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Abstract

Complex brain disorders are highly heritable and arise from a complex polygenic risk architecture.
Many disease-associated loci are found in non-coding regions that house regulatory elements.
These elements influence the transcription of target genes — many of which demonstrate cell-type
specific expression patterns — and thereby affect phenotypically relevant molecular pathways.
Thus, cell-type specificity must be considered when prioritizing candidate risk loci, variants, and
target genes. This Review discusses the use of high-throughput assays in human-induced
pluripotent stem cell (hiPSCs)-based neurodevelopmental models to probe genetic risk in a cell-
type and patient-specific manner. The application of massively parallel reporter assays (MPRAS)
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in hiPSCs can characterize the human regulome and test the transcriptional responses of putative
regulatory elements. Parallel CRISPR-based screens can further functionally dissect this genetic

regulatory architecture. The integration of these emerging technologies could decode genetic risk
into medically actionable information, thereby improving genetic diagnosis and identifying novel
points of therapeutic intervention.

Introduction

Advances

Risk for the development of neuropsychiatric and neurodevelopmental disorders is largely
polygenic; highly penetrant rare variants underlie disease in only a minority of cases 1-3.
With roughly 500 loci identified from PGC Genome Wide Association Studies (GWAS; For
aglossary of termsused in the Review, see Box 1) across psychiatric disorders already
4-15 making an inference about the biological impact from the growing lists of GWAS
variants remains difficult (Table 1)18. The overwhelming majority of identified genetic
variants lie within non-coding or unannotated regions of the genome’. Candidate risk loci
in non-coding regions are often regulatory elements, such as enhancers and promoters, that
influence phenotype through transcriptional modulationl8. Enhancers are known to underlie
the patterning of gene expression that is important for cell identity, development, aging, and
cell-type specific response to the environment. They are putative drivers of disease-related
symptoms and represent largely unexplored avenues for therapeutic intervention, but the
functional characterization of regulatory elements on a meaningful scale remained
inaccessible 18,

In this Review, we discuss novel functional genomic strategies that can be applied to conduct
large-scale validation and unbiased identification of disease-associated risk loci in a cell-
type-specific and genotype-dependent manner. We first introduce human-induced pluripotent
stem cells (hiPSCs; Box 1) — a method already used to model the cell-type specific risk for
neurodevelopmental and neuropsychiatric disorders, including schizophrenia (SCZ), bipolar
disorder (BIP) and autism spectrum disorder (ASD) 1920 — as a unique platform for
studying psychiatric disease risk. We then outline advancements in high-throughput
techniques that evaluate gene regulatory architecture (mainly Massively Parallel Reporter
Assays (MPRAs; Box 1) and multiplexed CRISPR-Cas9-based screens) and consider the
novel cell-type-specific applications that are made possible by using hiPSCs. Together, these
technologies provide an opportunity for en masse identification and characterization of cell-
type and donor-specific regulatory contributions to complex brain disorders (FIG. 1).

in computational genetics

Genomic approaches focus on deciphering the biological relevance of genetic variants and
predicting their influence on phenotype. Genome-wide association studies (GWAS) identify
genetic variants (single nucleotide polymorphisms; SNPs; Box 1) with allele frequencies
that differ between cases and controls or with the presence of a phenotype. However, it
remains challenging to resolve the direct biological consequence(s) of disease-associated
variants. Computationally derived hypotheses require rigorous validation to confirm the
precise targets and predicted biological relevance of potential risk variants. To date, the
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discovery of putative risk variants and candidate genes far outpaces the capacity for
biological validation.

Prioritization of candidate variants

Large-scale GWAS take advantage of linkage disequilibrium (the nonrandom coinheritance
of genetic variants; LD; Box 1) to identify the thousands of genetically associated SNPs
implicated in polygenic psychiatric disorders 2. Although such studies are able to produce
lists of candidate genes, the majority of significant SNPs identified by GWAS for
neurodevelopmental and neuropsychiatric diseases are located in non-coding regions that
may act as cis- or trans-acting expression quantitative trait loci (eQTLs; Box 1) 22. The list
of associated variants identified by GWAS remains long, and thus requires further
computational prioritization and development of techniques that are able to functionally
validate SNPs en masse.

Two classes of methods exist to infer the impact of GWAS SNPs on higher-order biology.
First, single-variant approaches, which largely rely on colocalization of GWAS signals with
expression enrichment for cis-eQTLs (e.g. SMR 23, COLOC 2425 ENLOC 25, pw-gwas 27,
PAINTOR 28, FINEMAP 2%, MOLOC 30), are robust and statistically rigorous methods.
However, single-variant based models do not necessarily recapitulate what we know about
eQTL architecture, namely, that a large proportion of genes are under multi-variant
regulation 31. A second set of methods, which use joint models to calculate genetically
regulated gene expression, takes into account this multi-variant regulation of potential target
genes (TWAS 3233 prediXcan 3435 FUSION 32, CAMMEL 36, etc, jointly described as
transcriptomic imputation (TI; Box 1)). Tl studies predict trait-associated gene expression
by integrating GWAS summary statistics with eQTLs. This integration of genotypic,
transcriptomic, and phenotypic information can help prioritize genes that were indicated in
the initial GWAS results for functional follow-up.

