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Abstract

Epigenetic regulation is critical for proper bone development. Evidence from a large body of 

published literature informs us that microRNAs (miRNAs) are important epigenetic factors that 

control many aspects of bone development, homeostasis, and repair processes. These small non-

coding RNAs function at the post-transcriptional level to suppress expression of specific target 

genes. Many target genes may be affected by one miRNA resulting in alteration in cellular 

pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via 

genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in 

vivo) can lead to substantial changes in cell processes including proliferation, metabolism, 

apoptosis and differentiation. In this review, Section 1 briefly covers general background 

information on processes that control bone development as well as the biogenesis and function of 

miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on 

findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing 

more recent data from the last three years related to miRNA regulation of osteoblast differentiation 

in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the 

effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. 

In Section 4, we provide some recent information from studies analyzing the potential of miRNA-

mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect 

the differentiation or function of another bone cell type. We then conclude by summarizing where 

the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how 

information gained from developmental processes can be instructive in identifying potential 

therapeutic miRNA targets for the treatment of certain bone conditions.
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1. Introduction: bone development and microRNAs

Bone development begins by the establishment of mesenchymal stem cell condensations that 

prefigure the shape, size and location of mature bone elements [1,2]. In addition to these 

skeletal patterning events, mesenchymal cells within these condensations receive signals to 

differentiate toward either cartilage-forming chondrocytes or bone-forming osteoblasts. The 

end result of a complex, tightly-controlled progenitor cell differentiation program is the 

generation of bone tissue consisting of a unique mineralized extracellular matrix (ECM).

Bone formation that transitions via a cartilaginous template is referred to as endochondral 

ossification and occurs during limb development [3-5]. Cells within this cartilage template 

terminally differentiate to form large hypertrophic chondrocytes that regulate mineralization 

of the surrounding ECM and induce vessel invasion. These events lead to the formation of a 

primary ossification center, and eventually cancellous bone following replacement of 

cartilage tissue by bone ECM components. Until recently, it was generally accepted that 

endochondral bone-forming osteoblasts are derived from progenitor cells lining or within 

blood vessels as well as from progenitor cells of the adjacent perichondrium [6]. However, it 

has now been established in recent years that hypertrophic chondrocytes, or a subset of 

progenitor cells within hypertrophic cartilage, are a significant source of osteoblasts during 

endochondral ossification [7-10]. Coupling of chondrogenesis and osteogenesis is also 

apparent in the formation of cortical bone of the limbs. Mature cortical bone is derived from 

the bone collar region in the perichondrium of developing limbs. While this process 

generally involves differentiation of progenitor cells directly to osteoblasts, hypertrophic 

chondrocytes have been proposed to play an important role in regulating “perichondrial 

osteogenesis” [3,4,6,11]. In addition to endochondral bone formation, other bones in the 

body are generated without the requirement of a cartilage template and involve cells within 

mesenchymal condensations differentiating directly to osteoblasts. This process, called 

intramembranous ossification, occurs in some bones of the cranium, and parts of the 

mandible and clavicle [12].

Toward the end phases of endochondral or intramembranous bone development, some 

osteoblasts will give rise to osteocytes that are found embedded deep within the mineralized 

bone ECM. Osteocytes can communicate with adjacent cells (including surrounding 

osteocytes, osteoblasts, osteoclasts, endothelial cells) via cytoplasmic extensions that occupy 

tiny canals called canaliculi [13]. These cells play critical mechano-sensing roles to control 

bone formation and homeostasis. Specifically, there is evidence that osteocytes can regulate 

the differentiation and function of bone-forming osteoblasts as well as the bone-resorbing 

osteoclasts [14]. In addition, crosstalk between osteoblasts and osteoclasts also occurs 

thereby increasing the complexity controlling bone development and turnover [15].
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With respect to molecular regulation of osteoblast differentiation during endochondral or 

intramembranous bone formation, many important players have been identified. These 

include key transcription factors that are critical for chondrocyte or osteoblast formation (i.e. 

