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ABSTRACT

Psoriasis is an immune-mediated inflammatory
skin disease associated with numerous inflam-
matory comorbidities, including increased car-
diovascular risk. The interleukin (IL)-23/IL-17
axis plays a central role in the immunopatho-
genesis of psoriasis and related comorbidities by
acting to stimulate keratinocyte hyperprolifer-
ation and feed-forwarding circuits of perpetual
T cell-mediated inflammation. IL-17 plays an

important role in the downstream portion of
the psoriatic inflammatory cascade. This review
discusses the distinct mechanisms of action of
IL-17 and IL-23 in the immunopathogenesis of
psoriasis and related comorbidities plus the
significant therapeutic benefits of selectively
inhibiting these cytokines in patients with
moderate to severe plaque psoriasis.
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Key Summary Points

Interleukin (IL)-17 and IL-23 are involved
in the immunopathogenesis of psoriasis
(PsO) and related comorbidities by acting
to stimulate keratinocyte
hyperproliferation and feed-forwarding
circuits of perpetual T cell-mediated
inflammation.

IL-17 and IL-23 have unique mechanisms
of action in the immunopathogenesis of
PsO.

Additionally, elevated levels of IL-17 and
IL-23 in patients with moderate to severe
PsO promote chronic subclinical
inflammation that increases the risk of
comorbidities.

Both IL-17 and IL-23 are implicated in PsA
pathogenesis; however, IL-17-mediated
inflammation may be more central in the
development of cardiometabolic
comorbidities and axial spondyloarthritis,
whereas IL-23 may be more important in
IBD immunopathogenesis.

Given the specificity of the IL-23/IL-17A
axis in modulating the differentiation and
activation of specialized cells involved in
skin and joint inflammation, selective
blockade of IL-23 and IL-17A is more
efficacious than traditional biologic
therapies in targeting the psoriatic disease
process.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide, to facilitate under-
standing of the article. To view digital features
for this article go to https://doi.org/10.6084/
m9.figshare.13521947.

INTRODUCTION

Chronic plaque psoriasis (PsO) is an immune-
mediated inflammatory disease characterized by
cutaneous, erythematous, indurated, scaly pla-
ques [1, 2]. PsO has been reported to affect 3.2%
of adults (C 20 years of age) in the USA [3]. It is
associated with multiple comorbidities, includ-
ing increased cardiovascular (CV) risk and pso-
riatic arthritis (PsA), plus many other systemic
conditions [4]. The cardiometabolic issues have
been shown to reduce the life expectancy of
patients with severe PsO by approximately
3–4 years [5].

PsO immunopathogenesis is driven by cir-
culating pro-inflammatory cytokines, including
tumor necrosis factor (TNF)-a, interleukin (IL)-
17, IL-23 and both type 1 and type 2 interferons
(IFNs) including IFNa/b and IFNc. These
cytokines are produced by T-helper (Th) cells
and activated dendritic cells (DCs) that infiltrate
the skin and remain as memory T cells in
lesional skin [6, 7]; this observation strongly
supports the well-known observation that PsO
lesions frequently recur in the same anatomical
area [8]. Upregulation of these molecular path-
ways stimulates keratinocyte hyperproliferation
and T cell-mediated inflammation [9, 10]. This
important inflammatory burden plays a signifi-
cant role in adding to the increased risk of
multiple inflammatory comorbidities [11].

The IL-23/IL-17 immune axis plays a central
role in PsO onset, perpetuation of disease and
development of PsA [12] and other inflamma-
tory comorbidities [13, 14]. This review dis-
cusses the mechanisms of action of IL-17 and
IL-23 in PsO immunopathogenesis and related
comorbidities and the benefits of biologic ther-
apies that inhibit these cytokines.

