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The human motor system can rapidly adapt its motor output in response to errors. The prevailing theory of this process pos-
its that the motor system adapts an internal forward model that predicts the consequences of outgoing motor commands and
uses this forward model to plan future movements. However, despite clear evidence that adaptive forward models exist and
are used to help track the state of the body, there is no definitive evidence that such models are used in movement planning.
An alternative to the forward-model-based theory of adaptation is that movements are generated based on a learned policy
that is adjusted over time by movement errors directly (“direct policy learning”). This learning mechanism could act in paral-
lel with, but independent of, any updates to a predictive forward model. Forward-model-based learning and direct policy
learning generate very similar predictions about behavior in conventional adaptation paradigms. However, across three
experiments with human participants (N= 47, 26 female), we show that these mechanisms can be dissociated based on the
properties of implicit adaptation under mirror-reversed visual feedback. Although mirror reversal is an extreme perturbation,
it still elicits implicit adaptation; however, this adaptation acts to amplify rather than to reduce errors. We show that the pat-
tern of this adaptation over time and across targets is consistent with direct policy learning but not forward-model-based
learning. Our findings suggest that the forward-model-based theory of adaptation needs to be re-examined and that direct
policy learning provides a more plausible explanation of implicit adaptation.
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Significance Statement

The ability of our brain to adapt movements in response to error is one of the most widely studied phenomena in motor
learning. Yet, we still do not know the process by which errors eventually result in adaptation. It is known that the brain
maintains and updates an internal forward model, which predicts the consequences of motor commands, and the prevailing
theory of motor adaptation posits that this updated forward model is responsible for trial-by-trial adaptive changes. Here, we
question this view and show instead that adaptation is better explained by a simpler process whereby motor output is directly
adjusted by task errors. Our findings cast doubt on long-held beliefs about adaptation.

Introduction
When we make errors in our movements, the motor system
automatically adapts its output in the next movement to reduce
the error (Shadmehr et al., 2010; Krakauer et al., 2019). This
capacity, referred to as “adaptation,” has been demonstrated
across a wide variety of behaviors including eye movements

(Kojima et al., 2004; Wong and Shelhamer, 2011), reaching
movements (Shadmehr and Mussa-Ivaldi, 1994; Krakauer et al.,
2000, 2005; Smith et al., 2006; Hadjiosif and Smith, 2015), loco-
motion (Malone et al., 2011; Jayaram et al., 2012), and speech
(Parrell et al., 2017).

A popular theory of adaptation is that it is driven by updating
of an internal forward model (Fig. 1A)—a network within the
brain that predicts the consequences of outgoing motor com-
mands (Bhushan and Shadmehr, 1999; Flanagan et al., 2003;
Bastian, 2006; Krakauer and Shadmehr, 2006; Shadmehr et al.,
2010; Krakauer and Mazzoni, 2011; Haith and Krakauer, 2013).
There is strong behavioral (Miall et al., 2007; Synofzik et al.,
2008; Wagner and Smith, 2008; Izawa and Shadmehr, 2011;
Bhanpuri et al., 2013) and neurophysiological (Ebner and
Pasalar, 2008) evidence for the existence of forward models in
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the cerebellum and that these forward models are updated when
the consequences of our motor commands are altered by exter-
nal perturbations (Ebner and Pasalar, 2008; Synofzik et al., 2008;
Izawa and Shadmehr, 2011; McNamee and Wolpert, 2019).
However, such changes to a forward model do not inherently
prescribe how motor output should change in the future; they
simply allow the motor system to anticipate altered consequences
of a given motor command. It is certainly possible, in principle,

for a forward model to be used to plan future motor output, but
there is no definitive evidence to date to suggest that this is the
case. Nevertheless, a broad consensus has emerged that forward-
model-based learning of this kind explains how our movements
are adapted when we experience movement errors (Jordan and
Rumelhart, 1992; Miall and Wolpert, 1996; Wolpert and Kawato,
1998; Haruno et al., 2001; Flanagan et al., 2003; Bastian, 2006;
Shadmehr et al., 2010; Haith and Krakauer, 2013).
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Figure 1. Forward-model-based learning and direct policy learning under visuomotor rotation and mirror reversal. A, Forward-model-based learning relies on updating an internal forward
model that predicts the sensory consequences (y) of motor commands (u). In the case of simple cursor perturbations, we take u to be the direction the hand moves (motor command) and y to
be the direction the cursor will move (sensory outcome). When the predicted sensory outcome (ŷ) differs from the observed one (y), the resulting error can be used to update the forward
model without further assumptions. Given the desired sensory outcome, yp, the updated forward model can then be inverted to yield the appropriate motor command. B, In direct policy learn-
ing, sensory errors are used directly to update the policy (also often called an “inverse model”). Here, the policy is a function mapping movement goals (yp), represented in terms of desired
sensory outcomes, to appropriate motor commands (u). Sensory errors must be translated to the motor domain, but this mapping depends on knowledge of the plant f (in mathematical terms,
knowledge of the sensitivity derivative @f/@u). In practice, direct policy learning must use an assumed mapping (Abdelghani and Tweed, 2010). C, D, Performance of forward-model-based
learning (C) and direct policy learning (D) under visuomotor rotation. For forward-model-based learning, the arrows indicate the direction updates to the forward model; for direct policy
updates, the arrows indicate the direction of changes to the control policy. In this example, y= u at baseline (black line), and direct policy updating therefore assumes that ey = eu. The red
line represents the perturbed mapping (a visuomotor rotation by an angle u , y= u1 u ) and thus the ideal forward model prediction; the orange line represents a partially learned predic-
tion. Under both models, adaptive changes are appropriate for the shifted visuomotor map: the forward model adjusts to predict the shifted sensory outcomes of efferent motor commands,
whereas direct policy updates drive motor output in a direction that reduces error. E, Response of direct policy learning to errors resulting from a visuomotor rotation. In response to a leftward
error, motor output is shifted rightward, reducing error in the next trial. F, G, forward-model-based learning (F) and direct policy learning (G) under mirror reversal. Here, 0 denotes the mirror-
ing axis. Under the mirror reversal, y = –u, and therefore the relationship between task errors and motor errors is inverted: ey = –eu. If the sensitivity derivative used for direct policy learning
is not updated accordingly, policy updates will occur in the wrong direction, driving motor output further and further away from that necessary to counter the mirror reversal. By contrast, there
is no such difficulty associated with learning an updated forward model under the mirror reversal and therefore forward-model-based learning can occur without any issue. H, Response of
direct policy learning to errors resulting from a mirror reversal. In response to a leftward error, motor output is shifted rightward, exactly as in E. Under the mirror reversal, however, this shift
leads to an increase in error on the next trial.
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An alternative theory of adaptation is that the motor system
maintains a policy that prescribes what motor commands to gen-
erate to attain different goals, and that it uses movement errors
to directly adjust this policy over time (Fig. 1B). For example, if a
target is missed to the right, the policy can simply be adjusted to
generate more leftward output in the future (Fig. 1E), without
ever needing to rely on an adaptive forward model. This much
more straightforward process, which we refer to as “direct policy
learning,” has been proposed in the past as a potential mecha-
nism of motor adaptation (Wolpert et al., 2001; Abdelghani et
al., 2008), but has mostly been overlooked in favor of forward-
model-based explanations. Both theories, however, generate
more or less identical predictions about behavior in conventional
adaptation paradigms such as visuomotor rotations or force
fields, and, on current evidence, it seems impossible to distin-
guish between them.

