
Working Memory Capacity Is Negatively Associated with
Memory Load Modulation of Alpha Oscillations in

Retention of Verbal Working Memory

Zhenhong Hu1, Christopher M. Barkley2, Susan E. Marino2, Chao Wang1, Abhijit Rajan1,
Ke Bo1, Immanuel Babu Henry Samuel1, and Mingzhou Ding1

Abstract

■ Working memory capacity (WMC) measures the amount of in-
formation that can be maintained online in the face of distraction.
Past work has shown that the efficiency with which the fronto-
striatal circuit filters out task-irrelevant distracting information is
positively correlated with WMC. Recent work has demonstrated
a role of posterior alpha oscillations (8–13 Hz) in providing a sen-
sory gating mechanism. We investigated the relationship between
memory load modulation of alpha power and WMC in two verbal
working memory experiments. In both experiments, we found
that posterior alpha power increased with memory load during
memory, in agreement with previous reports. Across individuals,
the degree of alpha power modulation by memory load was neg-
atively associated with WMC, namely, the higher the WMC, the

less alpha power was modulated by memory load. After the ad-
ministration of topiramate, a drug known to affect alpha oscilla-
tions and have a negative impact on working memory function,
the negative correlation between memory load modulation of al-
pha power and WMC was no longer statistically significant but still
somewhat detectable. These results suggest that (1) individuals
with low WMC demonstrate stronger alpha power modulation
by memory load, reflecting possibly an increased reliance on sen-
sory gating to suppress task-irrelevant information in these individ-
uals, in contrast to their high WMC counterparts who rely more on
frontal areas to perform this function and (2) this negative associ-
ation between memory load modulation of alpha oscillations
and WMC is vulnerable to drug-related cognitive disruption. ■

INTRODUCTION

Individual variability in the amount of information that
can be stored in working memory with high fidelity can
be quantified by working memory capacity (WMC; Cowan,
2012; Engle, Kane, & Tuholski, 1999). Higher WMC is
linked to better performance on a variety of cognitive
tasks, including attention, reading comprehension, planning,
and problem solving (Barrett, Tugade, & Engle, 2004; Adams
& Hitch, 1997; Daneman & Carpenter, 1980). It has even
been demonstrated that higher WMC individuals can better
overcome cognitive impairments resulting from aging and
other brain disorders (Otto, Raio, Chiang, Phelps, & Daw,
2013; Grenard et al., 2008).
As a measure of executive attention, WMC measures

not only the capacity of the amount of information that
can be stored but also the capacity for sustaining atten-
tion to the stored information in the face of interference
or distraction (Engle, 2002). Behaviorally, there is exten-
sive evidence suggesting that the ability to inhibit task-
irrelevant information is significantly higher in individuals with
high WMC (Unsworth, Schrock, & Engle, 2004; Conway,
Cowan, & Bunting, 2001; Kane & Engle, 2000; Conway &

Engle, 1994). Neuroscientifically, fMRI studies have shown
that high WMC individuals, compared with their low ca-
pacity counterparts, have greater modulation of BOLD
responses in the lateral pFC when performing working
memory tasks that require a high degree of attentional con-
trol, including n-back tasks (Burgess, Gray, Conway, &
Braver, 2011), Sternberg tasks with distraction (Minamoto,
Osaka, & Osaka, 2010), and complex span tests (Kondo,
Morishita, et al., 2004; Kondo, Osaka, & Osaka, 2004;
Osaka et al., 2003). Such working memory demand-
dependent modulation of the lateral pFC is consistent
with the notion that greater modulation of neural activa-
tion in higher WMC individuals reflects a higher capability
at resolving interference from a competing task or task-
irrelevant external/internal distractors to maintain goal-
related information (D’Esposito & Postle, 2015; Conway,
Kane, & Engle, 2003). Moreover, McNab and Klingberg
(2008) showed that distractor filtering activities in frontal
cortex and BG were associated with individual differences
in WMC and proposed that the frontostriatal circuit is a
key neural system that performs the function of excluding
task-irrelevant information in high WMC individuals.
Specifically, the BG helps accomplish this objective via a
dynamic gating mechanism in which an inhibitory or dis-
inhibitory signal is transiently transmitted to the pFC to1University of Florida, 2University of Minnesota
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either suppress the processing of task-irrelevant informa-
tion or enhance the processing of task-relevant informa-
tion (Hazy, Frank, & O’Reilly, 2007).

