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Abstract

Partial replacement of α-amino acid residues with β-amino acid residues has been established as a 

strategy for preserving target-engagement by helix-forming polypeptides while altering other 

properties. The impact of β-residue incorporation within polypeptides that adopt less regular 

conformations, however, has received less attention. The HRC domains of fusion glycoproteins 

from pathogenic paramyxoviruses contain a segment that must adopt an extended conformation in 

order to co-assemble with the HRN domain in the post-fusion state and drive merger of the viral 

envelope with a target cell membrane. Here we examine the impact of single α-to-β substitutions 

within this extended N-terminal segment of an engineered HRC peptide designated VIQKI. 

Stabilities of hexameric co-assemblies formed with the native HPIV3 HRN have been evaluated, 

the structures of five co-assemblies have been determined, and antiviral efficacies have been 

measured. Many sites within the extended segment show functional tolerance of α-to-β 
substitution. These results offer a basis for future development of paramyxovirus infection 

inhibitors with novel biological activity profiles, possibly including resistance to proteolysis.
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The disruption of interactions within or between proteins is an attractive basis for drug 

design. This strategy requires molecules that can engage large surfaces on target proteins, a 

goal that is generally difficult to achieve with small molecules (MW<1000).1-3 Clinically 

useful inhibitors of pathogenic protein-protein interactions are typically engineered proteins 

or large peptides. Antibodies and other large proteins are expensive to produce.4 Smaller 

polypeptides offer the advantage of chemical synthesis but suffer from rapid degradation by 

endogenous proteases.1-3 One strategy for retaining the benefits of polypeptides while 

minimizing proteolytic susceptibility is to incorporate non-natural subunits into the peptidic 

backbone.5-12 The challenge inherent in this approach is to introduce a sufficient number 

and distribution of backbone modifications to hinder protease action without loss of target 

protein engagement. We have shown that the recognition properties of an α-helix can be 

retained after periodic replacement of α-amino acid residues with β residues.13-22 The 

resulting “α/β-peptides” adopt an α-helix-like conformation but resist enzymatic 

degradation. Less is known about the impact of β residue incorporation in non-helical 

segments.

Paramyxoviruses, such as parainfluenza, measles, Nipah, and Hendra viruses, are negative-

strand RNA viruses that negatively impact global human health. Here, we describe 

fundamental studies of α-to-β modifications in the context of an extended segment that 

plays a critical role in a paramyxovirus infection mechanism. We focus on an eight-residue 

portion of the fusion (F) glycoprotein of human parainfluenza virus 3 (HPIV3). The F 

protein orchestrates fusion of the HPIV3 envelope and the outer membrane of a target cell. 

This process involves a complex set of structural transitions within an F trimer that 

ultimately leads to the formation of a “six-helix bundle” (6HB) assembly between N-

terminal heptad repeat (HRN) and C-terminal heptad repeat (HRC) domains of F.23-25 In the 

post-fusion 6HB state, the N-terminal portion of the HRC domain (residues 449-456) adopts 

an extended conformation, while the majority of the HRC domain residues (457-484) form 

an α-helix (Figure 1A).26

The few previous evaluations of α-to-β modification in extended peptide ligands had 

variable outcomes. For example, three groups have explored systematic “β scans” of short 

peptide antigens (8 or 9 residues) that bind to class I major histocompatibility complexes 

(MHC I).27-29 In each system, MHC binding was retained for β substitution at some 

positions, but most of the resulting peptide-MHC complexes were not effective in 

stimulating T cells that respond to the natural antigen. A subsequent study found greater 

functional tolerance of single α-to-β replacements in a 17-mer antigen that binds to a class II 

MHC.30 A systematic α-to-β analogue series was recently reported for a 10-residue 

phosphopeptide that binds in an extended conformation to 14-3-3 proteins.31 β substitution 

near either end caused modest declines in affinity (~10-fold), but more severe losses in 

affinity were observed for substitutions closer to the center of the peptide.
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Based on these precedents, it was not clear whether α-to-β substitutions would be 

structurally or functionally tolerated within the extended portion of an HPIV3 inhibitor. We 

were motivated to proceed, however, by two considerations. First, peptide binding to an 

MHC or a 14-3-3 protein involves multiple H-bonds between the backbone of the peptide 

ligand and the protein partner. In contrast, there are relatively few H-bonds between the 

extended segment of the HPIV3 HRC domain and the HRN trimer core in the post-fusion 

6HB state of F. Second, coronaviruses (CoVs) feature even longer extended segments within 

the post-fusion HRC domains of their fusion glycoproteins (S) than do paramyxoviruses, but 

the backbones of these extended CoV segments form relatively few H-bonds with the HRN 

trimer core.32-34 α-to-β replacement seems likely to disrupt backbone H-bonding in an 

extended conformation; therefore, we predicted that this type of modification might be better 

tolerated in an extended segment of a viral fusion protein HRC domain than in other linear 

peptide epitopes.