SOX9, RUNX2, respectively), homeodomain proteins that control various stages of 

osteoblast differentiation [16-19], growth factors (including FGFs, IGFs, VEGF, BMPs and 

other TGF-β superfamily members) as well as other signaling pathways (Wnt/β-catenin, 

Hedgehog, PTHrP, etc) [3-6]. It is also apparent that bone formation is regulated by 

epigenetic factors that can function at the level of transcription or translation to alter gene or 

protein expression. Examples of epigenetic regulators include histone modifying enzymes 

(HDACs, HACs), enzymes that control DNA methylation (DNMTs, TETs), long non-coding 

RNAs and microRNAs (miRNAs) [20-22].

Since the first discovery of a miRNA in Caenorhabditis elegans over 25 years ago [23], 

many more have now been identified in cells of humans, rodents, flies, viruses, plants and 

other species. In the current miRBase website (http://www.mirbase.org), 1917 mature 

miRNAs have been identified in humans and 1234 in mice. Mature non-coding miRNAs are 

commonly 19–24 nucleotides (nt) in length and are derived from larger precursor RNAs. 

Genes encoding miRNAs (predominantly located in intergenic regions or within introns of 

protein-coding genes) are first transcribed as large primary precursors (pri-miRNAs). In 

some cases, miRNA-encoding genes may be clustered (i.e. adjacently located within 10 Kb 

of each other as per miRBase definition) and transcribed in a polycistronic manner. Primary 

miRNA transcripts are processed in the nucleus by a Drosha-containing complex and the 

resulting precursor miRNAs (pre-miRNA) are transported to the cytoplasm and processed 

further by a Dicer-containing complex to form a short, mature miRNA duplex containing a 

5p and 3p strand [24]. Commonly, one of these strands is functional whereby it will bind via 

its seed sequence (positions 2–8 of the mature miRNA strand) to a complementary region 

within the 3′UTR of a target mRNA. This interaction occurs within the RNA-induced 

silencing complex (RISC), the end result being either degradation of the target mRNA or 

inhibition of mRNA translation [25,26]. Fig. 1 depicts the stages of miRNA transcription, 

processing, and interaction with a target mRNA. Compared to short interfering RNAs (siR-

NAs) that are generated exogenously, the level of miRNA-induced target suppression is 

quite modest. This is because the entire sequence of siR-NAs bind with high specificity 

(100% complementarity) to one mRNA target resulting in robust suppression via mRNA 

cleavage, while miRNAs interact with target mRNAs via imperfect pairing, with the 

exception of the seed sequence interaction [27]. However, unlike siRNAs, miRNAs have the 

ability to target tens to even hundreds of mRNAs within a given cell type [28], thereby 

resulting in modulation of many cellular pathways and networks. Complexity is enhanced by 

the fact that multiple miRNAs may compete to bind to a specific target mRNA.

Although miRNAs account for only 1–5% of the human genome [29], up to 60% of protein-

coding genes may be modulated by miRNAs [30] thereby rendering these non-coding RNAs 

as major epigenetic regulators in the cell. While the majority of miRNAs carry out their 

function in the cytoplasm, many miRNAs have also been localized to other organelles 

including the nucleoli, processing bodies and mitochondria [31]. It has also been 

demonstrated that miRNAs can exist inside extracellular vesicles such as exosomes and that 

cells can communicate with each other via exosomal delivery of miRNAs [32,33]. Overall, a 
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massive body of published research indicates that miRNAs play important roles in 

development, homeostasis, turnover, disease and repair of many different tissue types. 

Specifically, miRNAs have been shown to regulate a wide range of cellular processes 

including proliferation, cytoskeleton formation, apoptosis, growth factor signaling, 

metabolism, cell differentiation, and many others.