A potential way to dissociate between these theories of adap-
tation is by imposing a more extreme perturbation: a mirror re-
versal of visual feedback. Mirror reversal is a much more drastic
perturbation than those that are usually thought to engage
implicit adaptation (e.g., visuomotor rotations), and it has been
argued that it is learned through a completely different process
than visuomotor rotations (Telgen et al., 2014). Nevertheless, de-
spite the dominant influence of other learning processes, there is
clear evidence that implicit adaptation still occurs under a mirror
reversal (Lillicrap et al., 2013; Wilterson and Taylor, 2019), albeit
that implicit adaptation in this case seems to drive learning in
the wrong direction, acting to increase rather than decrease
errors from one trial to the next.

We show that, in theory, this inappropriate adaptation under
mirror reversal could be consistent with either forward-model-
based learning or direct policy learning, but for very different
reasons, leading to different patterns of failure. By closely exam-
ining the fine structure of learning under an imposed mirror re-
versal and comparing this to predictions of a computational
model, we find that behavior is consistent only with direct policy
learning and not forward-model-based learning.

Materials and Methods
Participants and ethics statement
A total of 51 individuals were recruited for the study. Four participants
were excluded before analysis: three because they did not complete the
study because of time constraints, and one because of inability to follow
instructions. This resulted in 47 participants (mean6 SD age: 23.36 5.2
years; 20 identifying as male, 26 identifying as female, 1 identifying as
nonbinary): 12 participants in experiments 1, 1a, and 3; and 11 partici-
pants in experiment 2. Sample size was determined based on similar be-
havioral studies. Participants used their dominant arm for the task; four
participants self-reported as left-handed and another was ambidextrous
and used their right arm for the task. For left-handed participants, all
data were flipped about the mirroring axis before further analysis. All
participants had no known neurologic disorders and provided informed
consent before participating. Study procedures were approved by the
Johns Hopkins University School of Medicine Institutional Review
Board.

Task details
Participants sat on a chair in front of a table, with their dominant arm
resting on an air sled, which enabled planar movement with minimal
friction against the glass surface of the table. Targets (diameter: 10 mm)
and a hand-controlled cursor (diameter: 5 mm) were presented in the
plane of movement with the help of a mirrored display. Hand position
was tracked at 130Hz using a Flock of Birds magnetic tracking device
(Ascension Technologies).

Participants performed shooting movements through targets posi-
tioned 12 cm away from a central, starting position [experiments 1 and
1a: 4 different targets arranged along the cardinal directions (see Fig.
3B); experiment 2: 16 different targets, 2 horizontal ones (0° and 180°
directions), 7 around the 90° direction in 2.5° increments (82.5°, 85°,
87.5°, 90°, 92.5°, 95°, 97.5°), and similarly 7 around the 270° direction
(see Fig. 4B); experiment 3: 12 different targets evenly spaced across the
circle (every 30°, beginning at 0°; see Fig. 6A)]. When the cursor reached
12 cm away from the starting position (equal to the target distance), its
color would change and it would freeze for 0.5 s to indicate how close
the participant came to going through the target; afterward, the partici-
pant was instructed to return to the starting position. During the return
movement, we replaced cursor feedback with a circle, centered on the
start location, whose diameter indicated the distance, but not the exact
location, of the (hidden) cursor to avoid any learning during the return
movement. To facilitate return movements, an air jet positioned above
the start position blew a narrow stream of air downward that partici-
pants could feel on their hand.

During the experiment, velocity was monitored by the experimenter.
To ensure that participants were moving at a brisk speed, participants
were encouraged to adjust their movement speed if they were being
excessively slow or fast.

For all experiments, participants were informed of the nature of the
mirror reversal right before the block in which it was first imposed. In
experiments 1, 2, and 3, participants were instructed to keep aiming their
hand through the target (hand-to-target groups)—even if that meant the
cursor could deviate from the target. In experiment 1a, participants were
instructed to try to get the cursor through the target (cursor-to-target
group).

All experiments consisted of nine blocks, between which short rest
breaks were given. The number of trials in each block depended on the
experiment (experiments 1 and 1a: 20 trials to each of the 4 targets;
experiment 2: 6 trials to each of the 16 targets; experiment 3: 8 trials to
each of the 12 targets). Depending on the block, one of three different
types of visual feedback was used for the out movements: veridical online
cursor feedback (blocks 1 and 3), online cursor feedback inverted about
the y-axis (mirror reversal, blocks 4–7), and no visual feedback (blocks 2
and 8), whereby cursor feedback was withheld to assess any baseline
biases (in block 2) or aftereffects of adaptation (in block 8). Block 9
began without visual feedback then transitioned to veridical visual feed-
back. In experiments 1 and 1a, this transition happened after five cycles.
For experiment 3 and three participants in experiment 2, because of an
implementational error this transition occurred in the middle of a cycle
(after 20 trials), rather than after a complete cycle. However, this did not
significantly affect the results since data from these trials were not part
of our main analysis. For the remaining participants in experiment 2,
this was corrected so that the transition occurred after 16 trials (one
cycle).

Data analysis
Analysis was performed using MATLAB (MathWorks). Position data
were smoothed by filtering through a third-order Savitzky–Golay filter
with a window size of nine samples (69ms). The main outcome variable
extracted from the data was the reaching angle relative to the target
direction, measured at target distance (12 cm).

For experiments 1 and 1a, we focused on adaptation for the two tar-
gets on the mirroring axis. For these targets, the direction of the (mal-
adaptive) drift was inconsistent across participants. Therefore, to aggre-
gate data across participants, we used absolute error as the primary mea-
sure of adaptive changes.

For experiment 2, we focused on the adaptive changes for the two
sets of targets about the up/down directions. As in experiment 1, we
quantified learning in terms of the absolute error. However, to more pre-
cisely characterize the nature of adaptive changes we also fit a linear rela-
tionship between target direction and hand movement output. This
yielded two parameters for each direction (upward/downward) for each
participant: a slope and an offset. We refer to increases in the slope as
“expansion,” and changes in the offset as a “shift.”
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For experiment 3, we focused on adaptation for the eight targets
not in cardinal directions. These targets were 30° or 60° away from
the mirroring axis and used signed error as the primary measure of
adaptive changes, flipping the sign as appropriate so that a positive
error always indicated adaptive changes away from the mirroring
axis.