STATEMENT OF LITERATURE
SEARCH

For this narrative review, articles were identified
by a series of PubMed searches between August
2018 and August 2020. Search terms included
‘‘IL-17,’’ ‘‘IL-23,’’ ‘‘(IL-17 OR IL-23) AND (psori-
asis OR psoriatic arthritis OR PsA OR ankylosing
spondylitis OR axial spondyloarthritis OR
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axSpA OR psoriasis comorbidities),’’ ‘‘psoriasis
pathogenesis’’ and ‘‘psoriasis AND cytokines.’’
Publications detailing the roles of IL-17 and/or
IL-23 in the pathogenesis and pathophysiology
of PsO, PsA, ankylosing spondylitis (AS), non-
radiographic axial spondyloarthritis (nr-axSpA)
or associated comorbidities were included.
Irrelevant references were excluded from con-
sideration. References cited within the included
articles, as well as those previously known to
the authors, were considered based on these
criteria. This article is based on previously con-
ducted studies and does not contain any studies
with human participants or animals performed
by any of the authors.

ORIGINS OF THE IL-17 AND THE IL-
23 PATHWAYS

The IL-17 and IL-23 pathways are central to PsO
(Fig. 1) [15, 16]. TNF-a is a target of four
approved PsO therapies and plays an indirect
role in disease pathogenesis by promoting
adaptive immune effects of the IL-23/IL-17 axis
[17]. The role of IL-23 in PsO onset and con-
tinuation is considered to be due to its effects
on IL-17—a key effector cytokine of the feed-
forward inflammatory cycles that perpetuate
inflammation [15]. Such signaling loops are the
hallmarks of innate immune responses in
inflammatory and infectious diseases associated
with rash, fever, arthritis, skin inflammation,
osteopathies and central nervous system dam-
age [18].

IL-17 has more direct effects on DC distri-
bution and activation than TNF-a; however,
synergism between IL-17A and TNF-a modu-
lates keratinocyte gene responses in psoriatic
lesions [19, 20]. This interaction is further
amplified by IL-17C—the most highly expressed
IL-17 in psoriatic lesions [21].

Role of IL-17

In mammals, IL-17 comprises six homologs that
are considered to function as homodimers [22].
IL-17 is produced by Th17 cells in response to
stimulation by IL-23 and other cytokines [13].

In addition to Th17 cells, innate lymphoid cells
(ILCs), mast cells, neutrophils and cd T cells
may be independent sources of IL-17A produc-
tion in patients with PsO [23]. IL-17A is released
from neutrophils and mast cells during spe-
cialized immune-mediated cell death in which
proteins bind to chromatin threads to form
extracellular traps [24, 25]. However, data are
conflicting on whether neutrophils are a major
source of IL-17A in PsO; some studies demon-
strate IL-17A expression in highly purified
human neutrophils, while other studies have
failed to detect IL-17A [25–27].

In response to increased IL-17A expression,
cells with high concentrations of IL-17 recep-
tors release pro-inflammatory chemokines,
cytokines and antimicrobial peptides [28, 29].
The effects of immune cytokines as transcrip-
tional activators of keratinocyte gene products,
and auto-antigen stimulation of T-cell responses
create feed-forward inflammatory circuits that
perpetuate the T-cell activation and inflamma-
tion associated with PsO [15]. Stimulation of
keratinocytes by IL-17A triggers production of
C–C motif chemokine ligand 20, and other
chemo-attractants recruit CCR6? T cells,
including IL-17–producing T cells (T17), mature
myeloid DCs and other inflammatory cells. This
creates a cycle of ongoing inflammatory
responses [15, 30]. IL-17A also stimulates ker-
atinocytes to produce IL-19, leading to further
keratinocyte proliferation [15]. Cellular levels of
the auto-antigens cathelicidin (LL37) and a
disintegrin-like and metalloprotease domain
containing thrombospondin type 1 motif-like 5
(ADAMTSL5) [31] support this feed-forward
hypothesis, as IL-17A blockade decreases levels
of LL37- and ADAMTSL5-producing cells in
psoriatic lesions [32].

In patients with PsO in remission, tissue-
resident memory T cells in epidermal skin
compartments have the ability to maintain and
potentially drive disease recurrence [33]. Years
after withdrawal of successful PsO treatment,
CD8? tissue-resident memory T cells maintain
elevated levels of IL-17A, possibly driving
inflammation and recruitment of circulating
leukocytes into tissue with triggers of disease
[33]. It has recently been demonstrated that
oligoclonal populations of IL-17–producing T
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cells remain enriched in clinically resolved
psoriatic lesions; of pathogenic T cells identified
in active and clinically resolved psoriatic
lesions, C 99% were found to be ab T cells [34].