In this review, we will discuss some in vivo findings that highlight the importance of 

miRNAs in regulating skeletal development with an emphasis on osteogenesis. In Section 2, 

some information describing the importance of miRNAs in skeletal development via in vivo 

mouse models and human clinical reports is similar to that included in our previously 

published review on miRNAs in orthopaedic research [34]. We believe that such details are 

also important in the context of this review as well. However, new information is described 

in Section 2 that was not included in our previous review including details on Prx1-Cre and 

CD11b-Cre deletion of Dicer in mice, the effects of deleting miR-181 and miR-182 in vivo, 

a recent report describing a new human neomorphic mutation in miR-140 [35], and a newly 

published manuscript describing the smallest human deletion mutation in 1q24 containing a 

microRNA cluster that is associated with skeletal phenotypes [36]. Given some recently 

published reviews on miRNAs regulating bone formation [34,37-39] we have focused 

Section 3 of this review on findings published predominantly within the last three years with 

respect to miRNA regulation of osteoblast differentiation. Preference was given to 

discussing studies where a miRNA target was validated and/or a specific pathway or cellular 

process was identified to be regulated by the miRNA of interest. While bone-resorbing 

osteoclasts are also important in the regulation of bone development, information on how 

miRNAs affect these cells will be covered by another review in this Special Edition. 

However, this review will include details of some studies showing that miRNAs in exosomes 

derived from either osteoclasts or osteocytes can regulate osteoblast differentiation/function, 

thus highlighting the complex miRNA-mediated crosstalk that likely occurs between 

different cell types in bone.

2. The importance of miRNAs in skeletal development: lessons from in 

vivo findings

a) Modulation of miRNA processing via Cre-driver lines in skeletal cells

Conditional transgenic mice devoid of proteins involved in miRNA processing have been 

generated. While the function of these proteins is not completely restricted to regulating 

miRNAs, findings from these mice (which contain substantially lower levels of functional 

miRNAs in specific cell types) suggest an important role for these non-coding RNAs in 

controlling cellular processes involved in proper skeletal development.

Deletion of the pre-miRNA processing enzyme, Dicer, in osteochon-droprogenitor cells via 

Prx-1-Cre mice resulted in formation of smaller limbs due, in part, to increased cell death 

during early limb bud development. Interestingly, there did not appear to be defects in basic 

patterning or in overall cartilage and bone differentiation within these smaller limbs [40]. 

However, when Dicer was eliminated specifically in chondrocytes by crossing Dicer floxed 

mice with Col2a1-Cre driver mice, growth plate analysis revealed modest defects in 
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chondrocyte differentiation which subsequently resulted in reduced length and width of the 

developing long bones [41]. Given the cross-talk between hypertrophic cartilage and bone 

collar/cortical bone formation, it would have been interesting to determine if there were any 

defects in matrix mineralization and bone production in the limbs of these mice. Thorough 

analysis of post-natal bone formation was not possible given that these mice normally die 

around the time of weaning. Following Dicer deletion in osteoprogenitor cells via Col1a1-
Cre mice, skeletal examination of E14.5 embryos revealed compromised ECM 

mineralization in cartilage and osseous tissues as well as an overall significant reduction in 

bone tissue [42]. Whether this phenotype represents delayed rather than inhibition of 

ossification was not concluded from these studies given that embryo survival was 

compromised after E14.5, which may have been partly due to the lack of marrow cavity 

formation which support hematopoiesis. This study also showed that when Dicer was 

deleted specifically in mature osteocalcin-producing osteoblasts (Ocn-Cre), a post-natal 

increase in long bone and vertebral bone mass (but not cranial bone mass) was found [42]. 

These findings suggest an overall positive role for Dicer-generated miRNAs in regulating 

osteoblast differentiation during embryonic bone development, particularly bones that are 

generated by endochondral ossification. On the other hand, the Ocn-Cre findings suggest 

that miRNAs may generally function to suppress bone formation during post-natal bone 

development and turnover. However, conditional knock-out of Dicer via Runx2-Cre revealed 

growth retardation, low bone mass and impaired bone formation rate in post-natal mice [43]. 

A recent study also revealed decreased cortical bone mass in young and adult mice 

following inducible post-natal ablation of Dicer in osterix (Sp7)-producing cells (Sp7-
CreERT2; Dicerflox/flox) [44]. It was also shown that Dgcr8 (DiGeorge syndrome critical 

region 8) deletion in osteopro-genitors (Col1a1-Cre) resulted in enhanced bone formation 

due, in part, to decreased miR-22 and enhanced osteocalcin transcripts [45]. Dgcr8 is a 

critical component of the pri-miRNA processing complex via its interaction with Drosha. 