Data inclusion criteria. We analyzed trials along the horizontal tar-
gets to monitor adherence to the aiming instructions for experiments 1,
2, and 3. For example, if the participants were aiming their hand through
the target despite cursor errors as was the instruction in experiment 1,
the off-axis targets would show a cursor error of ;180°, whereas if they
were not following the instruction the cursor error would be closer to 0°.
This resulted in a bimodal distribution of reach directions along the hor-
izontal targets, making it easy to detect trials in which participants failed
to follow this instruction (Extended Data Fig. 3-1). We classified hori-
zontal trials as out of line with instructions if the reach direction was
closer to the opposing target (i.e., hand direction error .90°). Errors of
this kind were rather rare (average on participants included in analysis:
2.4%), with the exception of four participants (one in experiment 1, two
in experiment 2, and one in experiment 3) who had such errors on
.10% of horizontal-target trials during mirror adaptation. We excluded
these four participants from our final analysis. A supplementary analysis
including these participants is provided in Extended Data Figs. 3-2,
4-1, and 6-1, showing that they behaved in a way similar to the rest of
the population, and thus retaining their data would not have altered our
conclusions.

In addition, one participant in experiment 2 was excluded because of
erratic reaching behavior, which was in line with neither forward-
model-based nor direct policy update-based learning but likely reflected
large trunk postural adjustments during the experiment. This partici-
pant’s data are shown and discussed in Extended Data Fig. 4-2.

Finally, for trials to targets other than the horizontal ones, in all
experiments, we excluded as outliers trials for which the absolute error
was .75°; these trials constituted a very small fraction of the total
(0.46%).

Statistics. Within each group, we compared adaptation during
baseline with adaptation during late learning using paired two-tailed
t tests. To investigate the effect of instruction (experiment 1 vs 1a),
we used a 2� 2 ANOVA with group (hand-to-target group vs cur-
sor-to-target group) and time (baseline vs late learning) as factors,
whereas we used a similar 2� 2 ANOVA to investigate the relation-
ship between aftereffects and late adaptation with group (hand-to-
target vs cursor-to-target group) and time (last training block vs
first aftereffects cycle) as factors.

Simulating direct policy update and forward-model-based learning
Forward-model-based learning. We assume that the forward model,bf , which approximates the relationship, f , between motor commands, u

and their sensory outcome, y ¼ f uð Þ, is constructed as a linear sum of
nonlinear basis functions:

ŷ ¼ f̂ uð Þ ¼
X

i

wi giðuÞ: (1)

Here, individual basis functions gi are combined according to
weights wi which can change during adaptation to build an improved
approximation to the perturbed sensorimotor map.

In our simulations, we modeled adaptation of the forward model by
assuming the motor system is using gradient descent to minimize a func-
tion, C, of the error, such as the following:

C ¼ 1
2

y� yp
� �2

; (2)

where yp is the desired sensory output. Assuming that the motor system
tries to select a motor command that would yield the desired sensory
outcome yp by inverting the forward model at by, (which the motor sys-
tem assumes to be correct), we can substitute ðby ¼ ypÞ, which makes the
learning rule that minimizes C equal to the following:

@C
@wi

¼ � y� ŷð Þ @by
@wi

; (3)

or

@C
@wi

¼ � y� ŷð Þgi uð Þ: (4)

Thus, the learning update is given by the sensory prediction error, y�by,
multiplied by gi uð Þ and a learning rate, h .

Direct policy update-based learning. The control policy (inverse

model) cf�1 outputs the motor commands u to bring about a desired sen-
sory change, yp, approximating the inverse of f , as follows:

u ¼ cf �1 yp
� � ¼ X

i

viki y
p

� �
: (5)

With the goal of minimizing error, as in Equation 2, the learning rule
that minimizes C becomes the following:

@C
@vi

¼ � y� yp
� � @y

@vi
¼ � y� yp

� � @y
@u

@u
@vi

¼ � y� ŷð Þ @y
@u

@u
@vi

: (6)

Here,
@y
@u

transforms the sensory error into a motor error and is

sometimes referred to as a sensitivity derivative (Abdelghani et al., 2008;
Abdelghani and Tweed, 2010). Equation 6 can also be rewritten as
follows:

@C
@vi

¼ � y� ŷð Þ @y
@u

ki yð Þ: (7)

Thus, as in forward model learning, the direct policy update-based
learning update will be countering the sensory prediction error, y� ŷ, times
ki yð Þ and a learning rate h ; however, this will also need to be multiplied by

the sensitivity derivative
@y
@u

. Without a means to learn the sensitivity deriva-

tive, the motor system can only rely on simple rules about the sign andmag-

nitude of the sensitivity derivative (i.e., here,
@y
@u

is a constant).

To simulate forward-model-based and direct policy learning, we
modeled the learning basis functions as Gaussian kernels, as follows:

gi uð Þ ¼ e
�

u� uið Þ2
2s 2

u ; ki yð Þ ¼ e
�

y� yið Þ2
2s 2

y : (8)

The centers of each basis function, ui and yi above, were uniformly dis-
tributed around the mirroring axis with a spacing of 0.05°. The widths of
these kernels, su and s y, were left as open parameters.

To model saturation in learning, we saturated the basis function
weights using the following sigmoidal function:

wsat ¼ L
1� e�w

11e�w
: (9)

The asymptotic limit of adaptative changes in motor output,
uout;asymptote, linearly scales with L, as follows:

uout;asymptote ¼ Ls
ffiffiffiffiffiffiffi
2p

p

D
; (10)

where s is the width of the corresponding basis function (g or k, corre-
spondingly) and D is the spacing between consecutive basis functions
(0.05° in our simulations).

For forward-model-based learning, we used a sensory prediction
error to drive learning y� by� �

; for direct policy update-based learning,
we used a task error ðy� ypÞ. Note that using the task error for the direct
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policy update simulations is, here, also equivalent to using sensory pre-
diction error: since participants aim their hand directly at the intended
target, the task error they experience relative to the aimed direction (the
target itself) is equivalent to the sensory prediction error about that
direction.

To select an action in each trial, under forward-model-based learn-
ing, we selected the action that the forward model predicted would lead
to the desired outcome. In cases where multiple motor commands were
predicted to lead to the same expected sensory outcome, we chose the
motor command closest to the origin.

To identify possible model parameters, we systematically examined
behavior for a range of values for the s and h parameters [specifically,
for forward-model-based learning: s 2 4�; 14�½ � in 0.5° increments (15°
and 20° simulations), and h 2 1;14½ � � 10�4 (for 15° asymptote simula-
tions) or h 2 1;32½ � � 10�4 (for 20° asymptote simulations) in
0:5� 10�4 increments; for 25° simulations, two parts of the parameter
space: s [ [2°, 12°] in 0.5° increments with h [ [1,48] � 10�4 in 10�4

increments and s [ [2°, 5°] in 0.5° increments with h [ [49,399] � 10�4

in 2 � 10�4 increments; for direct policy learning: s 2 5�; 14�½ � in 0.5°
increments; and h 2 0:5;12½ � � 10�4 in 0:5� 10�4 increments (same for
all three asymptote values)]. For each pair of parameters (s , h ) and for
each of the two models, we ran 100 simulations, each with a different ran-
dom target order. Specifically, we randomized the order of the seven tar-
gets within each cycle, for a total of 24 cycles (168 trials), to match the
number of training cycles in experiment 2. We also included motor noise
in our simulations by adding zero-mean Gaussian noise to the outgoing
motor commands, with an SD of 3.2° based on baseline data. As in our
analysis of experiment 2, we used the last two “blocks” (last 12 cycles) as a
measure of asymptotic adaptation.