Role of IL-23

IL-23 is a heterodimeric cytokine that shares a
common p40 subunit with IL-12 and a p19
subunit common to IL-23 and IL-39 [35, 36].
The p40 and p19 subunits of IL-23 are overex-
pressed in PsO plaques, and variations in genes
encoding p19 and its receptor are associated
with an increased risk of PsO [35, 36].

IL-23 is produced by many types of cells,
including dermal myeloid DCs, macrophages
and epidermal Langerhans cells [15]. It is regu-
lated by Toll-like receptor signaling and is
enhanced by TNF-a, IFN-c and transcription
factors [37, 38]. The IL-23 receptor (IL-23R) is
expressed on memory T cells, natural killer cells,
neutrophils, mast cells, ILCs and macrophages
[38]. IL-23 binding to its cognate receptor forms
an IL-23/IL-23R complex that stimulates ILC
differentiation and triggers CD4?, CD8? and cd
T cells to synthesize IL-17 and other pro-in-
flammatory cytokines [39]. IL-23 also induces
macrophages to produce TNF-a, stimulates ker-
atinocyte proliferation in the absence of IL-17A
and promotes further IL-23R expression, thus
creating a self-amplifying loop [15, 39, 40].

Differences Between the IL-17 and IL-23
Pathways

IL-17A overproduction triggers the perpetual
cycle of inflammation that characterizes PsO
pathogenesis—which includes a cascade of
cytokine, chemokine and antimicrobial peptide
actions that induce epidermal hyperplasia—and
innate immune responses [7, 15, 16]. IL-23 is a
key upstream regulator of IL-17A production by
stimulating differentiation, activation, prolifer-
ation and survival of Th17 cells. Because IL-23
does not regulate all cellular mechanisms of IL-
17A production, targeting IL-23 does not seem
to increase the risk of candidiasis that has been
observed in the small percentage of patients
(\5%) treated with IL-17A inhibitors [16, 41].

However, agents that directly target the IL-17
pathway act more downstream in the psoriatic
inflammatory cascade [15], providing a disease-
specific treatment with a rapid onset of action
[42–45].

PSORIASIS COMORBIDITIES
AND THE ROLE OF IL-17 AND IL-23

Elevated levels of systemic pro-inflammatory
cytokine in patients with moderate to severe
PsO promote chronic subclinical inflammation
that increases the risk of comorbidities, includ-
ing PsA, CV disease, diabetes, obesity, dyslipi-
demia, hypertension, inflammatory bowel
disease (IBD), nonalcoholic fatty liver disease
and depression [4, 46, 47]. IL-17 and IL-23 are
implicated in PsA pathogenesis; however, IL-
17–mediated inflammation may be more cen-
tral in the development of cardiometabolic
comorbidities [48, 49] and IL-23 in IBD
immunopathogenesis [50].

To treat moderate to severe plaque PsO, six
biologic therapies targeting IL-17A or IL-23 are
currently approved: secukinumab, ixekizumab,
brodalumab, guselkumab, tildrakizumab and
risankizumab. Secukinumab is a fully human
IgG1j monoclonal antibody (mAb) [51], and
ixekizumab is a humanized IgG4 mAb [52, 53];
these agents selectively bind and neutralize IL-
17A. Brodalumab is a fully human IgG2 mAb
that binds to the IL-17A receptor in a nonacti-
vating manner and thus inhibits IL-17A, IL-17C,
IL-17E and IL-17F [54]. Seminal mechanistic
studies of inflammatory immune responses eli-
cited by IL-17 and disrupted by anti–IL-17 mAbs
have confirmed that IL-17A inhibition blocks
pathogenic mechanisms of psoriatic inflamma-
tion [19, 55, 56].