METHODS

Our study began with a previously reported peptide derived from the HRC domain of 

HPIV3, designated VIQKI (Figure 1C), which blocks infection by both HPIV3 and 

respiratory syncytial virus (RSV).35-37 These two viruses are leading causes of fatal lower 

respiratory infections in young children.38-40 A crystal structure of VIQKI co-assembled 

with HPIV3-HRN (Figure 1B) revealed a 6HB assembly similar to the HRC/HRN assembly 

in the post-fusion conformation of the HPIV3 F protein (Figure 1A).35 As expected, two 

distinct conformations were observed within the VIQKI peptide, an α-helix spanning 

residues corresponding to 457–484 of the F protein, and an extended conformation for 

residues corresponding to 449–456. Our studies focused on backbone modifications in the 

extended portion of VIQKI (Figure 1, dashed boxes).

A set of VIQKI analogues was synthesized in which each of the eight N-terminal residues 

was replaced individually with the homologous β3-amino acid residue (Figure 1D). Thus, 

each replacement preserved the side chain found in VIQKI but introduced an extra CH2 unit 

into the backbone. The effect of each single α-to-β3 substitution on assembly stability with 

HPIV3-HRN was examined using variable-temperature circular dichroism (VT-CD) 

spectroscopy. When combined with a 51-residue peptide corresponding to the HPIV3-HRN 

domain, each α/β-VIQKI variant formed a helical assembly, as detected by CD minima at 

208 and 222 nm. Each assembly exhibited a cooperative thermal transition at 222 nm, which 

allowed us to determine apparent thermal denaturation (Tm,app) values, based on the mid-

point of each transition (Table 1). For each α/β-VIQKI variant, a ΔTm,app value was 

calculated based on comparison with Tm,app for VIQKI itself [ΔTm,app = Tm,app (HPIV3-

HRN+VIQKI β3-variant) – Tm,app (HPIV3-HRN+VIQKI)].

The VT-CD analysis revealed that most α-to-β replacements in the N-terminal region of 

VIQKI caused little or no change in ΔTm,app. Since omission of the three N-terminal 

residues (N449-L451) has little effect HRC-HRN assembly stability,35 it is perhaps not 

surprising that the β3 residue was well tolerated at each of these positions. The D452-I456 

segment, on the other hand, was shown by truncation studies to be crucial for assembly 
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stability,35 and it was therefore not expected that only one α-to-β replacement among these 

five residues, D455(β3D), would be highly destabilizing.

To assess the functional impact of each single α-to-β substitution, we evaluated inhibitory 

activity toward HPIV3 infection using plaque reduction assays. Hep2 cell monolayers were 

infected with engineered recombinant HPIV3 that expresses green fluorescent protein (GFP) 

in the presence of various concentrations of each VIQKI variant, and the extent of infection 

was determined by quantification of fluorescence. The results are provided in two formats. 

Figure 2A shows extent of inhibition of infection as a function of VIQKI variant 

concentration. Figure 2C shows the ratio of extent of inhibition for each variant relative to 

inhibition for VIQKI itself at the experimental concentration closest to the IC50 of VIQKI 

(16 nM). Consistent with the VT-CD results, the functional data show that seven of the eight 

β-substituted peptides display substantial antiviral activity. Activity was lowest for the 

substitution that was most destabilizing to HRC-HRN assembly, D455(β3D).

The high sensitivity of D455 to β residue replacement, in terms of both assembly stability 

and antiviral activity, was intriguing because of a critical role suggested by previous 

structural studies for the D455 side chain. The carboxylate of D455 in the post-fusion 6HB 

form of the HPIV3 F protein engages in a H-bond with the backbone amide N-H of S457.26 

The same H-bond is seen in the co-crystal structure of VIQKI with the HPIV3 HRN domain.
35 This i,i+2 interaction appears to serve as an N-terminal cap41 for the α-helical secondary 

structure that starts at S457 and extends to the C-terminus.