Taken together, it is apparent that the timing and the choice of Cre-driver model to induce 

deletion of miRNA processing proteins are critical factors in determining the outcome of 

miRNA deficiency on bone formation.

Dicer has also been deleted predominantly (but not specifically) in murine osteoclasts via 

CD11b-Cre [46] or Cathepsin K-Cre [47] approaches. In both cases, increased post-natal 

bone mass was found due to impaired osteoclastogenesis. Whether bone mass or 

mineralization was affected at the embryonic level was not investigated in these studies. The 

latter study by Mizoguchi et al [47] also reported no changes in post-natal bone mass when 

Dicer was removed by Col1a1-Cre mediated deletion. This result is intriguing given that 

Gaur et al reported embryonic lethality when this enzyme was knocked-out using the same 

2.3 kb collagen type I promoter Cre-mice [42]. Similar defects in osteoclast differentiation 

and function were noted when Dgcr8 was deleted in osteoclasts using Cathepsin-Cre mice 

[48]. These mice also displayed growth retardation as well as increased bone mass.

b) miRNAs regulating human skeletal development

Data from clinical reports have demonstrated the importance of miRNAs in regulating 

human skeletal development. One study found that a mutation within the 3′UTR of HDAC6 

disrupts the miR-433 binding site resulting in a dominant X-linked chondrodysplasia [49]. 
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Deletion or duplication of the miR-17~92 cluster was reported to cause short stature, digit 

abnormalities, microcephaly and abnormal facial features [50,51]. Additional findings show 

that deletion of miR-17~92 specifically in murine Col1α2-expressing cells resulted in 

smaller bones as well as a reduction in periosteal bone formation following mechanical 

loading [52].

A recent report identified a mutation within the gene encoding miR-140, one of the most 

studied miRNAs in cartilage. The resulting production of neomorphic mutant miR-140-5p 

caused a number of skeletal defects in family members including short stature, 

brachydactyly, premature degeneration of intervertebral discs and delayed epiphyseal 

ossification of the hip and knee [35]. Previous findings from miR-140 knock-out mice 

[53,54] revealed shortened limbs as a result of defects in endochondral ossification due to 

accelerated hypertrophic chondrocyte differentiation.

Deletions within specific regions of chromosome 1q24 appear to cause a range of skeletal 

phenotypes and cognitive disabilities [55-58]. Skeletal issues include short stature, 

microcephaly, brachydactyly and, in some cases, a marked delay in bone age. Interestingly, 

the various deletions reported contain the clustered miRNAs, miR-199a and miR-214, which 

are located within a long non-coding RNA (lncRNA) transcript called DNM3OS. Further 

evidence that heterozygous deletion of these non-coding RNAs may be responsible for the 

skeletal phenotype comes from a newly published study reporting the smallest 1q24 

microdeletion to date (94 Kb) in the genome of two patients [36]. In addition, transgenic 

mice devoid of Dnm3os, and hence the miR-199a~214 cluster, presented with similar 

skeletal phenotypes to that reported in human patients [59]. While one cannot rule out the 

possibility that Dnm3os may function as a lncRNA independent of its role in serving as a 

miRNA precursor, it is likely that the miRNAs themselves play a role in regulating the 

skeletal phenotype. In fact, a number of published studies have reported a functional role for 

miR-199a or miR-214 in regulating osteogenesis in vitro or in vivo.

c) miRNAs with functional roles in regulating bone formation in vivo

Altered expression of other miRNAs in mice has revealed functional roles in regulating bone 

formation in vivo. For example, expression of members of the miR-34 family (miRs-34a, b, 

c) were found to increase during osteoblast differentiation of murine calvarial cells [60]. 