Anti–IL-23 agents include guselkumab, a
human IgG1k mAb; tildrakizumab, a human-
ized IgG1j mAb; and risankizumab, a human-
ized IgG1 mAb. Both guselkumab and
tildrakizumab bind the p19 subunit of IL-23,
preventing formation of a receptor complex
[36, 57]. Risankizumab binds and neutralizes
the p19 subunit of IL-23 [58]. Mutations in p19
and its receptor IL-23R are associated with a risk
of PsO [59].
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The six approved IL-17A and IL-23 inhibitors
appear more efficacious than biologic therapies
that are less specific such as the four TNF-a
inhibitors, adalimumab, etanercept, cer-
tolizumab pegol and infliximab, and the single
IL-12/23 inhibitor ustekinumab [52, 60–62].
Significant improvements in skin manifesta-
tions of psoriatic disease are achieved in
approximately 90% of patients with approved
IL-17A or IL-23 inhibitors [63].

Additional IL-17 and IL-23 therapies are in
late-stage clinical development. Bimekizumab is
a humanized IgG1 mAb that selectively neu-
tralizes IL-17A and IL-17F and is being studied
in PsO [64], PsA [65] and axial spondyloarthri-
tis. Mirikizumab is a p19 antagonist of IL-23
under investigation for the treatment of PsO
[66], ulcerative colitis [67] and Crohn’s disease
(CD) [39, 68].

Psoriatic Arthritis

Approximately 30% of patients with PsO
develop PsA within 10 years of the onset of their
skin disease [69, 70]. Delay of PsA diagnosis for
as little as 6 months can result in permanent
joint erosions [71]. These erosions may be evi-
dent in 40–60% of patients within the first year
of diagnosis [72], and 55% of patients have been
found to have C 5 deformed joints over
10 years of disease [70]. Pathogenic features of
PsA include elevated synovial fluid levels of IL-
17 and increased expression of IL-17A receptor
by synoviocytes [12, 73]. Increased levels of IL-
17A and IL-23 in PsA lead to upregulation of
other cytokines (e.g. IL-6 and IL-8), matrix
metalloproteinases and the receptor activator of
NF-jB (RANK), which are associated with
pathogenic changes, bone resorption, bone
matrix structure changes and osteoclastogenesis
[73–76].

Animal PsA models demonstrate that IL-23
and IL-17 induce skin and joint inflammation,
but distinct cellular pathways regulate these
outcomes [77]. Axial involvement in PsA is
predominantly driven by IL-17 with the induc-
tion of RANK ligand and RANK in stromal cells
and osteoclast precursors, respectively, leading
to pathologic osteoclast differentiation [78–80].

In contrast, IL-23 induces co-stimulatory path-
ways via immunoreceptors expressed in mye-
loid osteoclast precursors [81]. The presence and
severity of dactylitis and enthesitis are strongly
correlated with HLA-B27 misfolding, which
triggers upregulation of IL-23 and induction of
the IL-17 axis [82]. Experimental models show
that upregulation of pro-inflammatory cytoki-
nes of the IL-23/IL-17 pathway induce joint
swelling, skin changes and nail deformities
characteristic of PsA [77]. In a murine model,
treatment with IL-17A and IL-17F inhibitors
decreased levels of inflammatory cytokines and
showed efficacy in treatment of skin inflam-
mation mimicking PsO [83].

IL-17A is central in the pathogenesis of joint
destruction and bone erosion in PsA, with ele-
vated levels of IL-17A and/or its receptor in
synovial tissue, osteoblasts, osteoclasts and
chondrocytes [80, 84]. Studies of secukinumab
and ixekizumab support the mechanistic role of
IL-17A in PsA immunopathogenesis, as inhibi-
tion of this cytokine improves joint symptoms
and prevents joint destruction [85]. Patients
receiving secukinumab or ixekizumab also
report significant improvements in physical
functioning and quality of life and achieve
complete or near complete skin clearance
[53, 86–89]. Secukinumab and ixekizumab are
both approved for the treatment of active PsA,
and both prevent joint destruction [90, 91].