Improving the prediction of target genes

Together, such ‘fine-mapping’ studies have significantly advanced the understanding of the
relationship between SNPs and transcriptomic responses associated with various traits and
diseases, including psychiatric and neurodevelopmental disorders such as SCZ 23:31.37, Fine-
mapping studies have also revealed that SNPs within a non-coding region that are
significantly associated with a disorder are not always predictive of expression changes of
the most proximal gene. Indeed, SNPs may regulate expression of a more distal gene, and
non-coding SNPs may regulate gene expression more than variants within the gene itself 22,
For example, the post-mortem transcriptomic analysis of dorsolateral prefrontal cortex
(DLPFC) (Common Mind Consortium, CMC) demonstrated that only ~20% of the identified
SCZ risk loci had common variants that could actually explain expression regulation 37
Further fine-mapping identified five loci whose variants modulated the expression of a single
gene, effectively funneling a list of hundreds of candidate genes to prioritize those most
closely associated with brain-region specific eQTLs 37. Thus, it is critical to consider these
points when selecting candidate genes for functional validation.
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Identifying risk loci with more-moderate effect sizes requires high-powered GWAS; and
linking significant loci with tissue-specific gene expression requires these databases to be
widely available. Gene-Tissue Expression (GTEX) Project 38 is one such comprehensive
transcriptome dataset; it includes DNA and RNA sequencing results from multiple tissues in
~1000 individuals. The GTEx Consortium has characterized gene-expression variability
across a thousand individuals, diverse tissues and specific cell types, demonstrating the
genetic effect on gene expression throughout the human body 3840, Integration of transcript-
level information from GTEX with gene-level information from large-scale sequencing
studies provides insights into the molecular mechanisms through which associated SNPs
affect phenotype. PrediXcan is a gene-level prediction method that effectively estimates the
underlying genetic determinants of gene expression based on the existing GTEX database
3441 These predictive models enable gene-based testing for phenotypic associations, so as
to explore the role of gene regulation in disease risk in a tissue-specific manner. The utility
of these predictive models in providing insight into psychiatric disorders has been validated
for autism and schizophrenia 354142 Qverall, advances in large-scale genomic and
transcriptomic analyses have elucidated novel candidate genes that had initially been missed
by traditional GWAS studies, and have revealed tissue-specific elements of disease risk that
were previously left unexplored32,

Mapping risk loci to specific brain cell types

Despite these advances, the mechanisms that drive tissue and cell-type specific contributions
to complex brain disorders remains an ongoing area of research 43, with much yet to be
discovered. Developments in single-cell RNA sequencing (ScCRNAseq) provide the
opportunity to probe previously unexplored cell-type specific elements of susceptibility to
psychiatric and neurodevelopmental disorders 444%, Gene-expression profiles from
scRNAseq can help to ‘map’ transcriptomic profiles (specific gene-expression patterns) of
individual cell types to eQTL analyses of the genetic risk for different disorders 394648 For
example, genetic susceptibly for Alzheimer’s Disease (AD) 4749 and Multiple Sclerosis
(MS) 49 is enriched in genes expressed by microglia, genetic risk for SCZ and ASD is shared
mainly between interneurons and pyramidal neurons 4349, and intellectual ability is
distributed among a range of cell types 14°. Genetic risk appears to be uniquely associated
with each cell type, which indicates cell-type specific biological roles with respect to the
etiology of, for example, SCZ 43, This preponderance of risk in specific cell types hints at a
cell-type-of-origin for each disease, but need not reflect the cell types(s) in which aberrant
function ultimately leads to clinical pathology, particularly given that late-stage AD, SCZ,

and ASD lead to pathological changes in all major brain cell types, albeit to varying degrees
49

Modeling cell-type specific risk in vitro

With the ever-expanding list of disease-associated candidate loci, variants, and genes, there
is a critical need for scalable platforms that can more rapidly map predicted associations
while still maintaining biological relevance. Post-mortem analyses can be highly confounded
by clinical and biological variables, such as increased inflammatory signaling, medication-
induced changes and other pathological changes stemming from long-term disease, and do
not allow for experimental manipulation. Avoiding these confounds, donor-specific hiPSC
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cohorts are an accessible platform for mapping cell-type specific risk, and when combined
with genome engineering, they can empirically demonstrate the causal impact of genetic risk
variants on a cellular phenotype 3051 (FIG. 2, 4).