This study also showed that when miR-34b and miR-34c were deleted in Col1a1-producing 

cells in mice, increased bone mass was observed during embryonic development and 

increased bone mass accrual was observed post-natally. The opposite was found when 

miR-34c was over-expressed in murine Col1a1-producing cells. One of the mechanisms 

proposed for the negative effects of miR-34 on bone development was via targeting and 

suppression of SATB2 (special AT-rich sequence-binding protein 2). In agreement with this 

work, miR-34a was found to suppress osteoblast differentiation of human MSCs in vitro (in 

part via targeting Jagged 1) and reduce formation of bone following subcutaneous transfer of 

hMSC-loaded ceramic beads in SCID mice [61]. Interestingly, when miR-34a was over-

expressed predominantly in osteoclasts, osteoclastogenesis and bone resorption was 

suppressed and provided some protection against ovariectomy (OVX)-induced bone loss 

[62]. These findings demonstrate the functional divergence between miR-34 family 
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members but also highlight the fact that modulation of miRNAs in different cell types within 

the same tissue can result in different biological outcomes.

Expression of miR-206, regarded as more of a muscle-specific miRNA, was found to be one 

of a number of miRNAs downregulated during BMP-2-induced osteogenic differentiation of 

C2C12 cells [63]. This study also showed that conditional over-expression of miR-206 in 

Col1a1-positive cells resulted in low bone mass in mice due, in part, to targeting and 

suppression of connexin 43 (Cx43). It has also been reported that when members of the 

miR-181 family were globally deleted in mice, those that survived were smaller in size 

[64,65]. This suggests a potential role for these miRNA paralogs in controlling growth plate 

and bone development. As will be discussed more in this review, miR-181a/b has been 

shown to enhance osteogenesis in vitro.

A recent report showed that miR-182 inhibits osteoclastogenesis in vitro and that myeloid-

specific (LysM-Cre) deletion of miR-182 in mice results in increased post-natal trabecular 

bone mass [66]. These mice were apparently protected from bone loss associated with OVX 

and inflammatory arthritis. Mechanistically, miR-182 was found to target protein kinase 

double stranded RNA dependent (PKR) and regulate IFN-β signaling. As expected, this 

study also showed that in vivo over-expression of miR-182 in osteoclasts resulted in low 

trabecular bone mass. Cortical bone mass was not affected by miR-182 modulation and it is 

not clear if trabecular bone mass was affected at earlier embryonic stages of bone 

development. In agreement with these negative effects on bone mass, previous studies have 

shown that miR-182 (in part via targeting FoxO1) suppresses osteoblast differentiation in 

vitro and impairs bone formation in vivo in zebrafish [67]. Another study showed that 

suppression of miR-182 enhanced osteoblast differentiation in vitro and apparently induced 

the effects of alendronate in combating osteoporosis in rats via regulating Rap1/MAPK 

signaling [68].

In vitro studies found that miR-21 appeared to enhance both osteogenesis and 

osteoclastogenesis [69,70]. Interestingly, global knock-out of miR-21 in mice [71] did not 

appear to affect bone development, which may be due to functional redundancy by other 

miRNAs expressed during development. However, miR-21 deficiency promoted trabecular 

bone mass with age and also prevented OVX-induced bone loss during aging due, in part, to 

suppressed osteoclast function. In this case, as has been reported for many transgenic mice, a 

post-natal phenotype exists following aging or a disease/injury challenge, even though a 

developmental/baseline phenotype is absent.

3. Recent research on miRNAs regulating osteoblast differentiation

Given the large body of published studies and some recent reviews on osteogenic regulation 

by miRNAs, this section will cover research findings reported within the last three years 

(2017 to present). PubMed search keywords included “miRNA or microRNA and 

osteoblastogenesis or osteogenesis”. Preference was given to studies that determined a 

miRNA target gene and/or cellular pathway modulated by the miRNA. Fig. 2 lists the osteo-

enhancing and osteo-suppressing miRNAs from this PubMed search as well some functional 

miRNAs discussed in Section 2 of this review. Tables 1 and 2 provide more information on 
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the findings from our literature search covering the last three years. Table 1 lists miRNAs 

reported to enhance osteoblast differentiation in vitro when over-expressed while Table 2 

lists miRNAs that suppress in vitro osteogenesis. Additional information provided in the 

Tables include the cell types used to study osteogenesis in vitro and, where applicable, the 

endogenous expression patterns of the miRNA of interest during in vitro osteogenesis, as 

well as the in vivo animal model utilized. The majority of these studies involved altering 

miRNA activity using either mimics or antagomirs whereas those that utilized lentiviral 

approaches are highlighted. We believe it is important to emphasize the mode of miRNA 

modulation given a report suggesting that transient transfection of miRNA mimics often 

results in supraphysiological levels of over-expression that may lead to non-specific changes 

in gene expression [72].