The efficacy of targeted IL-23 inhibition in
PsA has been confirmed in large-scale studies.
Results from the phase 3 DISCOVER-1 and
DISCOVER-2 trials show efficacy of guselkumab
in patients with active PsA despite treatment
with standard nonbiologic therapies, leading to
its recent approval for the treatment of active
PsA [92, 93]. Phase 3 studies of tildrakizumab
(NCT03552276) and risankizumab
(NCT03671148 and NCT03675308) are also
ongoing for PsA. The IL-12/23 inhibitor ustek-
inumab is approved for the treatment of active
PsA, despite its non–placebo-adjusted ACR20
scores being 18–35% lower than those for TNF-a
and IL-17A agents approved for PsA (secuk-
inumab and ixekizumab) [62]. In March 2019,
risankizumab received its first global approval in
Japan for the treatment of adults with PsO and
PsA [94], based on positive results from the
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SustaIMM phase 2/3 trial [95]. Injection-site
reactions (ISRs) have been recorded in clinical
trials of many biologic agents for PsO and PsA,
with the majority being of mild to moderate
intensity. With adalimumab, etanercept, ixek-
izumab and guselkumab, ISRs are among the
most common adverse events [96–99]. With
secukinumab, ISRs affect\1% of patients [100],
whereas ixekizumab has more frequent and
longer-lasting ISRs [98]. Most ISRs for all bio-
logic agents mentioned resolve without any
medical intervention; however, persistent ISRs
can be treated with oral antihistamines or pre-
vented by switching to another biologic therapy
[101].

Cardiovascular and Metabolic Diseases

Mild and severe PsOs are both associated with
an increased risk of myocardial infarction and
stroke, while severe PsO is associated with a
significantly increased risk of CV mortality
[102]. In three cross-sectional studies, moderate
to severe coronary calcification was five times
higher in patients with PsO than in healthy
controls and similar to that in patients with
type 2 diabetes [103]. CV risk in patients with
severe PsO is independent of traditional risk
factors and is associated with significant mor-
tality [104]. The relative risk of CV mortality is
2.69 for a 40-year-old patient with severe PsO
versus a matched healthy control [104]. CV
disease in patients with PsO is also associated
with an increased prevalence of metabolic dis-
orders; patients with PsO are more than twice as
likely as the general population to have meta-
bolic syndrome [14, 105].

Similarities exist between the pathophysi-
ologies of PsO, atherosclerosis and metabolic
syndrome [106]. This includes the immunology
and pathology of the activation of myeloid DCs
and endothelial cells, promoting differentiation
of Th1 and Th17 cells and secretion of pro-in-
flammatory cytokines such as TNF-a, IFN-c, IL-
17A and IL-22 [49, 105]. In PsO and
atherosclerosis, IL-17 and TNF-a synergistically
activate NF-jB signaling and mitogen-activated
protein kinases to induce neutrophil-attracting
chemokines and other inflammation

modulators [107, 108]. Using the KC-Tie2
doxycycline-repressible (Dox-off) murine model
of psoriasiform skin disease, prolonged eleva-
tions in IL-17, TNF-a and C–C motif chemokine
ligand-2 have been found to increase aortic
inflammation and thrombosis [109]. This
thrombosis phenotype can be attenuated upon
elimination of skin inflammation with doxy-
cycyline[109] or through inhibition of IL-17A or
IL-23 [110]; this effect is potentially mediated
by reduction of skin IL-6 [111]. These results
suggest that chronic systemic inflammation
associated with PsO is likely the main cause of
the increased risk of adverse CV outcomes [109].

IL-17 also contributes to the pathophysiol-
ogy of hyperlipidemia, hypertension, renal dis-
ease and obesity. Increased IL-17 production
exacerbates hyperlipidemia by triggering
immune responses against oxidized low-density
lipoprotein and collagen V [112, 113]. In
hypertension and renal disease models, IL-17
promotes inflammation by stimulating neu-
trophil chemo-attractants and increasing renal
artery stiffening, possibly through upregulation
of type I collagen deposition [114–117]. In
obesity, a common issue in patients with mod-
erate to severe PsO, circulating IL-17A promotes
production of vascular endothelial growth fac-
tor and acts synergistically with adipokines to
perpetuate inflammation, angiogenesis and
endothelial dysfunction [118].

