2/STAT3-STAT4 pathway and IL-22 [13, 38, 129], an important 

cytokine produced by Th17 cells, acts through the JAK1/TYK2/STAT1-STAT3 pathway 

[129]. The first generation of JAK inhibitors includes Tofacitinib, Baricitinib, Ruxolitinib, 

and Oclacitinib [128]. Although most of them have demonstrated efficacy in the treatment of 

plaque psoriasis, the long-term safety data require further evaluation considering their 

limited selectivity [130, 131]. Until now, the risk for serious adverse events appears 

comparable with that of approved biologic agents [130, 131]. Following the approval of 

Tofacitinib, the most extensively studied JAK inhibitor, for the treatment of patients with 

active psoriatic arthritis [132, 133], the development of the second generation of JAK 

inhibitors with improved selectivity including Peficitinib, Filgotinib, Upadacitinib, and 

Lestaurtinib has been undertaken seeking better efficacy and safety [81, 134]. In addition, a 

selective inhibitor of TYK2 (BMS-98616) also showed positive results in a phase II study of 

people with psoriasis [135].

Recent emerging data suggest that the simultaneous inhibition of two inflammatory 

cytokines with nonoverlapping functions may provide better efficacy [136]. Specifically, 

TNF-α and IL-17A, two mediators in the psoriatic pathogenic process, act synergistically on 

keratinocytes for the induction of key genes involved in inflammation and pathogenesis [15]. 

Along this line, a few bispecific agents have been designed and clinical trials are ongoing 

although the safety profile remains a concern particularly the risk of increased rates of 

infections [137].

Rheumatoid Arthritis

In 1999, Miossec and co-workers demonstrated the presence of IL-17A in synovial tissues 

from patients with rheumatoid arthritis which first indicated the potential inflammatory role 

of IL-17A in rheumatoid arthritis [15, 138, 139]. This concept was rapidly supported by 

numerous studies using various murine models [140]. Subsequently, mice lacking IL-23p19 

but not IL-12p35 were shown to be resistant to collagen-induced arthritis due to the absence 

of IL-17-producing CD4 T cells [42]. After the establishment of Th17 lineage in 2005 [11, 

12], several studies documented the increased presence of IL-23, IL-17, Th17 cells, and 

other IL-23R-expressing cells in the circulation or inflamed joints of people with RA 

patients which correlated positively with disease activity or joint damage [13, 141–143]. In 

addition, data from different groups affirmed that IL-17A enhanced osteoclastogenesis and 

angiogenesis by acting locally on synoviocytes and osteoblasts which lead to synovitis and 

joint destruction [48]. Of note, IL-23/IL-17 axis has also been reported essential in the 

control of antibody glycosylation profiles which determine autoantibody activities [144] 
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(Fig. 2). Together, all evidence has emphasized that IL-23/IL-17 axis should be considered 

for the development of targeted therapies to treat people with RA [145, 146].

Several clinical trials which aimed to evaluate the therapeutic values of blocking IL-23 or 

IL-17 in RA have now been completed [140]. However, only poor or moderate efficacy was 

observed. For example, clinical trials with Secukinumab in biological-naive RA patients or 

patients with inadequate response to methotrexate or anti-TNFð showed that while there was 

clinical efficacy of IL-17A blockade, the effect, as judged by ACR20 response, was 

relatively modest [140]. Studies have also investigated IL-17RA blockade using 

Brodalumab, and similarly, the trial did not meet the set efficacy endpoints [147]. 

Consistently, treatment with Ustekinumab or Guselkumab did not significantly reduce the 

signs and symptoms in patients with RA as well [31].

These results bring out the question why blockade of IL-23/IL-17 axis did not deliver 

therapeutic value in RA. There are different possibilities. First, RA is a heterogeneous 

disease and IL-23/IL-17 axis may not be the dominant player for every patient, which is 

supported by the observation that not all patients display high IL-17A levels or Th17 cell 

frequencies [148]. It has been shown that IL-17A expression in the joint correlates with 

serum CRP levels, and interestingly, one Secukinumab trial reported better responses in 

patients with elevated CRP levels. It would be intriguing to identify the patient subgroups 

which may respond better to IL-17 or IL-23 blocking biologics. Of note, IL-23 is not 

required for early Th17 development although it is strictly necessary for late stage IL-17A 

production [57]. Beside IL-17A, Th17s produce a variety of other inflammatory factors 

including IL-17F, IL-21, IL-22, and GM-CSF [14, 149, 150], which provide additional 

explanation for the poor efficacy of current therapies targeting IL-23 or IL-17 alone in RA 

[151]. Notably, a recent phase II study with Bimekizumab (dual blockade of IL-17A and 

IL-17F) in RA patients with an inadequate response to anti-TNF showed great therapeutic 

efficacy [152]. In addition, the synergistic effects of IL-17 with other inflammatory 

cytokines need attention, for example, IL-17A potentiates the effects of TNFα [9, 15, 153]. 