Table 1 shows that, where applicable, the endogenous expression of miRNAs reported to 

have enhancing activity appears to increase during in vitro osteogenesis, particularly at the 

early phases of differentiation induction. Additional over-expression of each miRNA listed 

in Table 1 [73-88] in a range of rodent or human progenitor cell lines enhanced the 

osteogenic program as shown by increased mineralized matrix formation (commonly 

detected by Alizarin red staining) and increased expression of osteoblast-related genes when 

compared to control cultures. A number of these osteo-enhancing miRNAs were found to 

target and suppress other epigenetic regulators including HDAC4 or HMGA2 [74,76,79,85]. 

Another common mechanism to enhance osteoblast differentiation is via miRNA-mediated 

suppression of Wnt inhibitors (i.e. DKK1 or GSK3β) [75,77,87] or via targeting negative 

regulators of RUNX2 (i.e. SMAD6 or SMURF2) [78,80]. Less commonly reported miRNA-

mediated mechanisms to enhance bone formation include regulation of retinoic acid 

receptor-related orphan receptor beta (Rorβ). This transcription factor, which is a negative 

regulator of bone, was reported to be a direct target of miR-219-5p, thereby partly 

explaining the mechanism by which this miRNA enhances osteogenesis [83]. Two reports in 

Table 1 [82,86] show that miRNA-mediated targeting of PTEN (phosphatase and tensin 

homolog) results in enhanced osteogenesis. PTEN functions as the primary negative 

regulator of PI3K/AKT signaling in the cell [89] thereby affecting a number of cellular 

processes. Also, it was previously reported that mice lacking PTEN have higher bone mass 

and improved fracture healing [90,91], providing further evidence that mechanisms to 

suppress PTEN may have positive effects on bone formation. In addition to confirming 

PTEN protein suppression by over-expression of the miR-181a/b-1 cluster, research from 

our laboratory also showed that PI3K/AKT signaling was indeed increased during early 

phases of osteogenic differentiation following miR-181a/b-1 over-expression [82]. In this 

study, we also carried out RNA-Seq following over-expression of miR-181a/b-1 or a non-

silencing control RNA during osteogenesis and found, via pathway analyses, that a number 

of cell processes related to mitochondrial metabolism were increased. We subsequently 

showed by Seahorse technology that mitochondrial respiration was elevated during 

osteogenesis by miR-181a/b-1 and that enhancing PI3K/AKT signaling may be partly 

responsible for these metabolic changes. Preliminary unpublished data from our laboratory 

has also shown enhanced endochondral ulnar fracture healing in mice following lentiviral 

delivery of miR-181a/b-1 to the fracture site. While it is known that glycolysis is a major 

metabolic process during osteoblast differentiation, a number of other studies clearly show 
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that mitochondrial respiration is also critical for proper bone formation [92-97]. Research in 

our lab is currently focused on determining other miR-181a/b-1 target genes or pathways 

regulated by this miRNA cluster that may be responsible for regulating mitochondrial 

respiration. Interestingly, another in vitro study showed that miR-181a over-expression 

enhanced osteogenesis via repression of TGF-β signaling [98]. Undoubtedly, miR-181a/b 

paralogs will likely target a number of genes in the cell that will subsequently modulate 

multiple cellular pathways to regulate osteoblast differentiation.