The phase 4 ObePso-S study (NCT03055494)
explored the effects of secukinumab versus
placebo on the expression of inflammatory
genes in patients with moderate to severe
chronic plaque PsO. Preliminary results indicate
that treatment responses observed with secuk-
inumab correspond to normalized inflamma-
tory marker and immune cell levels [119].
Another phase 4, open-label study (METABO-
LYX, NCT03440736) is investigating whether
treatment with secukinumab and lifestyle
changes can improve metabolic status in
patients with PsO with metabolic syndrome;
results are expected in 2021.

A series of studies on vascular inflammation
in PsO (VIP) is evaluating the effects of biologic
therapies on vascular inflammation and CV
biomarkers. In the adalimumab study (VIP-A),
TNF-a inhibition reduced levels of the
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inflammatory markers C-reactive protein and
IL-6 versus placebo or phototherapy, but not
vascular inflammation [120]. In the ustek-
inumab study (VIP-U), 12 weeks of treatment
reduced aortic vascular inflammation by 6.6%
versus a 12.1% increase with placebo (P = 0.001)
[121]. However, no differences in aortic vascular
inflammation were observed after 52 weeks of
ustekinumab treatment [122]. In the secuk-
inumab study (VIP-S), although TNF-a and fer-
ritin levels were reduced and fetuin-A levels
increased after 52 weeks of secukinumab treat-
ment (all P\ 0.05 versus placebo), no signifi-
cant changes in aortic vascular inflammation
versus placebo were observed [123].

Axial Spondyloarthritis

The IL-23/IL-17 axis has been implicated in the
pathogenesis of axial spondyloarthritis (axSpA),
including AS and nr-axSpA [124, 125]. PsO is
observed in 10% of patients with AS [126]. In
patients with AS, genes in the Th17 pathway are
overexpressed and serum levels of IL-17 and IL-
23 are elevated [127]. IL-17A inhibition with
secukinumab or ixekizumab significantly redu-
ces signs and symptoms of AS[128–130] and nr-
axSpA [131, 132]. In contrast, data on the effects
of IL-23 inhibition in axSpA are limited. In a
phase 2 study, treatment with risankizumab did
not improve signs and symptoms of AS versus
placebo [133]. The significant efficacy of IL-17A
inhibitors in axSpA and the lack of efficacy with
the IL-23 inhibitor risankizumab[133] suggest
that IL-17A modulates a pathogenic pathway in
axSpA, which is independent of IL-23 signaling.

Inflammatory Bowel Disease

IBD is approximately four times more prevalent
in patients with PsO than in the general popu-
lation [134], suggesting a genetic overlap of the
two diseases [135]. IL-23 has been linked to
murine chronic intestinal inflammation, and
genome-wide association studies have impli-
cated IL-23 gene variants in IBD [136]. However,
contrasting data suggest a role for IL-17A in
gastrointestinal homeostasis and tissue repair
rather than in driving inflammation as in PsO

pathogenesis [137]. In clinical studies, patients
with IBD have achieved significantly higher
rates of clinical and endoscopic remission with
IL-12/23 or IL-23 inhibitors than with placebo
[50]. Ustekinumab is approved for the treat-
ment of moderate to severe active CD and is in
late-stage development for ulcerative colitis;
IBD trials are also ongoing for several IL-23
inhibitors [138], with positive results reported
for risankizumab in CD [139]. Conversely, IL-
17A inhibitors have failed to demonstrate effi-
cacy in CD, despite their clear efficacy in PsO
[140, 141]. The local environment of Th17 cells
in the gut and skin may differ, or IL-23 may act
via an IL-17–independent pathway to promote
intestinal inflammation in patients with IBD
[50]. Although small clusters of new IBD cases
have been reported among patients with PsO,
PsA or AS using IL-17A inhibitors, IBD events
were rare (\ 1%), and their incidence did not
increase over time [135, 137, 142]. The effects of
IL-17A inhibition on IBD may be two-fold and
conflicting, either decreasing inflammation or
possibly worsening the residual function of an
already impaired epithelial barrier [137].

EXPERT COMMENTARY

Data from preclinical and clinical studies pro-
vide strong evidence that IL-17A and IL-23 are
key mechanistic drivers of PsO immunopatho-
genesis. Targeting IL-17A and IL-23 cytokines
provides skin clearance superior to that of cur-
rently approved TNF-a inhibitors or ustek-
inumab [51, 52, 58, 61, 143].