To classify which simulations led to expansion, we set a criterion that
the resulting slopes of the target–output relationship should be .1.25.
To estimate values for (s , h ) that are compatible with the learning and
generalization characteristics of visuomotor adaptation, we simulated
the adaptation of both types of models to single-target adaptation to a
22.5° visual clamp (Morehead et al., 2017). We evaluated the width of
the resulting generalization function, taking as compatible parameters
the ones that led to a full-width at half-maximum between 40° and 80°,
and speed of learning, taking as compatible parameters the ones that led
to between 6 and 18 trials to reach 80% of asymptotic adaptation.

Results
Mirror reversal elicits implicit adaptation that amplifies
errors across trials
We first performed an experiment (experiment 1) to better char-
acterize the properties of implicit learning under a mirror rever-
sal and verify that it indeed bears the expected hallmarks of
implicit adaptation. In experiment 1, 12 participants made planar
12 cm reaching movements to “shoot” through one of four dif-
ferent targets (Fig. 2A,B), two positioned on the mirroring axis
(on-axis targets) and two perpendicular to it (off-axis targets).
Based on prior studies (Lillicrap et al., 2013; Wilterson and
Taylor, 2019), we expected that implicit adaptation would tend
to amplify small initial errors over time.

We began with three blocks of unperturbed movements to
familiarize participants with the task and to assess baseline
behavior. This was followed by the training phase where we
introduced a mirror reversal about the y-axis. To isolate implicit
adaptation to the mirror reversal, we instructed participants to
aim their hand directly through the target, rather than try to
guide the mirrored cursor through the target, although the cur-
sor might miss it. This approach has been demonstrated to suc-
cessfully isolate implicit components of adaptation (Morehead et
al., 2015; Kim et al., 2018). All participants but one were success-
ful in following this instruction, as evidenced by their perform-
ance at off-axis targets, where they overwhelmingly aimed their
hand toward the target (in 98.16 0.5% of off-axis trials, mean6

SEM; Extended Data Fig. 3-1). The unsuccessful participant was
removed from further analysis because of their frequent off-axis
errors (13.8% of off-axis target trials).

Figure 2, C and D, shows the behavior of an example partici-
pant at different points during the experiment. After the mirror
reversal was introduced (cycles 61–140), there was little, if any,
change in the direction of reaching movements to off-axis targets
(Fig. 2C,D, yellow and blue). For reaching movements to on-axis
targets (Fig. 2C,D, orange and purple), however, small initial
deviations tended to be amplified from trial to trial, rather than
corrected, as illustrated in Figure 2D. This unstable adaptation
is consistent with the adaptation in an inappropriate direc-
tion reported previously under a mirror reversal (Lillicrap et
al., 2013; Wilterson and Taylor, 2019). The deviations in
reach direction that we observed tended to saturate at ;20–
30° away from the axis, which is consistent with the limited
capacity of the implicit adaptation system identified in visuo-
motor rotation studies (Bond and Taylor, 2015; Morehead et
al., 2017; Kim et al., 2018).

Behavior of this example participant was similar to that
observed across the population as a whole (Fig. 3A), with small
deviations becoming amplified over time, resulting in a drift
away from the mirroring axis (Fig. 3A, 0°). The direction of this
drift varied across participants, being directed either clockwise
or counterclockwise (negative or positive values, respectively,
on the same panel). However, the absolute directional error for
reaches to the two on-axis targets increased significantly from
baseline to late adaptation [2.56 0.2° in baseline vs 17.86 1.3°
in the last two mirror training blocks (sixth and seventh);
t(10) = 11.3, p, 10�6, Cohen’s d= 3.41; Fig. 3D, blue]. A post hoc
analysis showed that the direction of the initial deviations and
subsequent drift generally followed directional biases of baseline
hand movements in almost every case (for 10 of 11 participants
for the “up,” 90° target; and 8 of 11 participants for the “down,”
270° target; Fig. 3C). Although participants generally showed a
monotonic drift that was either consistently clockwise or coun-
terclockwise relative to the target, a small number of participants
(2 of 11 at the up target and 1 of 11 at the down target) reversed
the direction of their drift between the first and fourth training
block, as illustrated in Figure 3A.

In the eighth (penultimate) block, we assessed the presence
and stability of aftereffects by removing visual feedback and
reminding participants before the block to keep aiming their
hand through the target. The example participant in Figure 2
(gray, trials 141–165) exhibited strong, slowly decaying afteref-
fects during this block. This pattern was consistent across the
whole group of participants, which showed strong aftereffects
during the no-visual-feedback block [absolute reaching angle on
the first postlearning cycle: 16.26 0.9° vs 4.16 0.4° for the no-
visual-feedback baseline (block 2), t(10)=14.5, p , 10�7, Cohen’s
d=4.37]. Furthermore, these aftereffects closely matched the
amount of drift during the last exposure block (last 20 adap-
tation trials) as shown in blue in Figure 3B (linear fit between
subject-averaged reaching angles during the last exposure
block and the first aftereffect cycle: slope = 0.88 [95% confi-
dence interval (CI), 0.66–1.10; R2 = 0.90, p, 10�5]). These
aftereffects persisted throughout the no-visual-feedback
block, decaying slowly, and were only completely extin-
guished once veridical feedback was restored, as shown in
Figure 3A. This gradual decay of aftereffects is a key signa-
ture of implicit adaptation (Galea et al., 2011; Kitago et al.,
2013) and confirms that the change in behavior during the
exposure blocks was attributable to implicit adaptation.
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In summary, this experiment showed that implicit adaptation
occurred under mirror reversal, displaying key signatures of
implicit adaptation such as persistent, slowly decaying afteref-
fects when the perturbation was removed, as well as ceiling
values in line with those seen under other visuomotor perturba-
tions. Importantly, this adaptation did not act to reduce perform-
ance errors but instead initially amplified small errors, driving
reaching movements away from the mirroring axis. This finding
is consistent with previous reports (Lillicrap et al., 2013;
Wilterson and Taylor, 2019), but these results clearly show that
this phenomenon relates to implicit rather than explicit learning.