In addition to the frontal filtering of distractor informa-
tion, recent work has explored sensory gating mecha-
nisms in the posterior sensory cortex, indexed by alpha
oscillation (8–13 Hz) and its goal-oriented modulation. A
frequently replicated finding is that, during verbal working
memory retention, alpha power increases as a function of
working memory load (Sauseng et al., 2009; Klimesch,
Sauseng, & Hanslmayr, 2007; Jensen, Gelfand, Kounios, &
Lisman, 2002), and such increases in alpha power, argued
to reflect reduced sensory gain and excitability, serve to
protect the information maintained online from external
interference (Mathewson et al., 2011; Haegens, Osipova,
Oostenveld, & Jensen, 2010; Jensen & Mazaheri, 2010;
Sauseng et al., 2009; Jokisch & Jensen, 2007; Kaiser,
Heidegger, Wibral, Altmann, & Lutzenberger, 2007;
Klimesch et al., 2007; Medendorp et al., 2007); the higher
the memory load, the stronger the need for such sensory
gating. In contrast, in the case of visual working memory
tasks, in which participants maintained visual items online
after they were removed from the environment, alpha
power decreases with increase in visual working memory
load, reflecting increased visual cortex activation necessary
formaintaining the representations of the increased amount
of visual information. Importantly, Fukuda, Mance, and
Vogel (2015) showed that alpha power modulation by visual
working memory load is associated with WMC; specifically,
the larger the WMC, the more alpha power decreases as vi-
sual memory load increases. Is alpha power modulation by
verbal working memory load related to WMC? This question
has not been addressed. Addressing this question will help
us better understand the relation between the frontal
mechanisms of distractor suppression and the posterior
mechanisms of sensory gating.

Many CNS drugs can affect cognition as well as alter
rhythmic brain activities. Topiramate (TPM), a second-
generation antiepileptic drug with formal indications
for partial and generalized seizures and migraine prophy-
laxis, has repeatedly been shown to have a pronounced
negative impact on a wide range of cognitive functions
( Javed et al., 2015), including verbal fluency (Marino
et al., 2012; Thompson, Baxendale, Duncan, & Sander,
2000), language comprehension (Fritz et al., 2005), atten-
tion (de Araujo Filho, Pascalicchio, Lin, Sousa, & Yacubian,
2006), and short-term (Gomer et al., 2007) and working
memory (Marino et al., 2012; Jung et al., 2010). Although
our previous work has examined the adverse behavioral
effect of TPM on verbal working memory (Marino et al.,
2012) and demonstrated a relationship between TPM-
related behavioral detriments and WMC (Barkley et al.,
2018), the neural correlates of TPM-mediated reduction
in task performance remains to be understood. TPM is
known to affect alpha oscillations (Neufeld, Kogan,
Chistik, & Korczyn, 1999). How does TPM affect the
task-dependent modulation of alpha oscillations? Does

TPM disrupt the relationship between memory load mod-
ulation of alpha and WMC? Addressing these questions
will help us better understand how alpha-mediated cogni-
tive functions are affected by CNS drugs.
We analyzed high-density EEG data (128 channels)

from two separate experiments in which two groups of
healthy human volunteers performed verbal working
memory tasks. In the first experiment, conducted at the
University of Florida (UF), the participants were shown a
set of distinct digits (zero to nine) on a CRT monitor for
1 sec. Following a 3-sec retention period, a probe digit was
presented, and a “yes” or “no” button press was required to
indicate whether the probe digit belonged to the cue set.
Memory load was controlled by the number of digits pre-
sented in the cue set (one, three, or five digits). In the sec-
ond experiment, conducted at the University of Minnesota
(UM), the participants were presented a string of one,
three, or five pronounceable syllables (Load 1, Load 3,
and Load 5) on a monitor for 1.5 sec. This was followed
by a 5-sec retention period, during which participants were
instructed to retain the syllable string in memory. At the
end of the retention period, a probe string was presented,
and participants were instructed to press a “yes” or “no”
button to indicate whether or not the probe matched the
cue string. In addition to the baseline session, the partici-
pants participated in a follow-up session in which they
were given different doses of TPM and had their brain
responses measured while completing the same verbal
working memory task.

METHODS

Overview

Two separate experiments employing similar verbal
working memory paradigms were conducted at the UF
(UF data set) and at the UM (UM data set). The UM data
set contained one additional manipulation in which the
participants, on a follow-up visit, performed the same
paradigm after taking the antiepilepsy drug TPM, which
is known to adversely impact cognition (Marino et al.,
2012) and alter alpha oscillations (Neufeld et al., 1999).
Analyses focusing on different aspects of the two data
sets have been published (Barkley et al., 2018; Wang,
Rajagovindan, Han, & Ding, 2016). This study is a reanal-
ysis of the previously published data. The main purpose
of including two experiments here is to test the replica-
bility of the main findings and the robustness of the find-
ings against drug-related cognitive impairments.

