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Abstract 

Background:  Many patients with atrial fibrillation (AF) remain undiagnosed despite availability of interventions to 
reduce stroke risk. Predictive models to date are limited by data requirements and theoretical usage. We aimed to 
develop a model for predicting the 2-year probability of AF diagnosis and implement it as proof-of-concept (POC) in a 
production electronic health record (EHR).

Methods:  We used a nested case–control design using data from the Indiana Network for Patient Care. The develop‑
ment cohort came from 2016 to 2017 (outcome period) and 2014 to 2015 (baseline). A separate validation cohort 
used outcome and baseline periods shifted 2 years before respective development cohort times. Machine learn‑
ing approaches were used to build predictive model. Patients ≥ 18 years, later restricted to age ≥ 40 years, with at 
least two encounters and no AF during baseline, were included. In the 6-week EHR prospective pilot, the model 
was silently implemented in the production system at a large safety-net urban hospital. Three new and two previ‑
ous logistic regression models were evaluated using receiver-operating characteristics. Number, characteristics, and 
CHA2DS2-VASc scores of patients identified by the model in the pilot are presented.

Results:  After restricting age to ≥ 40 years, 31,474 AF cases (mean age, 71.5 years; female 49%) and 22,078 controls 
(mean age, 59.5 years; female 61%) comprised the development cohort. A 10-variable model using age, acute heart 
disease, albumin, body mass index, chronic obstructive pulmonary disease, gender, heart failure, insurance, kidney 
disease, and shock yielded the best performance (C-statistic, 0.80 [95% CI 0.79–0.80]). The model performed well in 
the validation cohort (C-statistic, 0.81 [95% CI 0.8–0.81]). In the EHR pilot, 7916/22,272 (35.5%; mean age, 66 years; 
female 50%) were identified as higher risk for AF; 5582 (70%) had CHA2DS2-VASc score ≥ 2.

Conclusions:  Using variables commonly available in the EHR, we created a predictive model to identify 2-year risk 
of developing AF in those previously without diagnosed AF. Successful POC implementation of the model in an EHR 
provided a practical strategy to identify patients who may benefit from interventions to reduce their stroke risk.
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Background
Atrial fibrillation (AF) is associated with increased risk 
of stroke or systemic embolization leading to signifi-
cant patient morbidity and mortality [1]. Diagnosed AF 
was estimated to affect up to approximately 8.7 million 
people in the United States in 2021 [2, 3]. A recent study 
estimated the undiagnosed AF prevalence in the United 
States at 1.3% (95% CI 0.9–1.9%) in those over age 65 [4]. 
Among undiagnosed cases, 56% had a CHADS2 score ≥ 2 
(moderate to high risk of stroke) with a substantial poten-
tial for risk-reduction with guideline-recommended anti-
coagulation [3].

Multiple studies sought to develop predictive risk mod-
els for AF in an undiagnosed population. The Framing-
ham Heart Study (FHS) AF Risk Score predicted 10-year 
AF [5]. The Atherosclerosis Risk in Communities (ARIC) 
study provided an alternative AF risk score in a different 
patient population [6]. Both FHS and ARIC models were 
derived from single-community cohorts. The CHARGE-
AF model combined three cohorts from different studies 
and provided a 5-year AF risk simple model mostly using 
variables commonly collected in primary care and a more 
complex model using ECG variables [7]. Other efforts to 
identify machine learning models have looked at hun-
dreds of variables [8].

However, these existing models required variables not 
typically available as structured electronic health record 
(EHR) fields (e.g., electrocardiogram [ECG] parameters). 
Newer attempts at EHR-based models have required 
extra steps of data harmonization [9] or use of long pre-
diction horizons and require non-missing data or oft-
unstructured data [10]. Other efforts use available data 
from the EHR, but make a prediction for 10-year risk 
using binned risk categories [11], or rely on claims data-
bases and make predictions on simple cross-sectional 
association [12]. A 5 to 10-year AF risk may limit a mean-
ingful patient screening intervention compared to a rela-
tively imminent risk in a 2-year horizon.

A prospective AF-risk model implemented in the EHR 
to help find patients at higher risk of undiagnosed AF, 
with potential diagnosis and guideline-recommended 
treatment, may reduce their risk of thrombosis (stroke 
or systemic embolism) and be welcomed by patients and 
their families. Clinicians and health systems may also 
find this system useful in population health management. 
We aimed to develop and validate a model using EHR 
data from multiple health systems in a regional health 
information exchange (HIE) to estimate 2-year risk of AF 

diagnosis. Our second goal was to assess the feasibility 
of implementing this model in a real EHR within a single 
health system.