Table 2 shows that endogenous expression of all miRNAs reported to have negative effects 

on osteoblast differentiation decreased during in vitro osteogenesis assays, particularly 

during the earlier phases of differentiation. The suppressive effect of these miRNAs on 

osteoblast differentiation was demonstrated following their over-expression by mimics or 

virus-mediated transduction [99-130]. Common target genes of a number of these miRNAs 

were found to be known activators of osteoblast differentiation including BMP2 [104-106], 

other BMPs [116,126], BMP receptors [101,107,115,130], specific WNTs [99,100] or 

transcription factors RUNX2 [110,115] and Osterix/Sp7 [103,127]. In agreement with the 

osteo-inhibitory function of miR-214-3p via targeting ATF4 [131], Table 2 lists a more 

recent study demonstrating that this miRNA can also target and suppress RUNX3 [122]. 

With respect to modulating cellular metabolism, two independent studies reported miRNA-

mediated targeting and suppression of glutaminase (which regulates glutamine metabolism) 

was partly responsible for decreased osteogenesis [120,121]. This work is in agreement with 

a recent report showing a positive role for glutaminase in regulating osteoblast 

differentiation [132].

Research from our laboratory showed that miR-138 inhibited osteogenesis, in part, via 

targeting and suppression of RHOC [111]. This was the first report implicating a role for this 

small GTPase in regulating osteoblast differentiation. We also found that a major effect of 

miR-138 over-expression and RHOC suppression was inhibition of actin polymerization. 

Another miRNA listed in Table 2, miR-1187, was also shown to suppress osteogenesis by 

inhibiting actin cytoskeletal rearrangement [130]. Together, these findings agree with 

previous studies showing that suppression of actin cytoskeleton formation has negative 

effects on osteoblast differentiation [133-135]. The inhibitory effect of miR-138 on 

osteogenesis was also shown previously and this study identified focal adhesion kinase 

(FAK) as a target of miR-138 [136]. Interestingly, previous studies have shown that cells 

defective in either RHOC or FAK are less invasive/metastatic [137,138]. A recent in vivo 

study showed that delivery of miR-138 antagomirs could enhance bone formation in a 

murine model of multiple myeloma [139]. While these findings are encouraging and support 

the in vitro data on miR-138 in regulating osteogenesis, long-term effects of inhibiting a 

miRNA with reported tumor suppressive activity should be considered. On the other hand, 

miR-138 over-expression may be a useful strategy to attempt to inhibit pathological bone 

formation. Indeed, preliminary, unpublished data from our laboratory showed a reduction in 

trauma-induced heterotopic bone formation in mice following lentiviral delivery of 

miR-138. Current studies are focused on investigating these findings further.

Determining the function and mechanism of a specific miRNA in regulating in vitro 

osteogenesis can be a useful first-step approach to justify pursuing in vivo studies in rodents. 
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Such pre-clinical studies are strengthened by the fact that many miRNAs are conserved 

between rodent and human. Tables 1 and 2 contain information on studies that utilized 

models of bone loss, bone repair or ectopic bone formation to determine how increasing or 

inhibiting miRNA activity can affect bone formation in these scenarios. In addition, two of 

these studies also reported age-related changes in miRNAs whereby miR-130a levels were 

lower in BMSCs from older mice [80] while miR-219a-5p expression was decreased in bone 

samples from old mice or from aged humans when compared to young controls [83]. A 

number of other recent studies have also reported age-related changes in miRNAs in bone or 

bone marrow cells as a consequence of age [140-145]. Therefore, identifying miRNAs that 

are not only functional in regulating osteogenesis, but also appear to be regulated with age, 

or even in bone disease scenarios, would further improve the discovery of effective miRNA 

targets to treat low bone mass or enhance bone repair.

4. miRNA-mediated crosstalk in bone

It is now well-established that intercellular communication between different cell types via 

exosomes, microvesicles or matrix vesicles is important for proper regulation of bone 

development, turnover and repair [146-153]. Exosomes are extracellular vesicles (EVs) with 

an average diameter of ~100 nm and contain protein, DNA, RNA and other components 

depending on the cell type from which they are derived. They originate from the endosomal 

pathway via the formation of multivesicular bodies (MVBs). Exosome-containing MVBs 

can fuse with the plasma membrane resulting in exosome release from the cell [154]. The 

discovery that exosomes containing miRNAs are present in circulation has led to many 

studies aimed at identifying miRNA biomarkers associated with various bone diseases 

[155-157]. In addition, there are new research endeavors exploring the possibility of 

exosome-derived miRNAs in mediating intercellular signaling between bone cells 

(osteoblasts, osteoclasts, osteocytes) and other cell types involved in bone formation (e.g. 