Allowing participants to use strategy did not prevent error
amplification to targets on the mirroring axis
To assess the possible effect of explicit reaiming strategies on
unstable learning under mirror reversal, we ran a second group
of participants (experiment 1a) that experienced an identical
training schedule with one major difference: on briefing par-

ticipants about the nature of the upcoming mirror perturbation
after the third block, we instructed them to do their best to bring
the cursor through the target (unlike the first group in experi-
ment 1, in which participants were instructed to bring their hand
through the target). We refer to this group as the cursor-to-target
group, in contrast to the first group, which we refer to as the
hand-to-target group. Similar to the hand-to-target group, the
cursor-to-target group showed an increase in errors for the on-
axis targets, as shown in Figure 3D (2.76 0.2° in baseline vs
18.06 2.1° in the last two blocks of adaptation; t(11) = 7.71, p ,
10�5, Cohen’s d= 2.22). Despite the contrasting instructions,
behavior was not significantly different between the two groups
[two-way ANOVA for subject-averaged absolute errors, using
time (baseline vs late learning) and group (cursor-to-target vs
hand-to-target) as factors; there was a main effect of time
(F(1,45) = 142.28, p, 10�8, h 2 = 0.77), but no effect of group
(F(1,45) = 0.03, p=0.86, h

2 = 2.9� 10�4) or time� group interac-
tion (F(1,45) = 0.00, p= 1.00, h

2 = 0.0)].
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Before the eighth block, participants were instructed to disen-
gage any deliberate compensation strategies, and instead aim
their hand through the target. Visual feedback was also removed
for this block. Participants exhibited clear aftereffects [absolute
reaching angle on the first postlearning cycle: 15.36 1.8° vs
4.36 0.4° for the no-visual-feedback baseline (block 2);
t(11) = 6.30, p , 10�4, Cohen’s d=1.82], and the magnitude of
the aftereffects matched the amount of late adaptation, as sug-
gested by a linear relationship with a slope close to 1 [Fig. 3B,
red; linear fit between last adaptation block and the first afteref-
fect cycle: slope = 0.87 (95% CI, 0.67–1.07), R2 = 0.90, p, 10�5].
To systematically compare aftereffects in the two groups, we per-
formed a two-way ANOVA for subject-averaged absolute errors,
using time (last adaptation block vs first aftereffect cycle) and
group (cursor-to-target vs hand-to-target) as factors; there was
no main effect of time (F(1,45) = 0.34, p=0.57, h 2 = 0.0079),
group (F(1,45) = 0.11, p=0.74, h

2 = 6.3� 10�4), or any time �
group interaction (F(1,45) = 0.03, p=0.87, h

2 = 0.0).
These aftereffects demonstrate that implicit adaptation

occurred at the on-axis targets, and that this errant learning could
not be countered by the explicit system during learning, although
participants were allowed to adopt a strategy. This stands in con-
trast to the relative ease by which participants minimized error in

the off-axis targets, as illustrated by smaller absolute errors
(7.96 1.5° in the last two adaptation blocks for the off-axis targets,
compared with 18.06 2.1° for the on-axis targets; t(11) = 4.54, p =
0.00084, Cohen’s d=1.31), suggesting that the effective use of
explicit strategies was limited to the off-axis targets.

Failure of implicit adaptation under mirror reversal can be
explained by both forward-model-based learning and direct
policy updates
We considered, from a theoretical perspective, whether either of
the two theories of adaptation—forward-model-based learning
or direct policy learning—might be consistent with the observed
instability of learning under a mirror reversal. We found that
both theories can, in some circumstances, predict unstable adap-
tation consistent with the results of experiment 1.

Under direct policy learning, adaptation depends on translat-
ing an observed error in the sensory domain into an error in the
motor domain, suitable for updating motor output (Fig. 1B).
This process inherently relies on tacit assumptions about how
motor output relates to sensory outcomes. In practice, it is not
necessary for the translation from sensory to motor errors to be
exact. It is sufficient that the update rule translating observed
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errors to changes in policy has the same sign as the sensitivity de-
rivative of the task, which ensures that changes in motor output
reduce sensory error (e.g., if you miss the target to the left,
adjusting your motor output to the right in the next movement
will reduce the error). Under a mirror reversal, however, the rela-
tionship between motor output and sensory outcome is flipped.
Consequently, if you adjust your motor according to the baseline
update rule (i.e., shift output to the left in response to a rightward
error), you will increase, rather than decrease, error in the next
trial (Fig. 1G,H). Unless the update rule appropriately reverses
sign, direct policy learning will fail to adapt to a mirror reversal,
increasing errors from trial to trial, consistent with the results of
experiment 1. Although it may, in principle, be possible to learn
to reverse the sign of the learning rule implicitly, this does not
appear to be the case over the timescale of a typical adaptation
experiment: while some studies show limited overall adaptation
to mirror reversal over a single session (Abdelghani and Tweed,
2010; Lillicrap et al., 2013), recent work that isolated implicit ad-
aptation, as we did in experiment 1, showed no learning of a mir-
ror reversal even after multiple days (Wilterson and Taylor,
2019), suggesting that the limited learning observed earlier was
because of explicit, rather than implicit, components of adapta-
tion. Even if the update rule could be eventually learned, one
would still see transient adaptation in the wrong direction until
the update rule flips.

In contrast to direct policy learning, forward-model-based
learning should, in principle, be able to compensate for a mirror
reversal. Updating a forward model in response to an error does
not rely on any assumptions about the relationship between
motor output and sensory outcomes: if the cursor went further
to the right than predicted, the forward model should just predict
that the cursor will move further to the right in the future for that
particular motor output (Fig. 1C,F). It ought to therefore be possi-
ble to successfully learn an appropriate forward model of any arbi-
trary perturbation, including a rotation or a mirror reversal.
Indeed, the principle that a forward model can always be learned
provides the basis for many approaches to learning control
(Jordan and Rumelhart, 1992; Schaal and Atkeson, 2010).

Although forward-model-based learning should, in princi-
ple, be able to learn and compensate for a mirror reversal, in
the context of iterative, trial-by-trial learning, however, the
earliest updates during learning may in fact act to amplify
errors, rather than to reduce them (Fig. 1F). Furthermore,
the ability to adapt a forward model itself may be subject to
limitations such as saturation (estimated to be ;15–25°;
Bond and Taylor, 2015; Morehead et al., 2017; Kim et al.,
2018), which might prevent forward-model-based learning
from ever successfully compensating for a mirror reversal.
An additional limitation of forward-model-based learning is
that, to learn to successfully compensate, it is not enough to
simply update predictions about the consequences of the
wrong (baseline) motor command for a given goal; partici-
pants must also at some point sample the correct motor com-
mand to learn that that it will generate the desired outcome.
The failure to compensate for a mirror reversal in experi-
ment 1 might thus have been because of the fact that the tar-
gets were isolated and participants never sampled the actions
that would have successfully acquired the target.

Unstable learning cannot be explained by biased or limited-
extent forward-model-based learning
As explained in the previous section, the behavior observed in
experiment 1, and in prior studies, could be consistent with

either forward-model-based learning or direct policy learning.
We ran a second experiment, experiment 2, which addressed the
shortcomings of experiment 1 by examining learning not at a
single target but at a narrow array of targets centered on the mir-
roring axis. The pattern of behavior across these targets enabled
us to dissociate between forward-model-based and direct policy
learning as mechanisms of implicit adaptation. Importantly, as
in experiment 1, participants were instructed to always bring
their hand directly through the presented target. Targets were
positioned between �7.5° and 7.5° about the 90° and 270° direc-
tions, in 2.5° increments (Fig. 4B). Potential limitations in adapt-
ing the forward model of ;15–25° should not preclude accurate
learning of the forward model within this narrow range of tar-
gets, since the largest adaptive change required is just 15°.
Furthermore, distributing targets on either side of the mirroring
axis ensured that participants would sample the solution for each
possible target. Forward-model-based learning thus ought to be
able to successfully adapt within this narrow range of targets,
even given possible limited extent of learning. In contrast, we
expected direct policy learning to lead to unstable performance.