Methods
Study setting
The predictive model was developed and validated with 
data collected from the Indiana Network for Patient 
Care (INPC) HIE. The INPC encompasses clinical data 
from over 100 healthcare entities in and around Indiana, 
including hospitals, health networks, and insurance pro-
viders, collected over more than 30 years from more than 
18 million patients.. The proof-of-concept implementa-
tion was performed at Eskenazi Health, a 315-bed safety-
net hospital with 10 federally-qualified community health 
centers for Marion County in central Indiana (including 
Indianapolis). It hosts nearly one million visits per year 
among the health centers, hospital, emergency depart-
ment, and mental health system. For patients with hos-
pital and office encounters in 2019, they self-identified 
as 26% Hispanic/Latino, 55% female, 42% Black, and 31% 
White.

Compliance and data sources
This study was approved by the Indiana University 
Institutional Review Board and Regenstrief Institute 
Data Management Committee. A waiver of informed 
consent was granted by the Indiana University Insti-
tutional Review Board. The methods were carried out 
in accordance with relevant guidelines and regula-
tions. We queried EHR data gathered between 1/1/2014 
and 12/31/2017 from the INPC, which includes Eske-
nazi Health. The reporting of the study followed the 
Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) guidelines and adhered to 
the Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis  (TRIPOD) 
recommendations (see Additional file  1 for TRIPOD 
statement) [13, 14].

Study design
The model was developed on observational data from a 
retrospective cohort using a nested case–control design. 
The primary outcome of AF identification was observed 
from 1/1/2016 to 12/31/2017 (outcome period) follow-
ing a baseline period from 1/1/2014 to 12/31/2015 for 
extracting candidate prediction variables. A validation 
cohort was developed with inclusion/exclusion criteria 
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identical to the development cohort, with observation 
periods shifted 2 years earlier relative to the development 
cohort (i.e., 1/1/2014–12/31/2015 for outcome period, 
1/1/2012–12/31/2013 for baseline period). The final 
model was implemented into Eskenazi Health’s Epic EHR 
for a 6-week proof-of-concept study.

Identification of cases
AF was determined if the patients had an International 
Statistical Classification of Diseases and Related Health 
Problems (ICD) 10th Edition diagnosis of I48.0, I48.1, 
I48.2, I48.3, I48.4, I48.91, I48.92, or ICD 9th Edition 
diagnosis of 427.31, 427.32, or a mention within an ECG 
report of “atrial fibrillation”, “atrial flutter”, “Afib”, “AFl”, 
“A-fib” or “A-fl” using text matching. While cases and 
controls were initially drawn from the ≥ 18-year-old pop-
ulation, prior to model development we restricted them 
to ≥ 40 years old to better target an at-risk population.

Identification of controls
In each cohort, a simple random sample of patients with-
out previously-identified AF the same size as the case 
cohort was identified. After restricting to ≥ 40-years-old, 
more cases than controls remained due to the generally 
older population of the cases. Controls were not matched 
to cases on specific variables to prevent bias and explore 
all possible relationships.

Subjects
Patients were included in the development cohort if they 
were age ≥ 40  years on 1/1/2016 and had at least two 
clinical visits during the baseline period. The require-
ment for two clinical visits allowed for sufficient data 
for development and validation. Patients were excluded 
if they had an AF diagnosis prior to 1/1/2016 or had an 
unknown status of AF in the outcome period. The valida-
tion cohort was similarly defined with all criteria shifted 
2 years earlier.

Candidate Variable selection
Variables were selected as potential model predictors 
based on review of previous models as well as clini-
cal expert opinion (authors TDI and NLC) on potential 
clinically-relevant variables. The complete list of vari-
ables initially considered for modeling is in Additional 
file  1: Table  S1, including demographic characteristics, 
vital signs, social history, medical history, diagnoses, lab 
values, echocardiogram results, and imaging reports, 
including coronary angiography. Where appropriate and 
clinically meaningful, multiple variables were combined 
to create a “derived” variable to allow for overlapping of 
content, as shown in Additional file 1: Table S2. Appro-
priate transformations and coding based on clinical 

norms (Additional file  1: Table  S3) were applied to the 
raw data; the recoded variables were used as candidates 
in model development. Missing data were explicitly cat-
egorized as such.