Participants and Experimental Paradigm

UF Data Set

The experimental protocol was approved by the UF insti-
tutional review board. Twenty-one healthy volunteers
(ages 20–34 years, three women) gave written informed
consent and participated in the study. All participants
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were right-handed, had normal or corrected-to-normal vi-
sion, and reported no history of psychiatric or neurolog-
ical disorders. EEG was recorded from the participants
while they performed a Sternberg working memory task
(see below). One participant was excluded due to poor
performance (accuracy less than 60%). The data from
the remaining 20 individuals were analyzed and reported
here.
The working memory paradigm is shown in Figure 1A.

In each trial, a cue set of numerical digits (zero to nine)
was displayed for 1 sec (encoding), followed by a 3-sec
memory retention period. At the end of the retention
period, a probe digit was presented, and the participant
was instructed to indicate whether the probe digit was part
of the cue set by a “yes” or “no” button press. Working
memory load was determined by the number of digits in
the cue set, which in this case was either one, three, and
five digits (Load 1, Load 3, and Load 5; Figure 1A depicts
a Load 5 trial in which “yes” is the correct response). The
entire experiment consisted of six blocks with 60 trials in
each block. The three memory loads were equally likely
to occur. Breaks were given between blocks. Participants
received a practice session before the experiment to famil-
iarize themselves with the task and to minimize the effect
of learning.

UM Data Set

The experimental protocol was approved by the UM
institutional review board before the commencement
of the study. Forty-six healthy right-handed volunteers
with no history of psychiatric or neurological disorders
gave written informed consent and participated in the
study. Seventeen participants were excluded because of

missing data resulting from technical issues with data
acquisition or storage. Six participants were excluded
from further analyses due to (1) an overall accuracy rate
below 60% or (2) excessive head or body movements. Data
from the remaining 23 participants (mean age = 25.60 ±
8.04 years; 14 women) were included in the analyses.

The experimental paradigm is shown in Figure 1B. At
the beginning of each trial, a cue string of one, three, or
five pronounceable syllables (Load 1, Load 3, and Load 5)
was displayed on a monitor for 1.5 sec (encoding). This
was followed by a 5-sec retention period, during which
participants were instructed to retain the syllable string
in working memory. At the end of the retention period,
a probe string was presented, and participants were
instructed to press a “yes” or “no” button to indicate
whether or not the probe matched the cue (Figure 1B
depicts a Load 3 trial in which “yes” is the correct re-
sponse). The next trial was triggered by either a response
or the absence of one within 5 sec of probe onset. The
entire task consisted of 10 blocks of 36 trials each. There
were an equal number of trials for each memory load
(one, three, or five syllables); trials were randomized as
a function of memory load.

There were two sessions in the UM experiment. In ad-
dition to the baseline visit (BAS) in which the participants
completed the task in Figure 1B while their EEG was re-
corded, in a follow-up visit separated by a 2-week inter-
val, the participants were randomized to receive either
100 mg (eight participants), 150 mg (eight participants),
or 200 mg (seven participants) of TPM to induce a wide
range of TPM concentrations across individuals. Four
hours after drug administration, the participants’ EEG
was recorded while they completed the same verbal work-
ing memory task. The study design was double-blind,

Figure 1. Paradigms for the two
experiments. (A) Timeline of
the verbal working memory task
used at UF. (B) Timeline of the
verbal working memory task
used at UM. (C) Time period of
interest during retention
(black). Each rectangle
represents 0.5 sec.
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randomized, and placebo-controlled with the drug being
dispensed by the UM Investigational Drug Services
pharmacy.

Data Acquisition

University of Florida

High-density EEG data were recorded using a 128-
channel BioSemi System at a sampling rate of 1 kHz.
Eye movements and eye blinks were monitored using ad-
ditional electrodes. Stimuli were presented using the
BeriSoft Experimental Run-Time System, and the partici-
pant’s responses were recorded with an EXKEY micro-
processor logic pad (www.berisoft.com).

University of Minnesota

High-density EEG data were recorded using a 128-
channel EGI System (Electrical Geodesics, Inc.) at a sam-
pling rate of 1 kHz. Impedances were kept below 50 KΩ
per manufacturer’s recommendation. Eye movements
and eye blinks were monitored. Stimulus presentation
and behavioral response recording were controlled
with E-Prime software (Psychology Software Tools, Inc.).

Data Analysis

Working Memory Capacity

The participants’ individual WMC was quantified by
Cowan’s K (Cowan, 2001; Pashler, 1988), which is defined
as

K ¼ S � H− Fð Þ

where S is the size of the cue set, H is the hit rate, and F is
the false alarm rate. To obtain a single WMC measure for
each individual, K values for Load 3 and Load 5 were av-
eraged (Fukuda et al., 2015; Vogel & Machizawa, 2004).
To facilitate comparison across data sets, the WMC values
so obtained within each data set were transformed into
z scores.