Population-scale cell-type specific profiling in hiPSC-derived neurons and glia is now
possible 5253, by applying scRNAseq to pooled populations of hiPSC-derived cells from
genotyped donors. A clever example of this, Census-seq, provides a method for
simultaneously measuring cell-type specific phenotypes from dozens of donors by
quantifying the presence of each donor’s DNA in cell “villages’ 4. Such pooled hiPSC
approaches will greatly expand the scale to which cell-type and donor-specific
transcriptomic profiles can be generated.

Challenges of validating non-coding regions

The continuing discovery of the layered influences on genomic risk, including tissue and
cell-type specificity, has motivated the development of more-complex multivariate prediction
analyses 4255, Despite the rapid evolution of computational techniques to predict genomic
and environmental contributions to disease, it remains difficult to precisely link loci, SNP
variants, and gene expression to phenotypic variability. Many factors hinder the functional
validation of promising targets. The function of non-coding regions is difficult to screen, not
just because of the exhaustive number of potential variants, but also because single-
nucleotide mutations may not lead to a detectable phenotype. SNP location alone is
insufficient to identify potential gene targets, as enhancers/promoters can regulate both distal
and proximal genes or may ‘skip’ the nearest gene to regulate the next one. Regulatory
elements also modulate gene expression in a tissue and cell-type specific manner that may
vary based on an individual’s genetic architecture; this requires candidate genes to be both
computationally identified and validated in the appropriate context. These barriers make the
functional translation from associated SNPs to the cell-type and patient-specific etiology of
disease difficult to address 22. Yet with improvements in integrated and parallel screening
techniques, and their adaptation for use in hiPSC-based models, researchers will be able to
functionally characterize human regulatory sequences enmasse (FIG. 1).

Functional validation of regulatory elements

CRISPR-based systems for the independent validation of top eQTLs

The application of clustered regularly interspaced short palindromic repeats (CRISPR)-
Cas9-based systems in hiPSC-based models provides a platform for the functional validation
of candidate GWAS and eQTL loci and the excavation of the genetic and transcriptomic
architecture underlying the development of neuropsychiatric disorders 595657, The use of
human-derived cell populations enables researchers to sample from rich, heterogenous
genetic backgrounds and provides the unique opportunity to model susceptibility for the
development of neuropsychiatric and neurodevelopmental disorders in a donor-dependent
and cell-type specific fashion 19:58, hiPSC methodology can generate diverse brain-cell types
with relevant phenotypic measures while accurately capturing a patient’s genetic
background and providing a platform for experimental manipulation (FIG. 2, BOX 2).
CRISPR-Cas9-based systems provide a toolbox of techniques for exploring function at the
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level of the genome, epigenome, and regulome. Many of these systems have successfully
been applied in hiPSCs to probe the functional effects of common and rare variants in
human-derived neurons 5759, The repertoire and applicability of CRISPR-Cas9-based
systems for genomic and epigenomic evaluation is expanding rapidly.

CRISPR-Cas9-mediated point mutations by base editing or prime editing makes it feasible
to induce allelic conversion at specific (rare or common) loci in hiPSCs derived from case/
control cohorts 60.61, CRISPR-dCas9 enables one to fuse transcriptional repressors such as
KRAB (CRISPRi) 6263 or activators such as p300 %4, VP16%° and VPR %6 (CRISPRa) to a
catalytically inactive (dead-Cas9, dCas9), resulting in down-regulation or up-regulation of
transcriptional activity at candidate risk eQTLs, respectively 67. CRISPRa/i facilitates high-
throughput functional assays in hiPSC-derived brain-cell types manipulate gene expression
without completely knocking in or out a gene, thereby better recapitulating the influence a
disease-associated SNP may have on transcription %8, CRISPRa/i has been successfully used
to endogenously perturb the expression of candidate genes for complex brain disorders in
populations of hiPSC-derived NPCs, neurons, and astrocytes 0. Both perturbation
techniques have also been employed for functional validation of candidate genes prioritized
by expression—-trait association studies.

For example, we recently applied CRISPR-mediated engineering to probe the biological
function of top-ranked SCZ SNPs and genes in isogenic hiPSC-derived neurons, resolving
pre- and post-synaptic neuronal deficits, recapitulating genotype-dependent gene expression
profiles and identifying convergence and additive relationships between SCZ genes 9.
Altogether, work by ourselves and others 50:59.68-73 has established that the integration of
CRISPR-based genome engineering with patient-specific hiPSCs provides an experimental
platform for determining the phenotypic consequences of the cell-type-specific perturbation
of computationally prioritized risk variants and genes.