Statistical methods for model development and validation
The primary analysis was conducted on the development 
data set based on candidate variables previously reported 
in the literature, resulting in a least absolute shrink-
age and selection operator (LASSO)-penalized step-
wise logistic regression model. The stepwise approach is 
described in Supplementary Methods, Additional file  1. 
The penalization methods, due to their shrinkage estim-
ages, are robust to collinearity. This 10-variable model, 
labeled UNAFIED (Undiagnosed Atrial Fibrillation pre-
diction using Electronic health Data), was run on the val-
idation data set. We tested the sensitivity and robustness 
of the model extensively using two-way interactions and 
alternative data recoding schemes and against alternative 
models, including a more parsimonious 5-variable model 
and a “free-for-all” model that allowed the inclusion of 
previously unreported variables (see details in Supple-
mentary Methods, Additional file 1). We also replicated 
two previous models (Volgman [12] and Aronson [11]) 
that used similar variables in large population-based 
cohorts on our data sets. The performance of all five 
models was compared using the C-statistic (area under 
the receiver operating characteristic curve, a measure of 
discrimination between cases and controls).

Risk scores were calculated for each patient based on 
the estimated parameters in the model results (Table 2). 
Youden’s Index was used to choose a threshold risk score, 
which optimized sensitivity and specificity for classifying 
patients into “higher” versus “lower” risk of having undi-
agnosed AF. All analyses were performed in SAS version 
9.4 (High Performance).

Proof‑of‑concept (POC) implementation
In partnership with our clinical affiliate, Eskenazi Health, 
we piloted implementation of the UNAFIED model as a 
non-interventional proof-of-concept, using pre-existing 
clinical decision support (CDS) tools within the Epic 
EHR system. Because of EHR limitations in using natu-
ral language parsing, we limited implementation to using 
structured EHR data only (i.e., no unstructured text 
searches) for POC. A sensitivity analysis was completed 
for excluding unstructured data from the original model 
work. Fewer than 1% of patients had term mentions in 
the simple NLP, and there was no appreciable change in 
C-statistic, which we believed acceptable for the pilot 
implementation. The CDS build was done by the Eske-
nazi Health Information Systems team and implemented 
for a 6-week trial run in late 2019. A rule-based AF risk 
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score was added to an existing automated EHR registry 
that updated periodically for all patients in the health 
system. For patients aged ≥ 40 years without a diagnosis 
of AF who exceeded the risk threshold, a silent CDS alert 
was triggered at clinical encounters in the emergency 
department, hospital, and outpatient settings within 
Eskenazi Health. These silent CDS alerts were not dis-
played to clinicians during the pilot phase but instead 
enabled reporting on alerting patterns. Aggregate counts 
of patients identified by the alerts, along with selected 
clinical characteristics, were compared to patients with 
encounters but not identified as higher risk. In addition, 
we calculated the patient’s CHA2DS2-VASc [15] score, a 
prediction tool for assessing stroke risk in patients with 
non-rheumatic AF and used for guideline-recommended 
anti-coagulant use.

Results
During the model development period, 31,474 patients 
within the retrospective cohort had a first AF diagno-
sis recorded within the two subsequent years of data 
(cases) while 1,295,281 patients did not (potential con-
trols). Thus, the 2-year incidence of AF in our underlying 
population was 2.37%. A random sample of 22,078 con-
trols was used in the model development. The validation 
cohort had 26,476 cases, and 18,296 controls randomly 
selected (Fig.  1). Table  1 shows patient characteristics 
for the model development cohort (see Additional file 1: 
Tables S7–S9, for model validation cohort characteris-
tics). Average age for the AF cohort was 71.5 years with 
49% women compared to 59.5  years for the non-AF 
cohort with 61% women. The comparisons of clinical 
variables retained in the final model are also presented 

in Table 1. (Further comparisons are in Additional file 1: 
Tables S3 and S4.)