EEG Data Preprocessing

EEG data preprocessing was performed using BESA 6.0
(www.besa.de), EEGLAB (sccn.ucsd.edu/eeglab/index.
html), and custom MATLAB (The MathWorks) scripts.
The continuous EEG data were bandpassed between 0.1
and 30 Hz, downsampled to 250 Hz, and re-referenced
against the average reference. For the UF data, each trial
was epoched from−500 to 4000 msec, with 0 msec denot-
ing the onset of the cue and−500 to 0 msec being the pre-
cue period. For each memory load, the data from the
retention time period (2000–3000 msec), defined as the
time period of interest, were analyzed (Figure 1C). Here,

the segment of 1000–2000 msec was excluded to avoid
the negative impact of cue-offset evoked activities on the
spectral analysis of ongoing neural oscillations, and the seg-
ment of the 3000–4000 msec was excluded to avoid the
negative impact of the anticipation of probe processing
on alpha oscillations. For the UM data set, each trial was
epoched from −200 to 6500 msec, with 0 msec denoting
cue onset and −200 to 0 msec being the precue period.
For similar reasons as above, the time period of interest
was chosen to be 2500–3500 msec. For both data sets,
trials with incorrect responses or contaminated by large
movement-related artifacts were excluded from further
analysis. For the remaining trials, independent compo-
nents analysis (Delorme & Makeig, 2004) was applied to
remove artifacts due to eye movements, eye blinks, and
other sources of noise that were not related to brain
activity. To minimize the negative effects of volume con-
duction and common reference, the artifact-corrected
scalp voltage data were converted to reference-free
current source density by calculating 2-D surface Laplacian
algorithm (Kayser & Tenke, 2006). All subsequent an-
alyses were performed on the current source density
data.

Power Spectral Density Estimation

For both data sets, fast Fourier transforms were applied
to the data in the time period of interest to estimate the
power spectra. Normalization by power in the precue
baseline period was done on a participant-by-participant
basis (1–30 Hz; Jensen et al., 2002). This normalization
procedure removed the influence of amplitude variability
from participant to participant and allowed more straight-
forward averaging across participants. Alpha frequency
bands were defined to be from 8 to 13 Hz.

Alpha Modulation Index

To quantify the modulation of alpha power by memory
load (L), we constructed a linear regression model

Y Lð Þ ¼ β Lþ e

where Y is the alpha power and β is the fitted regression
coefficient. Larger β values reflect stronger alpha modu-
lation by memory load. A schematic illustration of large β
versus small β was given in Figure 3A and B. L equals to 1,
3, and 5 for both UF and UM data sets. The posterior ROI
used for alpha modulation analysis was defined according
to our previous paper on memory load modulation of
alpha in verbal working memory (Wang et al., 2016).
The channels included in the ROI, such as PO7, P5, P3,
P1, P03, O1, Oz, POz, Pz, P2, O2, P4, PO4, P6, and PO8,
are similar to channels used in previous EEG alpha studies
of verbal working memory (Klimesch, 2012; Mathewson
et al., 2011; Haegens et al., 2010; Jensen & Mazaheri,
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2010; Sauseng et al., 2009; Jokisch & Jensen, 2007;
Medendorp et al., 2007; Jensen et al., 2002), which facili-
tate comparison across studies.

Time–Frequency Analysis

Time–frequency analysis was also performed to examine
the evolution of neural activities under different working
memory loads and across different stages of the working
memory task. The time–frequency power changes were
computed by calculating the percentage change in power
from the precue baseline for different frequencies and
different times using a complex Morlet wavelet transform
(Herrmann, Mecklinger, & Pfeifer, 1999; Tallon-Baudry,
Bertrand, Wienbruch, Ross, & Pantev, 1997). The number
of cycles was selected according to the frequency (scale)
and was increased from 0.5 at 1 Hz to 13.8 at 30 Hz. It has
been suggested that this approach provides better fre-
quency resolution at higher frequencies than a conven-
tional wavelet approach that uses constant cycle length
(Delorme & Makeig, 2004). The same wavelet transform
as the one used for the whole-trial analysis was applied to
the two data sets. All the time–frequency calculations for a

given working memory load were performed after subtract-
ing the ensemble mean (ERP) of that load condition from
all trials to minimize the influence of stimulus-evoked re-
sponse on spectral estimation (Kalcher & Pfurtscheller,
1995). This was done for each electrode, each condition,
and each participant separately.