Massively Parallel Reporter Assays to evaluate regulatory elements en masse

CRISPR-editing can link GWAS-associated variants to genes to phenotypes, but only for a
handful of top predicted SNPs. To evaluate how accurate our computational strategies truly
are, the association between many variants and target gene(s) needs to be empirically tested
in an unbiased manner. Regulatory elements, potentially the major driver of psychiatric
disease risk, are an untapped source for novel therapeutic development; this again highlights
the need for functional assays that can both validate associations between risk variants and
candidate genes and characterize their regulation of both proximal and distal target genes
that may be missed by predictive models.

Specifically, non-coding or exonic variants, which are highly enriched in genome-wide and
expression-trait association studies, are frequently located within predicted regulatory
elements. Causal eQTL variants are frequently enriched in DNase-1 hypersensitive sites and
in regulatory regions such as active promoters, enhancers, and TF binding sites 22:45.74,
Enhancers temporally and spatially regulate the level of expression of their target genes in a
tissue and cell-type specific manner 47. However, the precise gene targets of enhancers and
other regulatory elements remains an open area of investigation, as does their functional
contribution to psychiatric phenotypes.
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While there are genomic technologies that can rapidly detect random nucleotide variation
within presumed regulatory regions, assays that provide large-scale characterization of the
transcriptional shifts produced by these variations have only recently been developed. One
such development, ‘Gigantic’ Parallel Reporter Assay (GPRA) expanded on past
experiments using random DNA — such as the systematic evolution of ligands by
exponential enrichment (SELEX) — to test regulatory sequences at a large scale 7, GPRAs
can measure expression levels associated with each of hundreds of millions of random DNA
sequences per experiment. In a study performed in yeast, this method was able to generate
large-scale expression profiles that were subsequently applied to develop genome-wide
models of cis-regulatory logic’6-78. Similar high-throughput reporter assays, generally called
Massively Parallel Reporter Assays (MPRAS, FIG. 3, Table 2), enable the en masse
screening of millions of nucleotide variants within thousands of sequences for enhancer or
promoter activity 727980, In addition to identifying non-coding regulatory regions, MPRAs
have been employed to identify exonic enhancers 7 and enhancer/promoter interactions
81.82 First developed /n vitro with synthetic promoters, such high-throughput screens for
regulatory-element activity have only recently been applied in mammalian brain cells 83.84,

Interrogating prioritized regulatory regions with cell-type specificity

MPRA strategies can evaluate putative causal eQTLs that overlap with significant GWAS
loci for complex brain disorders8>86, A study that tested 342,373 sequences (including
multiple barcodes per variant), encompassing 3,642 SCZ and AD associated cis-eQTLs and
controls regions, identified 843 variants with transcriptional shifts notable between mutant
alleles, 53 of which were well-annotated risk variants for multiple traits 8. In a follow-up
for a single eQTL, the MPRA findings were validated by CRISPR/Cas9-guided allelic
replacement. This demonstrates the potential for MPRAS as tools to evaluate the
contributions of regulatory regions to developmental risk for complex disorders like SCZ
and AD. However, it should be noted that these experiments were performed in two cancer
cell lines; adapting MPRAs for use in brain cells, especially those derived from cases and
controls, will be critical towards understanding cell-type-specific models of regulatory logic
in contexts of greater clinical relevance.

A study aiming to decipher the changes in the regulome that occur during neuronal
maturation used lenti-MPRA to test the activity of 2,464 candidate regulatory sequences
across seven time points during the differentiation of human embryonic stem cells (hESCs)
to neural cells 83, indicating the potential for MPRAS to be adapted for use in neuronal cells.
The successful use of MPRAs and parallel high-throughput sequencing techniques in
hESCs-derived neural cells and neural precursor cells 84:87 is a promising step towards their
wider application in hESC- and hiPSC- derived cell populations. Particularly exciting is the
potential for development of massively parallel sequencing protocols in patient-derived
hiPSC-based models that would enable cell-type specific and donor-dependent identification
of regulatory elements in complex brain disorders. Similarly, since hiPSC-derived neurons
are already used to model human cortical development 84:87-89 applying these techniques in
temporal analyses of hiPSC-derived cells may elucidate early developmental factors
involved in the etiology of psychiatric disorders .
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Integrated approaches to account for endogenous context

While MPRAs provide a momentous expansion in our ability to evaluate regulatory activity,
the context of endogenous location — such as 3D chromatin structure, transcription
associated domains (TADs) and other regulatory sites — is lost in this approach. By
integrating MPRA, ChIP-seq, RNA-seq, ATAC-seq, and HI-C data, regulatory elements can
be identified in their endogenous context. A recent study illustrated the power of integrating
approaches when it identified substantial (26-29%) overlap between allele-specific open
chromatin (ASoC) variants and the non-neuronal MPRA SCZ and AD SNP dataset
discussed above [see®]73. Using hiPSCs of 20 individuals with heterozygous GWAS SNPs
at between 70 to 108 SCZ risk loci, ATAC-seq and RNA-seq was performed in NPCs,
glutamatergic neurons, -y-aminobutyric acid-releasing (GABAergic) neurons, and
dopaminergic neurons to map cell-type specific ASoC variants®”. Future MPRA studies
probing SCZ candidate SNPs in hiPSC derived brain cell-types could leverage this extensive
dataset, and other existing datasets, to provide vital endogenous context.