More recently, simultaneous blockade of IL-17A and TNF is under investigation using 

ABT-122, a bispecific antibody which targets both TNF and IL-17A [154].

In contrast to antibody-based therapies, indirect blocking of cytokine production by targeting 

JAKs offers additional approaches for the management of patients with RA [155]. There are 

three JAK inhibitors currently approved for the treatment of people with active RA 

(Tofacitinib, Baricitinib, and Upadacitinib) after demonstrating great efficacy in extensive 

clinical trials [85]. All agents efficiently inhibit structural damage progression [156]. In 

clinical practice, JAK inhibitors are increasingly being used after classical DMARD failure 

[85, 156, 157].

Axial Spondyloarthritis

Axial spondyloarthritis (AS) is a chronic inflammatory disease that affects primarily the 

spine and the sacroiliac joints [5, 158]. Genetic and epigenetic fine mapping studies have 

provided evidence for a close relationship between AS and PsA. For example, an association 

with the IL23R locus exists in PsA and AS [22]. In addition, the integrated genomics 
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approach further explored the involvement of genes of the IL-23/IL-17 axis in the 

pathogenesis of AS [22, 24, 63].

In addition to the genetic evidence, experimental data have also linked the IL-23/IL-17 axis 

to AS [159]. First, intracellular misfolded HLA-B27, a molecule strongly associated with 

AS, stimulates the IL-23–IL-17 pathway in vitro [160]. Second, overexpression of IL-23 in 

mice induces enthesitis and peripheral arthritis which resembles human AS [44]. In this 

model, IL-23 responding T cells reside in entheseal sites, produce IL-17, and initiate local 

tissue damage [161]. Moreover, the effects of these two cytokines on osteoclasts and on 

bone resorption suggest that they might have a catabolic effect on the bone [45, 113, 159, 

162]. Of note, in contrast to IL-17, IL-23 did not have any effect on the proliferation and 

differentiation of osteoblasts, which may explain the discrepancy between individual IL-17 

and IL-23 blockade in AS trials [159].

Antibodies targeting IL-17 including Secukinumab, Ixekizumab, Bimekizumab, and 

Netakimab did show superiority in improving AS over placebo in clinical trials [35, 36, 163, 

164]. Surprisingly, in contrast to the positive results of IL-17 inhibitors, the clinical trial 

results of two IL-23 blocking antibodies Ustekinumab and Risankizumab were clearly 

negative [34, 165]. Although it cannot be completely excluded that higher doses of 

Ustekinumab or Risankizumab may be more efficient in reaching the inflamed tissues and 

provide therapeutical values, the data from psoriasis and PsA clinical trials with different 

doses did not support this speculation [37]. The data achieved from other inflammatory 

rheumatic diseases shows a tight connection between IL-23 and IL-17 [13, 38] and the 

results of either IL-17 or IL-23 inhibition are somewhat similar [14, 68, 91]. Therefore, it is 

surprising to see the discrepancy of IL-17 and IL-23 blockade in AS clinical trials. A 

number of considerations have been verbalized to explain this divergence. First, there is a 

variety of immune cells other than Th17s which can produce IL-17, and especially IL-17F 

independent of IL-23 [166, 167]. Second, there are many types of cells including B cells and 

epithelial cells, which can respond to IL-23 without producing IL-17 [144, 168]. Last but not 

least, the temporal difference between IL-17-mediated and IL-23-mediated process may lead 

to the observed discrepancy, for example, IL-23 may contribute more to disease initiation 

but not to progression in patients with AS [159]. However, further studies are needed to 

explore the details of the underlining molecular and cellular mechanisms.