To try to gain insight into the structural impact of the α-to-β substitutions, we co-

crystallized five VIQKI variants with the HPIV3-HRN peptide, D452(β3D), P453(β3P), 

I454(β3I), D455(β3D) and I456(β3I). Each structure was solved by molecular replacement 

using a search model based on the HPIV3-HRN+VIQK1 structure (PDB 6NRO).35 Chains 

A and B from 6NRO were truncated to include residues 153–173 (chain A) and 460–480 

(chain B). All hydrogen atoms and side chains were removed prior to molecular 

replacement. Crystallographic models were refined to 1.70 Å [HPIV3-HRN+VIQKI-

D452(β3D), (PDB 6PZ6)]; 1.87 Å [HPIV3-HRN+VIQKI-P453(β3P), (PDB 6PRL)]; 1.49 Å 

[HPIV3-HRN+VIQKI-I454(β3I), (PDB 6VAS)]; 1.79 Å [HPIV3-HRN+VIQKI-D455(β3D), 

(PDB 6PYQ)]; and 2.17 Å [HPIV3-HRN+VIQKI-I456(β3I), (PDB 6V3V)].

In each of the five new structures, the single β3 residue substitution within the extended N-

terminal segment did not affect the α-helical conformation of residues 457–484. However, 

the impact of α-to-β3 substitution on the conformation of the N-terminal segment differed 

among the five variants (Figure 3).

In three of the five co-crystal structures, those containing P453(β3P), I454(β3I), or 

D455(β3D) substitutions, the backbone modification resulted in a significant remodeling of 

the extended conformation in the N-terminal region relative to VIQKI. For VIQKI-

P453(β3P), contacts involving the I454 and I456 side chains and hydrophobic residues from 

the HPIV3-HRN trimer were retained, as was the helix capping interaction of D455. 

However, this substitution nucleated a hairpin turn that reoriented residues 449–452, with 

loss of contacts observed between these residues in VIQKI and HPIV3-HRN (Figures 3C, 
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4B). Since previous work showed that contacts involving residues 449–451 do not 

significantly contribute to six-helix bundle stability,35 this distortion may reflect effects of 

packing with lattice neighbors. For VIQKI-I454(β3I), only residues 455–484 could be 

resolved. No significant electron density was observed for the β3I residue or residues 449–

453.

In the co-assembly of VIQKI-D455(β3D) and HPIV3-HRN, residues 452–484 of the VIQKI 

variant were resolved. However, the transition from extended to α-helical conformation, 

which occurred at S457 in the HPIV3-HRN+VIQKI structure, was not observed for the 

D455(β3D) variant. Instead, VIQKI-D455(β3D) adopted a helical conformation from residue 

453 to 484 (Figures 3E, 4C). We hypothesize that the additional backbone carbon atom 

between the carboxylate side chain of β3D455 and the backbone amide N-H of S457 in this 

variant, relative to VIQKI itself, interferes with the helix-capping interaction involving the 

side chain of D455 in VIQKI. This conformational rearrangement in the N-terminal segment 

may explain the loss of 6HB stability (Table 1) and diminished antiviral activity (Figure 2) 

observed for VIQKI-D455(β3D).

In the crystal structures of VIQKI-D452(β3D) and VIQKI-I456(β3I) co-assembled with 

HPIV3-HRN, the extended conformation observed for VIQKI itself was retained (Figures 

3B, 3F), although in both variants the two terminal residues, V449 and A450, could not be 

resolved. In both new structures, key interactions between the N-terminal segment of the 

inhibitor and the HPIV3-HRN core were preserved. These interactions include contacts of 

side chains from L451, I454, and I456 (or β3I456) with hydrophobic residues in the HRN 

trimer, as well as H-bonds between the backbone carbonyl of D452 with the side chain 

hydroxyl of HRN residue Y178. The helix capping interaction was present in both of these 

VIQKI variants.

Although assessing activity of the β-substituted analogues of VIQKI toward RSV was 

tangential to the main goals of this work, we evaluated these peptides for the ability to 

inhibit RSV infection of Hep-2 cells. Figures 2B,D show that the effect of α-to-β 
substitutions on efficacy against RSV was more pronounced than the effect on efficacy 

against HPIV3. Most VIQKI variants were significantly less active relative to VIQKI itself. 

However, variants L451(β3L) and D452(β3D) seemed to match VIQKI in efficacy against 

RSV infection. The N-terminal segment of VIQKI adopts different conformations when co-

assembled with HPIV3-HRN vs. RSV-HRN.30 Residues P453-I456 are part of the extended 

segment in the assembly with HPIV3-HRN, but these residues have been incorporated into 

the α-helix in the assembly with RSV-HRN. It is noteworthy that only two variants, 

L451(β3L) and D452(β3D), maintained inhibition of infection by both viruses.