The final UNAFIED Model is displayed with its 10 vari-
ables and their parameter estimates (weights) in Table 2. 
The C-statistic of the development-phase UNAFIED 
Model (0.7956, 95% CI 0.7917–0.7994) could not be 
appreciably increased by any additional (including pre-
viously unreported) variables to enter the free-for-all 
model (C-statistic 0.7959, 95% CI 0.7921–0.7997), and 
the parsimonious 5-variable model (C-statistic 0.7851, 
95% CI 0.7812–0.789) resulted in a more than one per-
centage point decrease. The C-statistics of two previous 
models (Volgman and Aronson) applied to our develop-
ment data set were 0.7777 (95% CI 0.7738–0.7817) and 
0.7915 (95% CI 0.7877–0.7954), respectively. The ROC 
curves of these five models are shown in Fig. 2. Compari-
son of all five models using the validation data set gave 
similar results (Fig. 2 and Additional file 1: Table S5). In 
the validation phase, our model achieved a C-statistic of 
0.8061 (95% CI 0.802–0.8102).

Youden’s Index indicated an optimal threshold score of 
0.591, which achieved 74% sensitivity and 74% specific-
ity in the development cohort. Combining this with the 
underlying population’s 2-year AF diagnosis incidence 
(2.37%), we estimated identifying 27.1% of the patients in 
the underlying population as “higher risk.”

During the 6-week silent POC there were 22,272 
unique patients ≥ 40 years old identified through encoun-
ters (e.g., emergency, inpatient, or outpatient visit). Using 
the threshold described above (rounded to 0.6 for imple-
mentation), 7916 (35.5%) of these patients were identified 
as higher-risk in at least one encounter. These patients 
were identified in the emergency department (1705), 
inpatient (1793), and outpatient (7723) settings (one 

Potential Population:
1,878,497

Cases  40yo = 31,508
Random sample of 
controls ( 18yo) = 

31,508

Cases  40yo = 26,484
Random sample of 
controls ( 18yo) = 

26,484

Potential Population:
1,421,697

Development Cohort Validation Cohort

Removed for age 
and data cleaning:

Cases = 8
Controls = 8,188

Removed for age 
and data cleaning:

Cases = 34
Controls = 9,430

Final Set
Age  40

Cases = 31,474
Controls = 22,078

Final Set
Age  40

Cases = 26,476 
Controls = 18,296

Fig. 1  Model development cohorts



Page 5 of 9Grout et al. BMC Med Inform Decis Mak          (2021) 21:112 	

patient may be identified in multiple locations). Nearly 
half of patients identified in an outpatient setting were 
in the primary care clinics. Patients with “higher-risk” 
flags were labeled “UNAFIED” patients. In Table  3, we 
present the demographic characteristics of all patients in 
the implementation pilot, including UNAFIED and non-
UNAFIED patients (who had a visit but did not trigger 
any flags).

UNAFIED patients had, on average, a higher 
CHA2DS2-VASc score (mean 2.5, SD 1.8) than non-
UNAFIED patients (mean 1.2, SD 1.4, Table 3). They were 

generally older, non-Hispanic, and evenly split between 
male and female. Additional file  1: Table  S6, compares 
the proportion of patients with CHA2DS2-VASc score ≥ 2 
between UNAFIED and non-UNAFIED patients, over-
all and within age and sex strata. Generally, UNAFIED 
patients had higher proportions of patients with 
CHA2DS2-VASc score ≥ 2 in almost all strata.

Table 1.  Characteristics of patients in development set

a  If troponin > 0.04 or diagnosis of myocardial infarction
b  BUN > 20 or (creatinine > 1.1 for female) or (creatinine > 1.3 for male) or (diagnoses of Chronic Kidney Disease or End Stage Renal Disease)

Variable Overall N = 53552 AF (cases) N = 31474 No AF (controls) N = 22078 P value

Demographics

 Age, mean (SD), years 66.56 (13.42) 71.53 (11.87) 59.48 (12.28) < .0001

 Age, no. (%) years < .0001

  40–55 12474 (23.3%) 3287 (10.4%) 9187 (41.6%)

  56–66 13676 (25.5%) 6949 (22.1%) 6727 (30.5%)

  67–77 14822 (27.7%) 10630 (33.8%) 4192 (19.0%)

  > 77 12580 (23.5%) 10608 (33.7%) 1972 (8.9%)

 Sex < .0001

  Female 29044 (54.2%) 15561 (49.4%) 13483 (61.1%)

  Male 24507 (45.8%) 15913 (50.6%) 8594 (38.9%)

 Race, no. (%) < .0001

  White 41493 (77.5%) 24636 (78.3%) 16857 (76.4%)

  Black 3225 (6.0%) 1690 (5.4%) 1535 (7.0%)

  Other 8834 (16.5%) 5148 (16.4%) 3686 (16.7%)