RESULTS

Behavioral Results

As shown in Figure 2, RT increased as a function of mem-
ory load: UF data set, F(2, 57) = 17.22, p < .001
(Figure 2A), and UM BAS data set, F(2, 66) = 42.63,
p < .001 (Figure 2C), and accuracy decreased with in-
creasing memory load: UF data set, F(2, 57) = 6.35, p <
.005 (Figure 2B) and UM BAS data set, F(2, 66) = 86.39,
p < .001 (Figure 2D). These results are in line with previ-
ous studies using similar paradigms (Stokić, Milovanović,
Ljubisavljević, Nenadović, & Čukić, 2015; Bashivan, Bidelman,
& Yeasin, 2014; Nenert, Viswanathan, Dubuc, & Visscher, 2012;
Michels, Moazami-Goudarzi, Jeanmonod, & Sarnthein,
2008; Tuladhar et al., 2007; Leiberg, Lutzenberger, &
Kaiser, 2006; Jensen et al., 2002).

Figure 2. Behavioral results. (A) RT and (B) accuracy as a function of memory load for the UF data set. (C) RT and (D) accuracy as a function of
memory load for the UM BAS data set. Error bars are SEM.
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Alpha Power Modulation by Memory Load
during Retention

Posterior ROI for the analysis of alpha activity, superim-
posed on the topographical map of alpha power modula-
tion by working memory load, was shown in Figure 3A.
For the UF data, during the retention period, alpha power
increased as a function of memory load (Load 5 > Load 1,
t(19) = −2.67, p = .015; Load 3 > Load 1, t(19) = −2.21,
p = .039; Load 5 > Load 3, t(19) = −2.15, p = .048;
Figure 3B–C); a similar pattern was also observed for the
UM BAS data (Load 5 > Load 1, t(22) = −2.14, p = .043;
Load 3 > Load 1, t(22) = −2.58, p = .017; Load 5 > Load
3, t(22) = −0.92, p = .37; Figure 3E–F). A time–frequency
analysis was carried out to examine the evolution of

oscillatory activities across different stages of the working
memory task under different memory loads. As shown in
Figure 3D and G, in both data sets, the increase of alpha
power during retention with increase in working memory
load is clearly visible.

Memory Load Modulation of Alpha Power and WMC

Load-dependent modulation of alpha power at the indi-
vidual participant level can be quantified using the alpha
modulation index (see Methods). Examples of large alpha
power modulation and small alpha power modulation
were schematically shown in Figure 4A and B. The rela-
tionships between the alpha modulation index and

Figure 3. Alpha modulation by
memory load. (A) Posterior ROI
for the analysis of alpha activity
was superimposed on the
topographical map of alpha
power modulation by working
memory load (averaged across
the UF and UM data sets). (B)
Power spectra for different
memory load and (C)
modulation of alpha power (8–
13 Hz) by memory load during
retention for UF data set. (E)
Power spectra for different
memory load and (F)
modulation of alpha power by
memory load during retention
for UM BAS data set. Time–
frequency analysis for (D) UF
data set and (G) UM BAS data
set. *p < .05.
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individual WMC for both data sets were shown in Figure 4C
and D. For the UF data set, there was a significant nega-
tive correlation between the alpha modulation index and
WMC (r=−.53, p= .016, d=−1.25; Figure 4C); in other
words, the higher the WMC, the lower the alpha modula-
tion index. Here, in addition to calculating p values, effect
sizes were also reported where appropriate in terms of
Cohen’s d. According to established conventions, effect
size was considered small if 0.2 < |d| < 0.5, medium if
0.5 < |d| < 0.8, and large if |d| > 0.8 (Rosenthal, 1984).
For the UM BAS data set, the same negative correlation
between alpha modulation index and WMC was observed
(r=−.56, p= .006, d=−1.35; Figure 4D). In addition to
WMC, we also considered behavioral accuracy. There was
a significant positive correlation between accuracy and
WMC in both UF (r = .99, p < .001, d = 15.72) and UM
BAS data set (r= .97, p< .001, d= 9.16), suggesting that
the averaged K values can explain most of the variance of

the working memory task performance in both data sets.
Moreover, alpha modulation index and accuracy were
significantly negatively correlated in both UF (r = −.55,
p < .012, d = −1.32) and UM BAS data set (r = −.59,
p < .003, d = −1.44).

Alpha Power and WMC

In visual working memory, Fukuda et al. (2015) found
that only alpha power modulation by memory load, not
alpha power per se, was correlated with WMC. In the
present verbal working memory paradigms, we examined
the relationship between alpha power and WMC as well
as task performance and presented the results in Table 1.
Consistent with the findings in visual working memory,
there were no significant correlation between alpha
power and WMC for any of the memory load conditions,
suggesting that it is the magnitude of task demand-based

Figure 4. Alpha modulation
index and WMC. Schematic
examples of a large (A) and a
small (B) alpha modulation
index. Correlation between
WMC and alpha modulation
index for (C) the UF data set
and (D) the UM BAS data set.
Each point in the scatter plots
represents an individual
participant.