An additional limitation of MPRA strategies is that most MPRAS contain DNA fragments
between 145-170 bp in length, which may not encompass the boundaries of putative
regulatory elements, i.e. the length of the sequence flanking the SNP. This technical
constraint in MPRA design has been somewhat addressed in recent methodological
improvements 79:91.92_ For example, a novel tiling-based MPRA approach called Systematic
High-resolution Activation and Repression Profiling with Reporter-tiling using MPRA
(Sharpr-MPRA) interrogated 4.6 million nucleotides across 15,000 regulatory regions
prioritized from genome-wide epigenomic maps 92 and demonstrated that endogenous
chromatin states and DNA accessibility predict regulatory function. By designing hundreds
of oligos, each differing by shifting a 5-30 bp window, to ‘tile’ around each regulatory
element the researchers were able to resolve a longer portion of the sequences flanking these
regions.

To summarize, MPRASs provide the opportunity to validate the influence of variants in
regulatory elements on gene regulation, but they fail to recapitulate structural context or the
full size of regulatory elements — two aspects that demand thoughtful consideration given
the importance of the epigenetic landscape and appropriate boundaries to the activity of
regulatory regions. From a reverse-genetics perspective, the application of massively
parallel, combinatorial techniques that integrate MPRA data with other sequencing
techniques [as in 73:83.92] are crucial to validating the contributions of regulatory sequences
in the context of cell-specific genetic architecture. The generation of detailed cell-type
specific datasets in neuronal sub-populations, will be vital to contextualizing MPRA outputs.

Due to the overwhelming number of currently unannotated non-coding regions of the
genome, there is an equal need for unbiased discovery and characterization of regulatory
elements. Forward-genetic MPRA screens for enhancer activity of millions of sequences
have the potential to provide insight into cell-type specific genetic architecture underlying
disease. When integrated with other high-throughput sequencing datasets, MPRA data can
identify novel genetic interactions and give an indication of their biological relevance.
However, MPRAs are unable to align regulatory elements in the context of endogenous loci
and, similar to putative loci identified by computational methods outlined previously,
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MPRA-derived hypotheses and models of cis-regulatory logic require rigorous functional
validation.

CRISPR perturbation screens for further interrogation of enhancer-gene interactions

Regulation of gene expression is complex; it is orchestrated by an interplay of elements such
as promoter/enhancer sequences, transcription factors, epigenetic markers, and chromatin
accessibility. Interactions between regulatory elements and targets depend not only on the
length of the linear sequence separating the variant from the gene and on the regulatory
activity of a genetic variant, but also on the epigenetic context in which the risk variant and
target genes are found. For example, histone modifications, chromatic looping, and
heterochromatin status all influence the extent to which regulatory variants impact their
target genes. The activity of regulatory elements identified by MPRA datasets, which are
performed in artificial reporter vectors, must therefore be further validated at endogenous
loci. CRISPR-based screens are increasingly applied to query variant—gene interactions in
the context of the broader genomic architecture and can help validate a subset of interactions
identified by MPRAs.

While CRISPR/Cas9-based studies have successfully validated candidate eQTLs ina
genome-specific context 20:61.69.93-95 thejr scalability is limited. Until recently, such studies
focused on perturbing only the top few candidate genes. However, the scalability of reverse
genetic screens using CRIPSR perturbation is rapidly increasing. Multiplex eQTL-inspired
frameworks leverage CRISPR systems to map enhancer—gene pairs 46:48.96-98 Thjs
multiplex enhancer—gene pair screening technique introduces random combinations of
CRISPRa/i perturbations to each of many isogenic cells, thus noticeably increasing the
screening power. When this screening is followed by single-cell RNA sequencing (SCRNA-
seq), an association framework analogous to that used to identify conventional eQTLs can
then map both cisand trans effects on gene expression 68:81.93.95.99 Thijs approach was
validated in a human chronic myelogenous leukemia cell line (K562) using CRISPRi, and
was scaled to target 5,779 candidate enhancers with roughly 28 CRISPR-mediated
perturbations per single-cell transcriptome; it identified 664 c/s-human enhancer—gene pairs,
including 24 candidate enhancers paired with multiple known target genes*®. Aiming to
specifically predict enhancer—gene interactions in a cell-type specific manner, another study
combined CRISPRI, RNA fluorescence in situ hybridization (RNA-FISH; Box 1), and flow
cytometry to test more than 3,500 potential enhancer—gene connection for 30 genes of
interest in K562 cells 81, Here, an activity-by-contact (ABC; Box 1) model coined CRISPRi-
FlowFISH predicted complex enhancer—gene connections across thousands of non-coding
candidate variants.