 Ethnicity, no. (%) < .0001

  Not Hispanic or Latino 37219 (69.5%) 22681 (72.1%) 14538 (65.8%)

  Hispanic or Latino 828 (1.5%) 402 (1.3%) 426 (1.9%)

  Unknown 15505 (29.0%) 8391 (26.7%) 7114 (32.2%)

 Insurance type, No. (%) < .0001

  Commercial 28416 (53.1%) 16115 (51.2%) 12301 (55.7%)

  Medicaid 7324 (13.7%) 4289 (13.6%) 3035 (13.7%)

  Medicare 11141 (20.8%) 8432 (26.8%) 2709 (12.3%)

  Other/Unknown 6671 (12.5%) 2638 (8.4%) 4033 (18.3%)

Additional diagnoses and laboratory variables included in final model

 Acute heart diseasea, no. (%) 9782 (18.3%) 7874 (25.0%) 1908 (8.6%) < .0001

 Albumin < 3.5, no. (%), g/dL 4110 (7.7%) 3264 (10.4%) 846 (3.8%) < .0001

 Body mass index, no. (%), kg/m2 < .0001

  Missing 33926 (63.4%) 18468 (58.7%) 15458 (70.0%)

  Normal weight: 18.5–24.9 4008 (7.5%) 2684 (8.5%) 1324 (6.0%)

  Obese: ≥ 30 9258 (17.3%) 6139 (19.5%) 3119 (14.1%)

  Overweight: 25–29.9 6013 (11.2%) 3926 (12.5%) 2087 (9.5%)

  Underweight: < 18.5 347 (0.6%) 257 (0.8%) 90 (0.4%)

 COPD, no. (%) 7891 (14.7%) 5909 (18.8%) 1982 (9.0%)  < . 0001

 Kidney diseaseb, no. (%) 4783 (8.9%) 4060 (12.9%) 723 (3.3%) < .0001

 Shock, no. (%) 3365 (6.3%) 2593 (8.2%) 772 (3.5%)
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Discussion
Our study was able to successfully develop and validate a 
2-year undiagnosed AF risk model with predictive capa-
bility at least as good as those previously reported, using 
commonly available EHR data, and build a proof of con-
cept implementation within an existing common EHR 
system. Previous models have been developed either in 
limited community-based cohorts, used longer predic-
tion horizons, or included variables not routinely availa-
ble as structured data fields within an EHR. Additionally, 
they were not tested for practical implementation. The 
UNAFIED model used data elements available as struc-
tured data fields within the EHR, commonly collected in 
multiple practice settings, yet still accommodates reason-
ably incomplete data sources.

Our model shares several risk predictors with previous 
models including age, sex, acute heart disease, COPD, 
heart failure, and BMI. In contrast to previous models 
that only associated overweight with AF risk, we addi-
tionally found low BMI (< 18.5) in this population was a 
predictor of AF diagnosis in the subsequent 2-year time 

period. Chronic kidney disease, low albumin, hypov-
olemic shock, and insurance type were predictors of AF 
risk unique to this model. Patients with Medicaid insur-
ance had higher risk when compared to patients with 
commercial insurance or Medicare. This may be related 
to underserved or low socioeconomic status persons 
having less access to care and diagnostic services. How-
ever, insurance practice and enrollment patterns can 
vary based on geographic location, so the generalizabil-
ity and clinical significance of this variable are yet to be 
determined.

Our implementation identified 36% of patients 
screened during the implementation phase, compared 
to an expected 27% based on model development. We 
suspect this is due to age, insurance, and other differ-
ences in the implementation population (safety-net 
urban hospital) and development population (regional 
HIE). Additionally, our implementation allowed multiple 
opportunities for the model to identify a patient, whereas 
the development and validation phases used a single time 
point. Mean CHA2DS2-VASc score for UNAFIED patints 
was higher than non-UNAFIED patients suggesting the 
ability of the model to identify patients with opportuni-
ties for guideline-recommended management to poten-
tially prevent devastating health outcomes.