We found that, similar to experiment 1, participants’ behavior
was unstable for this set of targets, with absolute error increasing
as training progressed (2.66 0.1° during baseline vs 19.36 2.6°
during the last training block; t(8) = 6.38, p= 0.0002, Cohen’s
d=2.13; Fig. 4F). Contrary to our expectations, we observed two
distinct regimes of instability in participants’ behavior: in some
instances, trajectories diverged away from the mirroring axis
(Fig. 4C–E, expansion) as we had expected. In other instances,
however, trajectories to targets on both sides of the mirroring
axis shifted approximately in parallel toward one direction or the
other (Fig. 4C–E, shift). Some participants exhibited mixtures of
these phenomena (i.e., a simultaneous shift and expansion), and
patterns of behavior for upward and downward sets of targets for
the same participant were also not necessarily the same.

Regardless of the specific pattern of divergence, we found that
there was always a strong linear relationship between target and
motor output (Fig. 4G; R2 values for linear fit, all .0.87). Linear
fits allowed us to quantify expansion as an increase in the slope of
this relationship, and shift as an offset (Fig. 4H). Across all partici-
pants, we found both a significant slope increase (upward targets:
1.176 0.05 in baseline vs 1.876 0.30 in asymptote; t(8) = 2.59,
p=0.032, Cohen’s d=0.86; downward targets: 1.146 0.04 in base-
line vs 1.926 0.30 in asymptote, t(8) = 2.66, p=0.029, Cohen’s
d=0.89) and increase in the absolute offset (up targets: 0.56 0.1°
in baseline vs 18.86 3.5° in asymptote; t(8) = 5.08, p = 0.0010,
Cohen’s d = 1.69; down targets: 0.56 0.1° in baseline vs
16.36 3.2° in asymptote; t(8) = 4.85, p=0.0013, Cohen’s d =1.62)
as illustrated in Figure 4H.

Although the instability of learning across even a narrow
range of targets appears inconsistent with forward-model-based
learning, we reasoned that it might be possible that interference
(generalization) of learning either side of the mirroring axis
might have impaired forward-model-based learning: clockwise
learning at a target on one side of the axis might be offset by gen-
eralization of counterclockwise learning at a target on the oppo-
site side. This interference might have prevented participants
from ever being able to learn an accurate forward model or made
them learn it only on one side of the mirroring axis.

To examine whether forward-model-based learning, ham-
pered by issues associated with saturation and generalization,
could credibly account for the behavior we observed in experi-
ment 2, we simulated behavior in the protocol tested in experi-
ment 2 using either forward-model-based or direct policy
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learning. Our simulations were based on standard state-space
models of learning using a linear combination of Gaussian basis
functions (Sanner and Slotine, 1991; Donchin et al., 2003;
Shadmehr, 2004; Thoroughman and Taylor, 2005; Tanaka et al.,
2009; Herzfeld et al., 2014). This is a well established framework
for modeling trial-by-trial adaption and generalization, account-
ing for a variety of behavioral phenomena, particularly the ubiq-
uitous Gaussian pattern of generalization observed behaviorally
(Brayanov et al., 2012; McDougle et al., 2017; Zhou et al., 2017).
We implemented saturation by limiting the weights associated
with each basis function (see “Materials and Methods” for
details). Our models each contained the following three free pa-
rameters: learning rate, h ; basis function width, s ; and extent of
saturation, uasymptote.

Consistent with our participants’ behavior, we observed both
expansions and shifts in simulations of both models. The extent
and likelihood of expanding or shifting depended on the exact

sequence of targets experienced as well as on the model parame-
ters (Fig. 5, examples). However, only the simulations based on
direct policy learning predicted the preserved linear relationship
we observed between target direction and reach direction (Fig. 5,
compare D–F, J–L). Simulations assuming forward-model-based
learning predicted nonlinear patterns of behavior with often ab-
rupt differences in motor output for neighboring targets (Fig.
5D, right). Such abrupt transitions may occur when one target is
outside the area where the forward model has learned to predict
the mirror reversal, and the neighboring target is not.

To more systematically determine whether either class of
model could account for our experimental data, we systemati-
cally varied the parameters of the simulated models (h , s , and
uasymptote) over a wide range and assessed whether each model
could qualitatively reproduce the main features of our data
shown in Figure 4, G and H: expansion and linearity, character-
ized by a linear but increased slope of the relationship between
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target and asymptotic reach direction for that target. To assess
whether simulation results reflected the linearity and smoothness
of this relationship observed in the data, we characterized the simu-
lated target/output relationships in terms of the dispersion (SD) of
differences between neighboring targets, D. This metric captured
the systematic nonlinearities in behavior predicted by forward-
model-based learning better than simply computing squared resid-
ual error. Based on the distribution of the data (Fig. 4I), we
required that the D value of the fitted model be ,6, which was

consistent with behavior in about 95% of the data. Furthermore,
we assessed whether the model predictions for a particular set of
parameters were consistent with well established properties of
implicit adaptation, specifically the rate of adaptation, the maxi-
mum extent of adaptation, and generalization to neighboring
directions when implicit adaptation is driven by a constant error
under an error-clamp paradigm (Morehead et al., 2017).

For forward-model-based learning, there was no overlap
between parameters that could qualitatively account for our data
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under mirror reversal and for parameters that could account for
error-clamp behavior; simulation runs that predicted a linear
expansion of motor output were very rare for an imposed as-
ymptote of 15° (Fig. 5A), and essentially nonexistent for asymp-
totes of 20° (Fig. 5B) and 25° (Fig. 5C). These asymptote values
were chosen based on the range of observed values for the limits
of implicit adaptation to a visuomotor rotation (Bond and
Taylor, 2015; Morehead et al., 2017; Kim et al., 2018). By con-
trast, there was broad overlap for the direct policy-learning
model between parameters that accounted for our data and pa-
rameters that accounted for error-clamp behavior (Fig. 5G–I).
We thus conclude that forward-model-based learning cannot
account for our experimental observations, while they are natu-
rally accounted for by the direct policy-updating model.

Implicit adaptation drove movement away from the
mirroring axis for off-axis targets
A potential confound in our previous experiments is that some
patterns of directional biases we observed could have been the
result of a shift in the proprioceptive estimate of the starting
position of the hand (Sober and Sabes, 2003), rather than reflect-
ing patterns of implicit adaptation. For example, if the hand is

perceived to be slightly to the left of its true starting position, this
would lead to a clockwise bias at the up target and a counterclock-
wise bias at the down target, as illustrated in Figure 6A. We indeed
observed such a bias for many of our subjects, as in the example
given in Figure 2C. Other patterns of shifts might also be explica-
ble in terms of misestimated initial limb posture (Sober and Sabes,
2003).