We have used a peptide that inhibits HPIV3 infection via a well-characterized mode of target 

engagement to explore the effects of replacing α-amino acid residues by homologous β3 

residues within a segment that is extended in the bioactive conformation. This modification 

preserves the side chain but alters the backbone via introduction of a CH2 unit. Based on 

previous studies involving β replacements in extended peptide ligands, it could not have 

been predicted that most sites in the extended portion of the α-peptide inhibitor VIQKI 

would tolerate α-to-β3 substitution while retaining the ability to inhibit HPIV3 infection. We 
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hypothesize that the extended segments of viral HRC domains in the 6HB assemblies of 

post-fusion forms may generally prove to be tolerant of backbone modifications because the 

backbone amide groups in these segments form few H-bonds with HRN domain trimers. 

This work offers a step toward development of protease-resistant dual HPIV3/RSV 

inhibitors that might address life-threatening child-hood infections for which there are no 

current drugs. (We have not examined the effects of proteases on the β-substituted peptides 

discussed here, because, with only one backbone modification, these 36-mers will 

undoubtedly be susceptible at most sites of potential cleavage.) In addition, given the 

presence of long extended segments in the post-fusion HRC/HRN assemblies formed by 

coronavirus fusion glycoproteins,32-34 these results encourage application of the backbone 

modification strategy to inhibitor development directed toward these pathogens.

Supplementary Material
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Figure 1. 
(A)HPIV3 F ectodomain in postfusion conformation (PDB 1ZTM), (B) VIQKI co-

assembled with HPIV3-HRN (PDB 6NRO), (C) sequence of VIQKI, (D) structure of a β3-

residue.
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Figure 2. 
Anti-viral efficacy of VIQKI β3-variants against HPIV3 or RSV. Peptide activity against 

HPIV3 (left) or RSV (right) were determined by plaque reduction assay in infected Hep-2 

cell monolayers. Data are shown as (A and B) percent inhibition of infection as a function of 

inhibitor concentration and (C and D) a ratio of the percent inhibition of each β3 variant with 

the percent inhibition of VIQKI. Gray zones represent the standard deviation of the VIQKI 

control. Data are expressed as mean ± standard deviation (n=3 separate experiments).
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Figure 3. 
X-ray crystal structures of VIQKI and β3-variants co-assembled with HPIV3-HRN. (A) 

HPIV3-HRN+VIQKI, PDB:6NRO; (B) HPIV3-HRN+VIQKI-D452(β3D), (PDB:6PZ6); (C) 

HPIV3-HRN+VIQKI-P453(β3P), (PDB:6PRL); (D) HPIV3-HRN+VIQKI-I454(β3I), 

(PDB:6VAS); (E) HPIV3-HRN+VIQKI-D455(β3D), (PDB:6PYQ); (F) HPIV3-HRN

+VIQKI-I456(β3I), (PDB:6V3V). HPIV3-HRN (orange), VIQKI and β3-variants (green) 

with β3-residues highlighted in violet.
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Figure 4. 
2mFo-DFc weighted electron density maps for β3-residues in (A) HPIV3-HRN+VIQKI-

D452(β3D), (B) HPIV3-HRN+VIQKI-P453(β3P), (C) HPIV3-HRN+VIQKI-D455(β3D), 

(D) HPIV3-HRN+VIQKI-I456(β3I). β3-residues are shown in violet.

Outlaw et al. Page 12

ACS Infect Dis. Author manuscript; available in PMC 2021 August 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Outlaw et al. Page 13

Table 1.

Apparent thermal denaturation temperatures (Tm,app) of co-assemblies formed between HPIV3-HRN+VIQKI 

β3-variant pairs

Peptide Tm,app (°C)
a

ΔTm,app
b

VIQKI 88.6±0.4

VIQKI-V449(β3V) 89.0±0.8 +0.4

VIQKI-A450(β3A) 89.2±1.0 +0.6

VIQKI-L451 (β3L) 88.7±0.8 +0.1

VIQKI-D452(β3D) 89.1±0.4 +0.5

VIQKI-P453(β3P) 86.1±0.9 −2.5

VIQKI-I454(β3I) 86.7±1.0 −1.9

VIQKI-D455(β3D) 81.5±0.5 −7.1

VIQKI-I456(β3I) 86.2±1.1 −2.4

a
1:1 mixture of Inhibitor (50 μM) and HRN (50 μM) peptides. Tm,app values were determined as mean values of three replicates ± standard 

deviation.

b
ΔTm.app = Tm,app (HPIV3-HRN+VIQKI β3-variant) - Tm,app (HPIV3-HRN+VIQKI)
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