The choice of a threshold predicted risk score is an 
important step in implementing this model and depends 
on several factors. For our implementation, we opti-
mized model sensitivity and specificity. Raising the cut-
off reduces sensitivity but increases specificity, and vice 
versa. Considering finite resources, a higher threshold 
will identify a smaller group of “higher risk” patients. The 
estimated prevalence of undiagnosed AF being predicted 
is another factor. Finally, an automated screening mecha-
nism that uses human-facing decision support should 
weigh the volume of alerts (including inevitable false pos-
itives) and their effect on clinician well-being and per-
formance versus other ways for clinicians to receive the 
information in their workflows. Broadly-speaking, insti-
tutions considering implementing any predictive model 
generally will want to consider these various factors [16]. 
A note of caution: the model performance described here 
is based on the population used to develop it and the 
chosen threshold score. Additional health systems should 
verify performance in their own setting.

Screening recommendations for asymptomatic and 
undiagnosed adults for AF range from no recommen-
dation (USPSTF, insufficient evidence for using ECG, 
compared to pulse palpation [17]) to opportunistic 
screening (European Society of Cardiology [18]) to sys-
tematic screening (American Heart Association and 
American Stroke Association [3]). We note organiza-
tional recommendations have variations too nuanced 

Table 2.  Logistic regression variable parameters

a  See Additional file 1, for codes and logic used for extraction and derivation of 
parameters
b  Reference parameters: Age 56–66 years (inclusive), no calculated heart 
disease, albumin ≥ 3.5 (or missing value), normal BMI (19.5–24.9), no COPD, 
male, no heart failure, Medicare insurance, no calculated kidney disease, and no 
shock.
c  Each eligible patient had a risk score of exp(raw score)/(1 + exp(raw score)), 
where the raw score was the sum of the intercept and parameter estimates 
corresponding to the patients characteristics in each parameter.

Parametera,b Description Estimatec Odds ratio (95% 
confidence 
interval)

Intercept 0.4063

Age (years) 40 ≤ Age < 56 − 0.9741 0.38 (0.36, 0.4)

67 ≤ Age < 77 0.7216 2.06 (1.94, 2.19)

Age ≥ 77 1.5844 4.88 (4.54, 5.23)

Heart disease (derived) Present 0.5053 1.66 (1.55, 1.77)

Albumin (g/dL) Albumin < 3.5 0.7438 2.1 (1.93, 2.3)

BMI (kg/m2) Missing 0.0884 1.09 (0.99, 1.21)

BMI < 18.5 0.6086 1.84 (1.26, 2.69)

24.9 ≤ BMI ≤ 29.9 0.0384 1.04 (0.92, 1.17)

BMI > 29.9 0.3723 1.45 (1.3, 1.62)

COPD diagnosis Present 0.5259 1.69 (1.57, 1.82)

Gender Female − 0.6226 0.54 (0.51, 0.56)

Heart failure diagnosis Present 1.0609 2.89 (2.53, 3.31)

Insurance Commercial − 0.4111 0.66 (0.62, 0.71)

Medicaid 0.0378 1.04 (0.95, 1.13)

Other/unknown − 0.8584 0.42 (0.39, 0.46)

Kidney disease 
(derived)

Present 0.58 1.79 (1.59, 2.01)

Shock diagnosis Present 0.6219 1.86 (1.67, 2.08)
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Fig. 2  ROC curves for development and validation sets for three selected models in this study and comparison to two previous models

Table 3.  Characteristics of patients in the proof-of-concept implementation

UNAFIED patients Non-UNAFIED patients All

No. 7916 14356 22272

Race, no. (%)

 Black or African American 4129 (52.16%) 6065 (42.25%) 10194 (45.77%)

  White 3009 (38.01%) 5189 (36.15%) 8198 (36.81%)

  Unknown 451 (5.70%) 2114 (14.73%) 2565 (11.52%)

  More than one race 155 (1.96%) 530 (3.69%) 685 (3.08%)

  Native Hawaiian or other Pacific Islander 45 (0.57%) 202 (1.41%) 247 (1.11%)

  Asian 109 (1.38%) 217 (1.51%) 326 (1.46%) 

  American Indian or Alaska Native 18 (0.23%) 39 (0.27%) 57 (0.26%) 

Ethnicity, no. (%)

 Not Hispanic, Latino/a, or Spanish origin 7171 (90.59%) 10913 (76.02%) 18084 (81.20%)

 Hispanic or Latino 595 (7.52%) 2982 (20.77%) 3577 (16.06%)

 Unknown 150 (1.89%) 461 (3.21%) 611 (2.74%)

Age, no. (%), years

 40–44 117 (1.48%) 3222 (22.44%) 3339 (14.99%)