Notably, two JAK inhibitors, Tofacitinib (JAK1 and JAK3) and Filgotinib (a selective 

inhibitor for JAK1), significantly reduced the signs and symptoms in clinical trials in AS 

although the exact mechanisms whereby they regulate AS needs to be further explored [169, 

170].

Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a clinically heterogeneous autoimmune disease 

characterized by a loss of self-tolerance with the development of autoantibodies against a 

multitude of self-antigens [1, 171]. There is sufficient evidence that IL-23 and IL-17 are 

involved in the pathogenesis of SLE [59, 70, 172–174]. Increased frequency of IL-17-

producing CD4 T cells and double negative (DN) TCRðβ−CD4−CD8− T cells were observed 

in peripheral blood of SLE patients and these cells infiltrated inflamed tissues including the 
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skin and the kidney [59, 175, 176]. Accordingly, the circulating IL-23 and IL-17 levels are 

elevated in SLE patients and correlate positively with disease severity [59, 70, 177–180].

Data from animal models have provided insights on the cellular and molecular mechanisms 

which underlie SLE development. Il23 deficiency in lupus-prone mice significantly 

ameliorates disease followed by a dramatic reduction of IL-17-producing T cells including 

Th17s and DN T cells [181, 182]. Consistently, IL-23 overexpression in vivo exaggerates 

disease progression by promoting expansion of Th17s and DN T cells [183] (Fig. 2). 

However, the results from IL-17 signaling deficiency in different murine lupus models are 

paradoxical. In BXD2 mice, IL-23-dependent Th17 cells promote autoantibody production 

by producing IL-17 which in turn regulates B cell migration inside germinal center area for 

more rounds of somatic hypermutation [55, 184] (Fig. 2). This concept was subsequently 

validated by in vivo adoptive transfer of Th17 cells [54]. However, Il17a deficiency in 

MRL.lpr mice has minimal effects on the course of nephritis [185]. The distinct cellular and 

molecular mechanisms for disease progression in different murine models may explain the 

reported discrepancy [186]. Together, the experimental evidence leads to the speculation that 

IL-23 and IL-17 producing T cells somewhat orchestrate the dysregulated immune responses 

in lupus.

In theory, all antibodies targeting IL-23/IL-17 axis which have been approved for the 

management of other inflammatory rheumatic diseases could be tested in patients with SLE. 

It is disappointing that the phase 3 clinical trial of Ustekinumab in SLE was discontinued 

due to lack of expected efficacy following planned futility analysis although the phase 2 

results were promising [187]. In addition, Barcitinib, an inhibitor for both JAK1 and JAK2, 

improved significantly the symptoms in patients with active SLE in a phase 2 trial [188, 189] 

while the phase 3 trial is ongoing.

Currently, SLE treatment faces big challenges since the results of most trials have been 

disappointing [190]. Considering the high clinical heterogeneity of SLE [191–193], it 

becomes self-evident that there is need to administer biologics targeting processes which are 

responsible for the expression of the disease in defined subsets of patients. The need for 

personalized treatment in patients with SLE cannot be overemphasized. Along this line, 

three different trials will be conducted in people with discoid lupus erythematosus 

(Secukinumab, NCT03866317) and patients with active lupus nephritis (Secukinumab, 

NCT04181762; Guselkumab, NCT04376827) (Table 2).

Conclusion

After the establishment of pathogenic role of IL-23/IL-17 axis in different autoimmune and 

inflammatory diseases [9, 38], diligent work by many groups of researchers, clinicians, and 

industry colleagues has opened a new era for treatment opportunities for people who suffer 

from inflammatory rheumatic diseases. Although encouraging clinical results emerge, the 

overall outcome remains complex [14, 37]. The agents targeting IL-23/IL-17 generally work 

impressively well in psoriasis and even surpass the effect of anti-TNF therapy but they 

display only moderate therapeutic efficacy for people with PsA [68, 91]. Moreover, most of 

these IL-23/IL17 directed biologics have delivered negative results in the management of 
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RA despite the fact that strong experimental evidence had demonstrated the involvement of 

this axis in the pathogenesis of RA [15, 48, 50, 140]. Last but not least, even though IL-17 

inhibitors have been proven quite effective, IL-23 blocking agents have not shown 

therapeutic value in the treatment of patients with AS [37]. Despite the advances made in the 

above discussed diseases, little is known about the role of this axis in other rheumatic 

diseases including Sjogren’s syndrome, vasculitis, and gout.