CRISPR interference and activation platforms have also been adapted for the use of genome-
wide application®899, For example, pooled CRISPRa screens identified novel and
established transcription factors involved in driving mouse epiblast and embryonic stem cell
reprogramming and neuronal fate 100.101 CRISPR perturbation platforms have additionally
been applied in human cancer cell lines 4681, human ESC-derived neuronal progenitor cells
(NPCs) 83, and hiPSC-derived neurons 68:99. These approaches further advance the
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scalability of CRISPR-based screens for the functional validation of regulatory elements in
disease (FIG. 4).

To summarize, the development of multiplexed enhancer—gene pair screens make it feasible
to functionally characterize the daunting number of candidate regulatory elements, since
such screens have been reported to target roughly 6,000 candidate enhancers and evaluate
their interaction with more than 10,000 expressed genes 46. Continued advancements in
massively parallel high-throughput enhancer—gene mapping will increase our screening
power further, providing the ability to catalogue novel enhancer—gene interactions with cell-
type specificity. The translation of MPRASs and multiplexed CRISPR-based screening
techniques to hiPSC-based models provides a platform for both a prioriidentification and
characterization of previously unknown regulatory sequences en masse. New reverse-genetic
applications achieve validation of thousands of candidate regulatory elements contributing to
disease susceptibility in a donor-dependent and cell-type specific manner.

Implications, impediments, and improvements

While massively parallel high-throughput screens represent a notable advancement in
mapping and validating enhancer-gene interactions, these approaches are not without their
weaknesses. A full appreciation for the genotype- and cell-type-dependent contributions of
the regulome to disease requires the acknowledgment of limitations in the approaches
attempting to characterize them.

A major caveat of MPRA data is the loss of information regarding endogenous location. As
discussed above, one way to address this is to merge parallel high-throughput techniques
(such as described above for MPRAs, CRISPR screens, ATAC-seq, SCRNA-seq, etc.).
However, in the general context of large-scale parallel approaches, challenges are likely to
arise from disagreement among heterogenous classes of data %. But while contradicting
findings may muddy our functional understanding of some variants, convergence of results
from heterogenous datasets will bolster confidence for others. Additionally, the relatively
short DNA fragments flanking prioritized variants for GWAS and eQTL-based MPRAS may
omit crucial portions of larger regulatory regions. Adaptations to MPRA designs have begun
to address this limitation 79.91.92,

When considering the challenges of characterizing the disease-related influences of
regulatory elements, it is important to acknowledge that these approaches largely associate
enhancer activity with the modulation of net gene transcription. Regulatory elements may in
fact have a more nuanced biological function that is overlooked by current screening
techniques 96, which may also vary in a tissue or cell-type dependent manner, with further
implications for disease risk. Although briefly touched upon here, the limitations of these
approaches and the impediments facing their progression are more comprehensively
addressed in recent reviews 17:96.102

Conclusion

While computational genomics and high-throughput sequencing of the transcriptome and
epigenome has rapidly expanded our capability to identify regulatory elements, the sheer
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number of these regions in the human genome makes it difficult to functionally characterize
and validate all predicted enhancer—gene connections. Recently, the successful application of
massively parallel techniques (through harnessing the power of MPRAS, multiplexed
CRISPR-based screens, and high-throughput sequencing 46:75:81.83.95) has expanded the
realm of possibility for both mapping and predicting the human ‘regulome’.

Already applied in human cancer cell lines 46:81 human ESC-derived neural cells 83, and
human neural stem and progenitor cells 8487 the application of massively parallel techniques
in patient-specific hiPSC-derived populations of neurons, glia, and brain endothelium will
enable cell-type specific and donor-dependent identification of enhancer/promoter
interactions and gene connections implicated in complex brain disorders. Combining
computational genomics with high-throughput sequencing, MPRAS, and CRISPR-based
screens could, when applied to hiPSC-based neuronal models and brain organoids, provide a
cell-type specific catalogue of human regulatory architecture underlying
neurodevelopmental and neuropsychiatric disorders.
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Box 1:
Glossary
Epigenome:

The changes in a cell or organism caused by modification of gene expression rather than
alteration of DNA sequences directly.