 45–54 445 (5.62%) 5968 (41.57%) 6413 (28.79%)

 55–64 2981 (37.66%) 4203 (29.28%) 7184 (32.26%)

 65–74 2815 (35.56%) 750 (5.22%) 3565 (16.01%)

 75–84 1175 (14.84%) 152 (1.06%) 1327 (5.96%)

 85+ 383 (4.84%) 61 (0.42%) 444 (1.99%)

Age, mean (SD), years 66.46 (9.82) 51.99 (8.53) 57.14 (11.37)

Sex, no. (%)

 Female 3930 (49.65%) 9113 (63.48%) 13043 (58.56%)

 Male 3986 (50.35%) 5243 (36.52%) 9229 (41.44%)

CHA2DS2-VASc, mean (SD) 2.557 (1.83) 1.213 (1.40) 1.691 (1.69) 
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to summarize here. Additionally, recent results show 
a dramatically increasing number needed to screen 
based on age for identifying undiagnosed AF [19]. 
Our study demonstrates the feasibility of identifying 
patients at higher risk of AF who are potential candi-
dates for further screening or evaluation to detect and 
diagnose previously-undiagnosed AF. Ultimately, our 
primary goal is for accurate diagnosis and guideline-
recommended management, potentially avoiding stroke 
or systemic embolization. Targeted screening may 
enhance the diagnostic yield through a personalized, 
stepwise approach. For example, a predictive algorithm 
using only EHR data can serve as a precursor (via tar-
geted screening) or a companion to processes shown 
in recent work with wearable devices for identifying 
AF [20, 21]. However, in further support of EHR-data 
algorithms, relying on wearables alone requires the 
burden of cost on the healthcare system, or relies on a 
socially inequitable approach of relying on consumer 
purchasing.

To our knowledge, the ability to identify patients prior 
to the clinical diagnosis of AF has not been scaled within 
a healthcare system. Our model allows for multiple ave-
nues of interventions including clinician alerts, patient 
portal notifications, or a referral to a population health 
coordinator. Separately, we found patients identified by 
the encounter-based approach to be similar to patients 
incidentally identified without an encounter, which sup-
ports efforts for a population health approach without an 
in-person visit. An intervention may preempt the sen-
tinel stroke that is associated with AF for the first time 
in approximately 20% of patients [22]. Given a fivefold 
increased risk of stroke in patients with AF compared 
to those without AF [1]] and the preventive potential of 
guideline-recommended treatments, identifying these 
patients with a risk of undiagnosed AF using EHR data at 
both patient and population levels may result in a signifi-
cant benefit to them and their families.

There are limitations of our study. The first is that the 
model was developed and validated with clinical data in 
an Indiana-based HIE, and may not be applicable to all 
health systems’ demographics. We have attempted to 
account for this by comparing our model to previous 
models for AF identification. Additionally, the model may 
not be applicable to countries with a different health cov-
erage or insurance environment; further investigation is 
needed to address this parameter in future work. A sec-
ond limitation is in our ability to identify patients with 
limited to no previous clinical data. Another limitation is 
in our ability to recommend a follow-up assessment(s) or 
intervention(s) for when a patient is identified as higher-
risk for undiagnosed AF. In our study we elected to do 
a proof-of-concept implementation with a silent alert 

and not pursue a specific method for further monitoring, 
screening, or intervention for confirmatory testing of AF.

We recommend this model be tested and implemented 
within additional healthcare systems, with individual or 
algorithmic decisions on how to interpret the risk score 
for reasonable follow-up or clinical intervention. This 
may help calculate the patient- and system-level value of 
identifying undiagnosed AF patients to reduce their risk 
of stroke or systemic embolism. Future studies may also 
use sophisticated natural language processing to evaluate 
unstructured data to explore an expanded risk prediction.

Conclusion
Utilizing only existing electronic health data, this parsi-
monious model for identifying risk of undiagnosed AF 
over 2 years achieved a C-statistic of 0.81. It is among the 
highest reported in literature to date seen, and was suc-
cessfully implemented into a production EHR in a large 
metropolitan health system. Implementing this model in 
additional health systems could facilitate identification 
of patients at higher-risk of undiagnosed AF, leading to 
further assessment to evaluate for AF. Guideline-recom-
mended interventions may help reduce these patients’ 
risk of stroke or systemic embolism. This non-invasive, 
inexpensive screening approach may benefit patients and 
their families, and the health systems caring for them.
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