Given the evidence that IL-23 and IL-17 have complex roles in the development of 

inflammation in diverse patients with rheumatic diseases [13], the discrepancy of therapeutic 

values by targeting IL-23/IL-17 axis in different rheumatic diseases [49, 140, 159], the 

inconsistent clinical outcomes by targeting IL-17 vs targeting IL-23 in the same disease 

setting, and the diverse response to IL-23/IL-17 axis targeted therapies in patients with the 

same rheumatic disease (responders vs non-responders) [15, 37, 49, 50], research should be 

directed towards the identification of subsets of patients with any of these diseases who have 

better chance of responding to a targeted therapy. The sharing of genetic susceptibility and 

cellular/molecular pathogenic processes by various rheumatic diseases demands an advanced 

reclassification of diseases apart from the established clinical nosology. It is obvious that the 

cellular and molecular processes that we have identified as contributors of the expression of 

rheumatic diseases are interconnected logically and represent in some ways a “house of 

cards” whereby removal of any of them results in clinical benefits in certain patients. The 

efforts to develop biologics to tackle two molecules using a hybrid biologic [194] or 

administer two biologics simultaneously may represent a promising path to take. Exciting 

prospects are offered but the use of small molecule inhibitors of intracellular kinases 

essential for the signal transduction downstream of the engagement of cytokines with their 

cognate receptors. The opportunity to use these drugs orally represents great advantage to 

physicians and patients alike. Yet, a simple inspection of any of the diagrams which depict 

various cytokine-kinase signal cascades reveals the fact that many of them are used 

interchangeably [195–197]. This is confounded further by the fact that small drug inhibitors 

are almost never specific. Also, the same kinases are present and are of functional 

importance in non-immune cells and therefore the short- and long-term side effects should 

be considered and hopefully can be lessened by carefully titrating the administered dose.
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Fig. 1. 
Biologics targeting IL-23/IL-17 axis in rheumatic diseases. Specific blocking antibodies and 

small molecules targeting IL-23/IL-17 axis which are currently used in clinical practice or 

still under development are depicted (MQ: macrophages; DC: dendritic cells)
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Fig. 2. 
IL-23/IL-17 axis contributes to autoantibody-driven diseases. B cells migrate between the 

dark and light zones of the germinal centers (GCs), a process mediated by CXCL12/CXCR4 

and CXCL13/CXCR5, to undergo somatic hypermutation, clonal expansion, and affinity-

based selection. Exposure to IL-17 reduces their migration which results in more rounds of 

somatic hypermutation and the production of IgG with increased affinity. Plasma cells 

emigrating from GCs produce autoantibodies. IL-23-activated TH17 cells suppress St6gal1 
expression in antibody-producing cells via IL-21 and IL-22, which results in changes in the 

glycosylation profile as well as increased inflammatory activity of IgG (cDC: classical 

dendritic cells; FDC: follicular dendritic cells)

Li and Tsokos Page 24

Clin Rev Allergy Immunol. Author manuscript; available in PMC 2021 April 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li and Tsokos Page 25

Ta
b

le
 1

B
io

lo
gi

cs
 a

nd
 s

m
al

l m
ol

ec
ul

e 
dr

ug
s 

ta
rg

et
in

g 
th

e 
IL

-2
3/

IL
-1

7 
ax

is
 a

pp
ro

ve
d 

by
 F

D
A

 to
 tr

ea
t p

at
ie

nt
s 

w
ith

 r
he

um
at

ic
 d

is
ea

se
s

M
ed

ic
at

io
n

Ta
rg

et
In

di
ca

ti
on

Se
cu

ki
nu

m
ab

 (
N

ov
ar

tis
)

IL
-1

7A
Pl

aq
ue

 p
so

ri
as

is
Ps

or
ia

tic
 a

rt
hr

iti
s

A
nk

vl
os

in
g 

sp
on

dy
lit

is

lx
ek

iz
um

ab
 (

L
ill

y)
IL

-1
7A

Pl
aq

ue
 p

so
ri

as
is

Ps
or

ia
tic

 a
rt

hr
iti

s
Ps

or
ia

tic
 a

rt
hr

iti
s

B
ro

da
lu

m
ab

 (
A

st
ra

Z
en

ec
a)