Regulome:

The whole set of regulatory components in a cell, including regulatory elements, genes,
mRNASs, proteins, and metabolites

Transcriptome:

the whole set of all RNA molecules in a cell or a population of cells. Depending on the
experiment or method, is may refer to only as subset of RNAs, such as mMRNAs.

Genome Wide Association Studies (GWAYS):

Association studies that identify single nucleotide polymorphisms (SNPs) with allele
frequencies that systematically vary as a function of phenotypic trait values (i.e.
schizophrenia, alcohol use, depression).

Single Nucleotide Polymor phism (SNPs):

DNA variations, or polymorphisms, in a single nucleotide at a specific position in the
genome that a present in more than 1% of the population.

Linkage Disequilibrium (L D):

When genetic variants are in linkage disequilibrium, the haplotypes occur at unexpected
frequencies indicating there is a non-random association between the alleles.

Haplotype:

a set of polymorphisms or alleles that that are either inherited together at a level greater
than what is expected by chance, or that reside on the same chromosome.

Expression Quantitative Trait Locus (eQTL):
SNPs that explain variation in the mRNA expression levels.
Transcriptomic imputation (TI) studies:

Studies that predict trait-associated gene expression by integrating eQTL and GWAS
statistics.

Massively Parallel Reporting Assay (MPRA):

A platform allowing for tens of thousands of short DNA sequences to be assayed
simultaneously by first synthesizing DNA oligos on an array, integrating them into
plasmids and inserting into cells.

Human-Derived Induced Pluripotent Stem Cell (hiPSC):
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Cells derived from Human skin or blood cells that are reprogrammed back into a
pluripotent state, providing an unlimited source of stems cells that may differentiated into
any type of human cell needed for therapeutic purposes.

Embryonic Stem Cell (ESC):

Stem cells derived from embryonic tissue. They are pluripotent, meaning they maintain
the ability to differentiate into any derivative of the three primary germ layers: endoderm,
ectoderm, mesoderm.

RNA fluorescencein situ hybridization (RNA-FISH):

An assay to visualize single RNA molecules per individual cells in fresh, frozen, or
embedded tissue samples through the application of modified situ hybridization (ISH)
methods.

Activity-by-Contact (ABC) Model:

A model based on enhancer activity by enhancer-promoter 3D contacts that can predict
enhancer-gene interactions in a given cell type based on the respective chromatin state
maps.

Nat Neurosci. Author manuscript; available in PMC 2021 April 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Townsley et al.

Page 20

Box 2:
Overview of brain-cell types accessible through hiPSC-based methods

Patient peripheral blood mononuclear cells (PBMC)103, skin or dura fibroblasts 104,105
can be used to derive hiPSCs, providing an accessible and inexhaustible source of stem
cells to model risk predisposition in a donor-dependent and cell-type specific manner
(FIG. 1)19. In the context of the brain, current protocols are capable of differentiating
hiPSCs into multiple neuronal subtypes (neural progenitor cells (NPCs), forebrain
interneurons 88, and glutamatergic 196, midbrain dopaminergic 197, GABAergic neurons
108,109 and serotonergic neurons 119), as well as neuro-endothelial (glial) cells
(astrocytes 111, oligodendrocytes 112), brain microvascular endothelial cells
(encompassing the blood-brain barrier 113), and hematopoietic cells (microglia 103).
CRISPR-based methods can also be used to induce differentiation. A lenti-virus
CRISPRa technique has been used to induce expression of transcription factors to drive
the differentiation of GABAergic neurons from hiPSCs 198, Three-dimensional co-
culturing techniques 114115 and development of brain organoids 8 can model complex
interactions among cell types. Importantly, patient-derived hiPSC neurons can produce
cellular phenotypes 69 and transcriptomic signatures that are concordant with post-
mortem data 116, While high-throughput sequencing methods can probe the molecular
effects of risk variants and candidate gene interactions, methods that assess cellular
phenotypes /n vitro provide an understanding of how these molecular disruptions
influence brain development and function. For example, electrophysiology can assess the
electrical properties of single cells, and micro-electrode arrays (MEA) measurements
assess firing events, burst patterns, and the activity development of iPSC-derived
networks 69117 Advances in high-content imaging enable the assessment of other
phenotypic aspects such as neurite outgrowth, synaptic development, and apoptosis, and
calcium imaging provides measurement of cellular differentiation and activity 8. A
remaining challenge for iPSC-based models is to establish how cell-type specific
phenotypes in vitro relate to disorder-associated phenotypes in the adult patient brain.
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Figure 1: Framework for using massively parallel reporter Assays (MPRAS) to characterize
putative regulatory elementswith cell-type specificity.