In patients with moderate to severe chronic
plaque PsO, treatment with approved IL-17A or
IL-23 inhibitors is well tolerated. Complete or
near complete skin clearance is seen in the
majority of patients [53, 86–88]. Across pivotal
PsO phase 3 studies,[50% of treated patients
achieved C 90% improvement in Psoriasis Area
and Severity Index scores [63]. Additionally,
secukinumab, ixekizumab and guselkumab are
effective in more difficult-to-treat disease sub-
types, including palmoplantar, scalp, nail and
genital PsO [144–149]. Available data for IL-17
inhibitors suggest that primary and secondary
nonresponse can be treated by switching to
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biologics within the same class [150, 151],
highlighting the centrality of this signaling
pathway in PsO.

IL-17A and IL-23 inhibitors are better toler-
ated than methotrexate and TNF-a inhibitors
and show a safety profile comparable to that of
ustekinumab [152]. Use of IL-17A inhibitors is
associated with an increased risk of mucocuta-
neous candidiasis (\ 5% of treated patients), but
it does not lead to treatment discontinuation
[16]. Reports of neutropenia (0.7 events per 100
patient-years of exposure) and IBD (\1%) are
rare with approved IL-17A inhibitors [128, 137].
In phase 3 studies of brodalumab, three patients
attempted suicide with one completion [153].
No major safety signals have been identified
with guselkumab, tildrakizumab or risankizu-
mab. IL-23 inhibitors do not appear to be asso-
ciated with an increased risk of candidiasis or
IBD; however, safety data from real-world reg-
istries are needed to confirm the full tolerability
of targeted IL-23 inhibition [41, 152].

CONCLUSIONS

IL-17 and IL-23 have unique mechanisms of
action in PsO immunopathogenesis, with IL-17
being an important cytokine in the PsO
inflammatory cascade. New biologic agents
blocking IL-17A and/or IL-23 are more effica-
cious than traditional biologic therapies that are
less specific in targeting the psoriatic disease
process. Given the specificity of the IL-23/IL-
17A axis in modulating the differentiation and
activation of specialized cells involved in skin
and joint inflammation, selective blockade of
IL-23 and IL-17A is more efficacious than tra-
ditional biologic therapies. The contribution of
each pathologic mechanism to the clinical
manifestations of PsO, PsA and other inflam-
matory comorbidities is currently under evalu-
ation in multiple clinical trials.

Fig. 1 IL-23/IL-17–mediated effects on epidermal ker-
atinocytes in psoriatic skin. Schematic showing the broad
downstream effects of increased IL-23 and IL-17 signaling
on various immune cell populations and keratinocyte
biology. Regulated by IL-23, the primary effects of IL-17 on
keratinocytes include the following: indirect induction of
epidermal hyperplasia through cytokines such as IL-19;
upregulation of the innate immune response and antimi-
crobial peptides; epidermal recruitment of leukocyte

subsets through increased production of keratinocyte-
derived chemokines; and transcription of multiple pro-
inflammatory genes that act synergistically with tumor
necrosis factor (TNF)-a to sustain the inflammatory events
in psoriatic skin. PMN polymorphonuclear leukocyte; Th
T helper. Adapted from Hawkes JE, et al. J Allergy Clin
Immunol. 2017;140(3):645–653. Copyright 2017, with
permission from Elsevier
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17. Zaba LC, Suárez-Fariñas M, Fuentes-Duculan J,
Nograles KE, Guttman-Yassky E, Cardinale I, et al.
Effective treatment of psoriasis with etanercept is
linked to suppression of IL-17 signaling, not
immediate response TNF genes. J Allergy Clin
Immunol. 2009;124(5):1022-30.e395.

18. Schmitz ML, Weber A, Roxlau T, Gaestel M, Kracht
M. Signal integration, crosstalk mechanisms and
networks in the function of inflammatory cyto-
kines. Biochim Biophys Acta. 2011;1813(12):
2165–75.

19. Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M,
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