IL
-1

7R
A

Pl
aq

ue
 p

so
ri

as
is

U
st

ek
in

um
ab

 (
Ja

ns
se

n)
IL

-1
2 

an
d 

IL
-2

3
Pl

aq
ue

 p
so

ri
as

is
Ps

or
ia

tic
 a

rt
hr

iti
s

G
us

el
ku

m
ab

 (
Ja

ns
se

n)
IL

-2
3

Pl
aq

ue
 p

so
ri

as
is

Ps
or

ia
tic

 a
rt

hr
iti

s

R
is

an
ki

zu
m

ab
 (

A
bb

V
ie

)
IL

-2
3

Pl
aq

ue
 p

so
ri

as
is

T
ild

ra
ki

zu
m

ab
 (

Su
n 

Ph
ar

m
ac

eu
tic

al
s)

IL
-2

3
Pl

aq
ue

 p
so

ri
as

is

To
fa

ci
tin

ib
 (

N
ov

ar
tis

)
JA

K
.l,

 J
A

K
3 

an
d 

a 
le

ss
er

 d
eg

re
e 

JA
K

2
Ps

or
ia

tic
 a

rt
hr

iti
s

R
he

um
at

oi
d 

ar
th

ri
tis

B
ar

ic
iti

ni
b 

(E
li 

L
ill

y)
JA

K
1 

an
d 

JA
K

2
R

he
um

at
oi

d 
ar

th
ri

tis

U
pa

da
ci

tin
ib

 (
A

bb
V

ie
)

JA
K

1
R

he
um

at
oi

d 
ar

th
ri

tis

Clin Rev Allergy Immunol. Author manuscript; available in PMC 2021 April 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li and Tsokos Page 26

Ta
b

le
 2

B
io

lo
gi

cs
 a

nd
 s

m
al

l m
ol

ec
ul

e 
dr

ug
s 

in
 c

lin
ic

al
 tr

ia
ls

 ta
rg

et
in

g 
th

e 
IL

-2
3/

IL
-1

7 
ax

is
 in

 S
L

E
 p

at
ie

nt
s

M
ed

ic
at

io
n

Ta
rg

et
In

di
ca

ti
on

P
ha

se
T

ri
al

 id
en

ti
fi

er

G
us

el
ku

m
ab

IL
-2

3
L

up
us

 n
ep

hr
iti

s
Ph

as
e 

1/
2

N
C

T
04

37
68

27

U
st

ek
in

um
ab

IL
-1

2 
an

d 
IL

-2
3

Sy
st

em
ic

 lu
pu

s 
er

yt
he

m
at

os
us

Ph
as

e 
3

N
C

T
04

06
08

88

Se
cu

ki
nu

m
ab

IL
-1

7A
L

up
us

 n
ep

hr
iti

s
Ph

as
e 

3
N

C
T

04
18

17
62

D
is

co
id

 lu
pu

s 
er

yt
he

m
at

os
us

Ph
as

e 
2

N
C

T
03

86
63

17

PF
-0

68
35

37
5

T
Y

K
2

Sy
st

em
ic

 lu
pu

s 
er

yt
he

m
at

os
us

Ph
as

e 
1

N
C

T
03

33
48

51

B
ar

ic
iti

ni
b

JA
K

 1
 a

nd
 J

A
K

2
Sy

st
em

ic
 lu

pu
s 

er
yt

he
m

at
os

us
Ph

as
e 

3
N

C
T

03
84

31
25

Clin Rev Allergy Immunol. Author manuscript; available in PMC 2021 April 02.

https://clinicaltrials.gov/ct2/show/NCT04376827
https://clinicaltrials.gov/ct2/show/NCT04060888
https://clinicaltrials.gov/ct2/show/NCT04181762
https://clinicaltrials.gov/ct2/show/NCT03866317
https://clinicaltrials.gov/ct2/show/NCT03334851
https://clinicaltrials.gov/ct2/show/NCT03843125

	Abstract
	Introduction
	The IL-23/IL-17 Axis in Pathogenesis of Rheumatic Diseases
	Biologics Targeting IL23/IL-17 Axis
	Clinical Trial Data
	Psoriasis and Psoriatic Arthritis
	Rheumatoid Arthritis
	Axial Spondyloarthritis
	Systemic Lupus Erythematosus

	Conclusion
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2