Table 1. Correlation Coefficient between Alpha Power and Accuracy, RT, and Cowan’s K for Each Memory Load

Loads Accuracy RT Cowan’s K

UF data set Load 1 .183 (.44) .203 (.39) .182 (.45)

Load 3 −.091 (.70) .042 (.86) −.091 (.70)

Load 5 −.194 (.41) .171 (.47) −.193 (.42)

UM BAS data set Load 1 −.105 (.63) .003 (.99) −.106 (.63)

Load 3 −.066 (.76) .081 (.71) −.065 (.76)

Load 5 −.246 (.26) −.189 (.39) −.247 (.25)

p Values are in parentheses.
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alpha power modulation rather than the magnitude of
alpha power that is characteristic of an individual’s
working memory function.

Effects of TPM on Task Performance

Effects of memory load (levels: Load 1, Load 3, or Load 5)
and treatment (BAS, TPM-100 mg, TPM-150 mg, or TPM-
200 mg) on accuracy (Figure 5A) and RT (Figure 5B) were
analyzed using 3 × 4 repeated-measures ANOVAs. Re-
garding accuracy, there were significant main effects of
both Memory Load, F(2, 126) = 129.30, p < .001, and
Treatment, F(3, 126) = 25.89, p < .001; the Memory
Load × Treatment interaction was not significant, F(6,
126) = 0.54, p= .76. Regarding RT, there were significant
main effects of both Memory Load, F(2, 126) = 27.66, p<
.001, and Treatment, F(3, 126) = 4.74, p = .0036; the
Memory Load × Treatment interaction was not signifi-
cant, F(6, 126) = 0.97, p = .45.

Effects of TPM on Relation between Memory Load
Modulation of Alpha and WMC

Under TPM, alpha power increased from Load 1 to Load 3
and from Load 1 to Load 5, but it was not significantly
different between Load 3 and Load 5 (Load 5 > Load 1,
t(22) =−2.24, p= .035; Load 3 > Load 1, t(22) =−2.29,
p = .032; Load 5 < Load 3, t(22) = −0.12, p = .91;
Figure 6A and B). Alpha modulation index under differ-
ent doses of TPM was not significantly different ( p >
.1; Figure 6C), and the data from different dose groups
were therefore combined for the next analysis. After the
administration of TPM, the alpha modulation index and
WMC were no longer significantly correlated (r = −.20,
p = .35, d = −0.41; Figure 6D), although at d = −0.41,
it could be said that the negative correlation is still some-
what preserved with a small effect size.

DISCUSSION

Two high-density EEG data sets recorded from healthy
human volunteers performing verbal working memory
tasks were analyzed to examine the relationship between
memory load modulation of posterior alpha power and
WMC. The following results were found. First, in agree-
ment with previous reports, posterior alpha power in-
creased with memory load during working memory
retention, irrespective of whether the remembered ver-
bal information was numerical digits or pronounceable
syllables. Second, across individuals, the degree of alpha
power modulation by memory load was negatively asso-
ciated with WMC, namely, the higher the WMC, the less
the alpha power modulation by memory load. These two
results were consistent across the two data sets. Third, in
the UM data set, after the administration of TPM, a drug
known to adversely impact working memory and alter
brain’s rhythmic activities, the negative correlation be-
tween memory load modulation of alpha power and
WMC became weaker (no longer statistically significant)
but was still somewhat detectable with a small effect size
(d = 0.41).

Figure 5. Effects of TPM on working memory task performance (UM TPM data set). Data were shown separately for the three doses of TPM on Load
1, Load 3, and Load 5 conditions. Error bars represent SEM.