An MPRA library can be designed to include disorder-associated SNPs within putative
regulatory elements that have been prioritized through genome-wide association studies
(GWAS) and Transcriptomic Imputation (T1) analyses. Patient fibroblasts or peripheral
blood mononuclear cells (PBMCs) can be induced into a pluripotent state (hiPSCs). With
further adaptation, lenti-MPRA libraries could be integrated into hiPSC-derived mature
brain cells. By comparing DNA and RNA sequencing of these cells, MPRAs provide a
readout of transcriptional differences between the alleles present in patient versus control
populations. If transcriptional shifts exist between variants at a specific region, the
transcriptional influence of that SNP can be characterized in the context of genetic risk for a
disorder.
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Figure 2: Human-derived induced pluripotent stem cells (hiPSCs) provide a cell-type specific
and donor-dependent platform for the study of neurogenomics.

By reprogramming patient and control fibroblasts or peripheral blood mononuclear cells
(PBMCs), hiPSCs can be stored and accessed as an almost unlimited source for
experimental manipulations. Numerous protocols exist for inducing hiPSCs to differentiate
into multiple brain cell types, including astrocytes, oligodendrocytes, microglia, GABAergic
neurons, glutamatergic neurons, excitatory forebrain neurons, and dopaminergic neurons, as
well as brain endothelium. MPRAs, CRISPR-based screens, and CRISPR-based single edits
applied in hiPSC models enable cell-type and donor-specific exploration and perturbation of
candidate variants and target genes. [CREST-seq: Cis-regulatory element scan by tiling-
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deletion and sequencing, CRISPR: , FISH: Fluorescent in-situ Hybridization, MPRAs:
Massively Parallel Reporter Assays, MOSAIC-seq: MOsaic Single-cell Analysis by Indexed
CRISPR Sequencing, ScanDel: A CRISPR-based system that programs thousands of
deletions that scan across a targeted region in a tiling fashion.]
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Figure 3: Outline of the Massively Parallel Reporter Assay (M PRA) wor kflow.
Short 180bp oligos are synthesized by cleavage of single-stranded DNA (ssDNA) from the

array. Through emulsion PCR, the 180bp ssDNA oligomers are amplified, barcoded, and
converted to double-stranded DNA (dsDNA). dsDNA oligomers are assembled into an
empty report vector, creating an MPRA library. The plasmids are fluorescently tagged by the
insertion of a GFP open reading frame and minimal promoter for transfection into the
desired cell type. RNA is isolated from transfected cells and the barcoded mRNAs are
captured and sequenced. Barcode counts are compared to the count estimates from the
sequencing of the plasmid library or sequencing of DNA captured simultaneously with RNA
to measure relative expression. Sequencing results from MPRAs can be integrated into
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sequencing information from other techniques, such as ATAC-seq, ChlP-seq, and Capture
Hi-C. Application of massively parallel and combinatorial methods in hiPSC models enables
the cell-type specific identification of novel regulatory elements as well as the validation of
unconfirmed candidates. [ATAC-seq: Assay for Transposase-Accessible Chromatin using
sequencing Capture Hi-C: A chromatin conformation capture technique that is target to
specific loci; and ChlP-seq: Chromatin immunoprecipitation followed by sequencing]
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Figure 4: CRISPR-Cas9-based forward genetic screens.
Tens of thousands of sgRNAs activating thousands of DNA-binding factors can be inserted

into a lentiviral sgRNA library through viral packaging, each containing a unique barcode
signaling its perturbation identity. Populations of donor hiPSC cells are then transfected with
the lentiviral sgRNA library and induced to differentiate into the cell type of interest. Once
the cells are mature, they can be phenotypically characterized in terms of, for example,
electrophysiology evaluated using Micro-electrode Arrays (MEAS) or traditional
electrophysiology, neuronal signaling activity through calcium imaging, morphology
evaluated by high-content imaging, and gene expression by single-cell RNA seq (SCRNA-

seq).
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Current PGC sample sizes and genetic discoveries across complex brain disorders.

Table 1:

Disorder Cases | Loci Reference
Major depressive disorder 246,363 | 102 Howard et al. 20192
Alzheimer's disease 71,880 29 Jansen et al. 2019°
Schizophrenia 67,000 | 270 | Consortium et al. 2020°
Anxiety disorders 51,000 3 Hettema et al. 20201
Bipolar disorder 29,764 64 Mullins et al 202010
Posttraumatic stress disorder 32,428 3 Huckins et al. 202015
Autism spectrum disorder 18,381 5 Grove et al. 20198
Attention-deficit hyperactivity disorder | 20,183 12 Demontis et al. 20194
Obsessive-compulsive disorder 2,688 0 Arnold et al. 20187
Eating disorders 16,992 8 Watson et al. 2019°
Tourette syndrome 4,819 1 Yu et al. 201913
Cross-disorder 232,964 | 109 Lee et al. 201916

*
A total of 497 risk loci have been identified by the PGC across these 11 brain disorders.
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