To rule out this potential alternative explanation for the
results of experiments 1 and 2, we ran a further experiment,
experiment 3, in which we assessed behavior across a broader
range of 12 equally spaced targets (Fig. 6A,B). We specifically
focus on the off-axis targets, which allows us to assess whether
shifts in the proprioceptive estimates about the origin can
account for our data: if that is the case, targets on the left and
right of the mirroring axis would move toward the same direc-
tion. Consequently, targets on one side of the mirroring axis
would show adaptation away from the mirroring axis, and tar-
gets on the other side would show adaptation toward the mirror-
ing axis (Fig. 6A). In contrast, under direct policy learning, these
off-axis targets will show adaptation away from the mirroring
axis on either side (Fig. 6A). Participants in experiment 3 com-
pleted 32 cycles of exposure to the mirror reversal with this set of
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Figure 6. Adaptive changes to a mirror reversal when reaching to off-axis targets are consistent with direct policy learning, not forward-model-based learning or proprioceptive shifts. A,
Expected pattern of changes in reach direction based on proprioceptive shift of the starting position (thick orange lines) versus direct policy learning adaptive changes (thick green lines). If the
observed adaptive changes were because of a leftward shift in the perceived location of the hand at the start of each movement (Sober and Sabes, 2003), this would lead to systematic shift of
all movements toward the rightward target. By contrast, drifts because of errant direct policy learning would always be directed away from the mirroring axis. Shading covers the area between
baseline and adapted trajectories to highlight the predicted direction of changes. B, Average reaching trajectories in experiment 3 during baseline (thin black lines) and asymptote training (last
two blocks; thick lines). Red, Off-axis targets close to the mirroring axis; magenta, off-axis targets far from the mirroring axis; gray, targets on the mirroring axis or perpendicular to it. Arrows
show the direction of adaptive changes as a result of training. Shading highlights these changes in a similar way as in A. C, Trial-to-trial adaptation away from the mirroring axis for targets
close to and far from the mirroring axis (red and magenta, respectively, as in A; darker shades illustrate the last block of training). Baseline adaptation levels are highlighted in dark gray; shad-
ing represents SEM. NVF, No visual feedback.
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targets, again under the instruction to always focus on bringing
their hand to the center of the target.

We found that, for targets on the eight noncardinal direc-
tions, there was a clear change in reach direction away from the
mirroring axis (targets 30° away from mirroring axis; Fig. 6B,C,
red: 1.46 0.4° vs 13.36 1.2° for baseline vs asymptote adaptation,
t(9)=10.3, p=0.000003, Cohen’s d=3.25; targets 60° away frommir-
roring axis; Fig. 6B,C, magenta: �0.46 0.3° vs 5.36 0.9°, t(9) =6.59,
p=0.0001, Cohen’s d=2.08), and participants never became able to
compensate for the perturbation. On both sides of the workspace,
these changes were away from the mirroring axis, as shown in
Figure 6B, and thus cannot be explained by a proprioceptive shift.

Adaptive changes tended to be greater for the more proximal
targets (30° away from the mirroring axis) compared with the
more distal targets (60° away from the mirroring axis; post hoc t
test t(9) = 7.17, p= 0.00005, Cohen’s d=2.27). This is consistent
with the well known observation that sensitivity to error tends to
decrease for larger errors (Marko et al., 2012; Kim et al., 2018).
Sensitivity to error at these targets might be further reduced
because of the fact that the cursor lands even further from the
aiming target itself, which is likely the point of fixation (de
Brouwer et al., 2018). Furthermore, for targets almost orthogonal
to the mirroring axis, it is not clear whether it remains reasonable
to think about and quantify implicit adaptation in terms of a
change in reach direction, rather than a change in gain.

Discussion
Our experiments sought to identify the process by which errors
lead to adaptive changes in behavior. In particular, we sought to
dissociate whether adaptation was based on forward-model-
based learning or direct policy learning. Each of these mecha-
nisms has previously been proposed to explain error-driven
motor learning. Forward-model-based learning has become a
widely accepted theory of adaptation. However, there has been
no decisive evidence to support it over direct policy learning.

To dissociate these two theories, we focused on implicit adap-
tation under mirror reversal, a phenomenon that is rarely con-
sidered in discussions of implicit adaptation since the mirror
paradigm is typically associated with other learning processes
(Gutierrez-Garralda et al., 2013; Telgen et al., 2014; Yang et al.,
2020). Data do nevertheless suggest that implicit adaptation
occurs under mirror reversal (Lillicrap et al., 2013; Wilterson
and Taylor, 2019). Our experiments confirmed this, but, impor-
tantly, they also clearly demonstrated that the implicit adaptation
under mirror reversal is unstable: it tends to amplify errors over
time rather than minimize them. This observation was also appa-
rent in previous work (Abdelghani and Tweed, 2010; Lillicrap et
al., 2013; Kasuga et al., 2015), though these experiments did not
distinguish between implicit and explicit contributions to learn-
ing. Although theoretical considerations suggested that either
forward-model-based or direct policy learning might account for
this instability, fine-grained analysis of behavior in experiment 2
revealed that only direct policy learning could account for the
patterns of implicit adaptation we observed under the mirror
reversal.

It is important to emphasize that the goal of our experiments
was not to study how participants learn to compensate for mirror
reversal of visual feedback, which has already been extensively
examined (Gritsenko and Kalaska, 2010; Lillicrap et al., 2013;
Telgen et al., 2014; Wilterson and Taylor, 2019). Instead, we used
a mirror reversal to probe the properties of implicit adaptation.
Is the implicit adaptation seen in mirror reversal the same kind

as that seen during visuomotor rotation? (Telgen et al., 2014;
Yang et al., 2020). We think the answer is yes. Implicit adapta-
tion seems to involuntarily adjust motor output in response to
sensory prediction errors, and an experienced sensory prediction
error itself carries no information about the kind of perturbation
that gave rise to it. Positing the existence of distinct implicit ad-
aptation systems for different types of perturbation would imply
that the motor system can recognize the kind of perturbation
that gave rise to the sensory prediction error. Furthermore, if the
motor system were to use forward-model-based learning under a
visuomotor rotation but switch to an alternative adaptation
mechanism under a mirror reversal, this would introduce a para-
dox: the motor system switching away from a learning mecha-
nism that could ultimately cope with mirror reversal (forward-
model-based learning) in favor of one that never could. Thus, we
believe that the implicit adaptation we observed under a mirror
reversal is the same as is engaged under a visuomotor rotation.

It is nevertheless clear that people can learn to compen-
sate for an imposed mirror reversal. It is well established,
however, that compensation for a mirror reversal is not
learned through the same implicit adaptation process that
supports compensation for small rotations or displacements
of visual feedback (Gutierrez-Garralda et al., 2013; Telgen
et al., 2014; Wilterson and Taylor, 2019; Yang et al., 2020).
Compensation for a mirror reversal requires higher prepa-
ration times (Telgen et al., 2014), does not generalize to
online feedback corrections (Gritsenko and Kalaska, 2010;
Telgen et al., 2014; unlike implicit adaptation), and does
not result in aftereffects (Yang et al., 2020). Furthermore, a
study of learning in patient populations has also suggested
that the neural basis of these two forms of learning is differ-
ent (Gutierrez-Garralda et al., 2013). Rather than adapting
an existing policy, people likely learn to compensate for a
mirror reversal by establishing a brand new policy (called
“de novo learning”; Telgen et al., 2014; Yang et al., 2020).
Our results suggest that the motor system must engage
alternate learning processes to compensate for a mirror re-
versal largely because implicit adaptation fails in this case.