Figure 6. Effects of TPM on modulation of alpha power by memory
load for UM TPM data set. (A) Power spectra over the posterior ROI. (B)
Alpha power for each memory load condition (*p < .05). (C) Alpha
modulation index under the three doses of TPM. (D) The correlation
between WMC and alpha modulation index.
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Increase of alpha power as a function of verbal working
memory load during memory retention is a widely repli-
cated finding. In light of the inverse relationship between
alpha power and cortical excitability, this finding is thought
to reflect a GABA-mediated increase in functional inhibition
of visual cortex, which could serve as a sensory gating
mechanism to protect information held online from sen-
sory interference (Wang et al., 2016; Jensen & Mazaheri,
2010; Lőrincz, Kékesi, Juhász, Crunelli, & Hughes, 2009;
Klimesch et al., 2007; Jones, Pinto, Kaper, & Kopell,
2000). One line of corroborating evidence supporting the
alpha sensory gating hypothesis comes from simultaneous
recordings of EEG and fMRI during working memory tasks
(Michels et al., 2010; Scheeringa et al., 2009), which showed
that alpha band power in posterior regions is negatively cor-
related with BOLD signal in the visual cortex during work-
ing memory retention. Furthermore, several studies have
found that when to-be-remembered and to-be-ignored
items are displayed simultaneously in separate hemifields,
alpha activity increases over the hemisphere ipsilateral to
the relevant hemifield and that this effect increases with
memory load (Vissers, van Driel, & Slagter, 2016; Sauseng
et al., 2009). Using a Sternberg working memory task in
which distractors were presented in the retention interval,
whose strength and exact timing could be anticipated,
Bonnefond and Jensen found a stronger alpha power in-
crease in occipitotemporal areas before strong compare
to weak distractor onsets and observed a significant nega-
tive correlation between alpha power modulation and RT
difference between weak and strong distractors. In other
words, the stronger the difference in alpha power between
anticipated distractor types, the smaller the difference in
RT. These data suggest that alpha oscillations are modu-
lated according to task conditions, and the degree of alpha
power modulation, rather than the alpha power itself, is
linked to the effectiveness of the sensory suppression of dis-
tracting information. In visual working memory, Fukuda
et al. (2015) reported similar finding, namely, it is the alpha
powermodulation bymemory load (i.e., degree of alpha de-
crease with increase in memory load) that predicts WMC
rather than alpha power per se. Our findings that there were
no significant correlation between alpha power and WMC
extend their finding to the verbal working memory domain
where the alpha is modulated in the opposite direction
(i.e., alpha increases with memory load).
As a measure of executive attention, WMC is not simply

a measure of the capacity for storing information but also
a measure of the ability to sustain attention to the stored
information in the face of interference or distraction (ex-
ecutive attention). Higher WMC individuals may be more
efficient at filtering out task-irrelevant distractors in addi-
tion to having higher capacity to store more information.
Indeed, studies have suggested that individuals with low
WMC tend to be more easily distracted by task-irrelevant
information, whereas high WMC individuals tend to excel
at focusing attention on task-relevant information (Vogel,
McCollough, & Machizawa, 2005). Neurophysiologically,

it has been suggested that distractor filtering in working
memory may be carried out by the frontostriatal circuit,
principally consisting of the pFC (Vogel et al., 2005) and
the BG (Alexander, DeLong, & Strick, 1986). In this cir-
cuit, the BG provides a dynamic gating mechanism by
transiently providing either an inhibitory or disinhibitory
signal to the pFC (Hazy et al., 2007), which suppresses
the processing of task-irrelevant information or enhances
task-relevant information. This role for the BG in working
memory is thought to be highly similar to its involvement
in gating the selection of actions in motor regions of the
pFC (Mink, 1996). In addition, the involvement of the BG in
selecting items to be remembered is consistent with the ev-
idence that this structure is important for a person’s ability
to shift between task sets (Hayes, Davidson, Keele, & Rafal,
1998), a process in which the active inhibition of irrelevant
task sets is important (Mayr & Keele, 2000). Together, the
frontostriatal circuit may determine what information is
actively kept online for the current task, which then de-
termines which items will gain admittance to the limited
working memory. A recent study provides direct evidence
supporting a role of the BG and pFC in controlling the flow
of task-relevant information into working memory (McNab
& Klingberg, 2008). Consistent with the theory that an indi-
vidual’s WMC is determined by their ability to selectively
filter task-irrelevant distractors (Vogel et al., 2005), BG
and prefrontal cortical activity was a significant predictor
of WMC, manifesting a positive association between WMC
and the ability of the frontostriatal circuit to filter distracting
information.

The observed negative correlation between alpha
power modulation by memory load and WMC over two
experiments adds a new dimension to the current litera-
ture: individuals with low WMC demonstrate stronger al-
pha power modulation by memory load. We speculate
that this may reflect the fact that individuals with a
weaker ability to filter out distraction in the frontostriatal
circuit relies more on sensory gating to achieve this func-
tion. High WMC individuals, on the other hand, having
stronger frontal mechanisms for distractor suppression,
is not as dependent on sensory gating. This phenomenon
is reminiscent of the neural compensation phenomenon
observed in cognitive aging. Neuroimaging studies have
shown that in older adults, compared with young adults,
neural activity increases in a variety of brain areas, including
the pFC and posterior parietal cortex (Lighthall, Huettel,
& Cabeza, 2014; Park & Reuter-Lorenz, 2009; Steffener,
Brickman, Rakitin, Gazes, & Stern, 2009; Greenwood, 2007;
Rajah & D’Esposito, 2005). These increased activities, reflect-
ing reorganized brain functioning, are thought to be compen-
satory, whose function is to counteract neural decline and to
maintain task performance (Chanraud & Sullivan, 2014).

In visuospatial working memory tasks, in which partic-
ipants were given a set of visual items to remember, al-
pha power decreases with increase in memory load. This
is in contrast to verbal working memory tasks, in which
alpha increases with increase in memory load (Klimesch,
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2012; Mathewson et al., 2011; Haegens et al., 2010;
Jensen & Mazaheri, 2010; Sauseng et al., 2009; Jokisch
& Jensen, 2007; Medendorp et al., 2007; Jensen et al.,
2002). Functionally, alpha decreases in visual working
memory are thought to reflect increased activation of vi-
sual cortex necessary for maintaining the neural repre-
sentations of remembered visual items (Fukuda et al.,
2015). Recent studies on phase-coding models of visual
working memory suggest that items in visual working
memory are represented by synchronous low-frequency
activities, and these synchronous activities coding re-
membered items are phase-shifted to avoid accidental
synchronizations that could lead to misrepresentation
or contamination of remembered information (Siegel,
Warden, & Miller, 2009; Raffone & Wolters, 2001). As a
result, the measured scalp EEG data as the sum of the
phase-shifted signals in the cortex show a set size-dependent
decrease in alpha power. Although in visual working
memory, WMC also predicts alpha power modulation by
memory load (Fukuda et al., 2015), the underlying neural
basis may be different from what we reported in this
work.

What alternative hypotheses might explain the findings
reported in this study? Regarding the fact that high WMC
individuals exhibited smaller alpha modulation by mem-
ory load, one may argue that these individuals utilized
visual working memory to represent the verbal stimuli.
In the classic Sternberg paradigm, the verbal items are pre-
sented sequentially, and sequential presentation of mem-
ory items is thought to minimize the use of visual working
memory for information retention. Previous work has
shown that regardless of whether memory items are pre-
sented sequentially or presented on a single screen, alpha
power increases with memory load during memory re-
tention (Tuladhar et al., 2007; Hwang et al., 2005; Jensen
et al., 2002). No studies, however, have directly compared
the amount of alpha power modulation by memory load
under the two different ways of presenting verbal stimuli.
It is thus not possible to rule out that visual working mem-
ory may have played a role in the representation of verbal
information. Regarding the fact that low WMC individuals
exhibited more increase with increase in memory load,
one may argue that this reflects a disengagement from
the task. We reason that if the participant is disengaged
from the task, then task performance will suffer as the re-
sult. Closer examination of task performance data in low
WMC individuals reveals that accuracy remained quite
high at about 94% for Load 5 in the UF data set. More-
over, we did a within-participant analysis in which single-
trial alpha power within a given memory load was estimated
and sorted into high and low alpha trials, and the task per-
formance between the high and low alpha groups was com-
pared. The accuracy and RT were not different between
the high alpha group and the low alpha group; in fact, the
accuracy was actually a little higher in the high alpha
group under the high memory load conditions, but the
effects did not reach significant level of p < .05 (results

not shown). Thus, the disengagement hypothesis does
not appear to provide an adequate explanation of the data.
In both data sets, we used Cowan’s K to estimate WMC

(Cowan, 2001). If the performance accuracy is high, as is
the case for the UF data set, the values of K may under-
estimate the true WMC (Rouder, Morey, Morey, &
Cowan, 2011). In the UM data set, for comparable working
memory loads, the performance accuracy is lower, and the
underestimation of WMC is less of a concern. Yet, in both
data sets, we observed the same relationship between
WMC and load-dependent modulation of alpha, suggesting
that the potential underestimation of WMC did not hamper
our ability to uncover the relationship. In addition, we
correlated alpha modulation index with accuracy instead
of K values and found that there was a significant negative
correlation between accuracy and alpha modulation index
in both UF (r = −.55, p < .012, d = −1.32) and UM
BAS data set (r = −.59, p < .003, d = −1.44), meaning
that the higher the accuracy, the less the alpha power
modulation by memory load, in agreement with our
WMC results. Thus, whether using K values as estimation
of WMC or behavioral accuracy, the same relation with
alpha power modulation was observed.
In summary, in this study, we considered the relation-

ship between memory load modulation of alpha power
and WMC in two verbal working memory experiments.
Consistent between the two experiments, individuals with
low WMC were found to have a stronger alpha power
modulation by memory load, indicating possibly an in-
creased dependence on sensory gating for coping with
task-irrelevant information in these individuals. The nega-
tive association between memory load modulation of
alpha oscillations and WMC is vulnerable to drug-related
cognitive and physiological disruption. These findings con-
tribute to our understanding of the neural substrate of
WMC, an important measure of executive functioning of
the brain; point to the need to further study the relation
between the frontal mechanisms of distractor suppression
and the posterior mechanisms of sensory gating; and shed
light on how CNS drugs can disrupt important neural
mechanisms, resulting in impaired cognition.
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