Do forward models play any role in motor learning?
Forward-model-based learning was originally proposed by
Jordan and Rumelhart (1992) as a simple and effective solution
to the distal error problem. The distal error problem encapsulates
the major disadvantage of direct policy learning: that observed
errors are in a different coordinate system than model updates;
errors are observed in task coordinates but, to update the con-
troller, it is necessary to know the error in the outgoing motor
command. Observed errors must therefore be translated from
task space to motor space before they can be used to update the
controller. This translation requires precise knowledge of the
relationship between motor commands and task outcomes
(Wolpert et al., 2001), which is tantamount to knowing what
actions to take in the first place. The key insight from the work
of Jordan and Rumelhart (1992) was that translation of errors to
the motor command space is not necessary when learning a for-
ward model. Thus, a fruitful general strategy for learning a con-
troller is to first focus on learning a forward model and then use
this model to plan movements by inverting the forward model or
to enable learning of the controller by guiding how observed
errors are translated from task space to motor space.

The idea of forward-model-based learning introduced by
Jordan and Rumelhart (1992) has had a lasting influence on
thinking about human motor learning. Yet, the question of
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exactly how a learned forward model might influence action
selection remains unanswered. One possibility is that the forward
model could be used to simulate the outcomes of different motor
commands and then select the one with the best outcome (Miall
and Wolpert, 1996; Wolpert and Kawato, 1998; Haruno et al.,
2001). This simulation argument, however, seems incompatible
with the fact that implicit learning can be expressed at very short
latencies (Fernandez-Ruiz et al., 2011; Haith et al., 2015;
Huberdeau et al., 2019). Inversion could also be achieved by
embedding the forward model in a recurrent loop (Porrill et al.,
2004); however, the feasibility of this may be limited to simple
cases as it relies on a restrictive set of assumptions (Haith and
Vijayakumar, 2009). In any case, our results rule out this pro-
posal, at least in the context of visuomotor adaptation of reach-
ing movements.

Other theories suggest that a learned forward model might
help to train a controller over longer timescales of learning.
Flanagan et al. (2003) have suggested that a predictive forward
model might be acquired before and influence the learning of a
suitable controller, based on experiments that used grip force/
load force coupling as the indicator of prediction. More recent
work has, however, shown that early adjustments of grip force
may be driven by uncertainty rather than by learning of a predic-
tive forward model (Hadjiosif and Smith, 2015), calling these
conclusions into question. Our current findings are nevertheless
compatible with the idea that predictive forward models and
adaptive policies are dissociable from one another and could
learn over differing timescales.

One proposal as to how a learned forward model might influ-
ence later learning of a controller is that it might help to adjust
the learning rule used to update a movement policy based on
errors, a form of backpropagation (Karniel, 2002). The optimal
learning rule relates to the sensitivity derivative between actions
and outcomes, which could, in principle, be derived from an
adaptive forward model. This did not appear to be occurring in
our experiments; the learning rule did not appear to substantially
change despite the fact that it should have flipped sign. However,
it may be possible that the learning rule might ultimately flip to
match the reversed sensitivity derivative under a mirror reversal
(Abdelghani et al., 2008); we cannot rule out that a learned for-
ward model might eventually play a role in this.

Other learning architectures
Other than direct policy learning, an alternative architecture for
motor adaptation is the feedback error-learning model (Kawato,
1990; Kawato and Gomi, 1992; Albert and Shadmehr, 2016). The
feedback error-learning hypothesis posits that motor commands
used for online feedback corrections during movement act as a
training signal for updating the controller in future movements.
This scheme would also be unable to adapt under a mirror rever-
sal, since the feedback controller would also fail to account for
the flipped sensitivity derivative; feedback motor commands
and, consequently, changes in feedforward motor commands
would thus be in the opposite direction from what is needed. In
our experiments, however, we used a task design in which feed-
back corrections were minimized (if they occurred at all), mak-
ing feedback error learning a very unlikely explanation for the
adaptive changes we observed.

Is there any role for a forward model in adaptation?
While we have argued that implicit adaptation does not result
from the inversion of an updated forward model, it is important
to clarify that we are not arguing against the existence of forward

models. In addition to learning, Karniel (2002) delineates two
other major roles for the forward model: “output predictor” and
“forward dynamic model,” which both relate to real-time predic-
tion. Our study does not question either of these two roles. In
fact, there is substantial evidence, both behavioral and neuro-
physiological, that the brain uses an internal forward model to
maintain an estimate of the state of the body (Miall et al., 2007;
Ebner and Pasalar, 2008; Wagner and Smith, 2008; Bhanpuri et
al., 2013; Herzfeld et al., 2018), and that these estimates can be
updated in the presence of a perturbation (Synofzik et al., 2008;
Cressman and Henriques, 2010; Izawa and Shadmehr, 2011).
This state estimate is critical for maintaining stable control of the
body using an existing policy in the presence of signaling delays.

Finally, forward models may also be indirectly important for
learning even if they do not directly update motor commands.
Implicit adaptation seems to be driven by sensory prediction
error (Mazzoni and Krakauer, 2006; Taylor et al., 2014; Leow et
al., 2018), which itself implies a sensory prediction,, which, pre-
sumably, arises as the output of a forward model. Therefore,
although changes to the forward model do not directly influence
action selection, they may provide the error with which the pol-
icy is updated.

Neural basis of implicit adaptation
A long-standing theory of the neural basis of adaptation suggests
that internal models for motor control are encoded in the
strengths of synaptic connections between cerebellar Purkinje
cells and parallel fibers. When an error is experienced, strong dis-
charges from climbing fibers (originating in the inferior olive)
carry error information to the corresponding Purkinje cells. The
resulting complex spike activity may in turn alter the strength of
parallel-fiber connections in such a way as to update the internal
model (Albus, 1971; Marr and Thach, 1991). Recent findings
about the role of cerebellar Purkinje cells in adaptation in the
oculomotor system shed more light on how such a mechanism
might work (Herzfeld et al., 2018). Specifically, error-signaling
complex spikes seem to result in changes to simple spike activity
in Purkinje cells only along the dimension of the preferred error
of the particular cell, with cells responsive to leftward errors only
resulting in rightward shifts in motor output and vice versa.
These findings are not necessarily incompatible with direct pol-
icy learning, as such hard-wired associations between error
direction and correction direction could account for an inflexible
learning rule.

Many prior attempts to understand the neural basis of adap-
tation have often appealed to the idea that adaptive forward
models are integral to the implicit adaptation of behavior. Our
findings challenge this idea and should have important implica-
tions for future attempts to understand the neural basis of
implicit motor adaptation.
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