BMSCs, periosteal progenitors, hypertrophic chondrocytes).

A recent study reported that expression of miR-31a-5p was higher in BMSC-derived 

exosomes from aged rats compared to young rats [140]. This miRNA negatively affects 

osteoblast differentiation but promotes osteoclast differentiation and bone resorption, in part, 

via targeting SATB2 and RhoA, respectively. Inhibition of miR-31a-5p apparently prevented 

bone loss and decreased osteoclast activity in vivo. Overall, their findings suggest that 

miR-31a-5p is a modulator of the bone marrow microenvironment to influence both 

osteoblast and osteoclast differentiation during aging and that BMSC-derived exosomes may 

be a significant source of this miRNA. Another study found that bone marrow-derived EVs 

from aged mice had higher levels of the miR-183 cluster (miR-96~183) compared to EVs 

isolated from young animals [142]. The negative effects of miR-183 on BMSC osteogenesis 

was also demonstrated in this work. These findings suggest that enriched miRNAs within 

BMSC-derived EVs may interact with other BMSCs in the bone marrow microenvironment 

to reduce their osteogenic potential. In general, it also very likely that the contents of 

BMSC-derived EVs may also influence the function of surrounding osteoblasts and 

osteoclasts to affect bone metabolism [158].
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Emerging evidence also suggests that contents of exosomes derived from differentiated bone 

cells can regulate other cells types involved in bone formation/turnover. One study, showed 

that exosomes derived from a mineralizing osteoblast cell line (MC3T3) can promote 

osteoblast differentiation of the ST2 cell line [159]. While the transfer of miRNA cargo from 

exosomes was not examined in this work, exosome treatment was found to significantly alter 

miRNA profiles in the recipient cells. Other in-depth studies have demonstrated that 

exosomal miR-214 derived from osteoclasts could be transferred to osteoblasts to inhibit 

osteoblast activity and bone formation [160,161]. Recent work has also shown that 

miR-23a-5p from osteoclast-derived exosomes can suppress osteoblast differentiation, in 

part, by targeting Runx2 [162].

Further evidence of miRNA-mediated osteoblast-osteoclast communication comes from 

research showing accumulation of miR-125b within osteoblast-derived matrix vesicles in 

bone [163]. The authors of this work suggested that miR-125b could be released into the 

bone marrow microenvironment to suppress osteoclastogenesis and bone resorption. A 

recent report suggests that let-7a-5p from osteoclast-derived exosomes can enhance the 

expression of hypertrophic genes in the chondrocyte ATDC5 cell line [164]. These findings 

imply that miRNA-mediated intercellular communication between osteoclasts and 

chondrocytes may influence terminal hypertrophic chondrocyte differentiation. Another 

study demonstrated that exosomes derived from a common osteocyte cell line (Ocy454) 

could be taken up by osteoblastic MC3T3 cells resulting in a marked decrease in osteogenic 

potential of these cells [165]. This study also showed that myostatin treatment altered 

miRNA profiles in these osteocyte-derived exosomes and that, in particular, reduced 

expression of miR-218 was partly responsible for the negative effects on osteogenesis. A 

novel mechanism controlling muscle-bone communication was postulated from these 

findings. Further indication of possible miRNA-mediated crosstalk between osteocytes and 

osteoblasts was described in a recent study showing that miR-181b-5p in osteocyte-derived 

exosomes enhances osteogenesis of human periodontal ligament stem cells [166]. 

Interestingly, similar to our research, this miR-181 family member was also shown to target 

PTEN and enhance PI3K/AKT signaling [82].

However, it should be noted that the majority of these studies demonstrating exosomal 

miRNA-mediated cell-cell communication have been performed exclusively in vitro using 

cell lines rather than primary cells. While the concept of miRNA-mediated intercellular 

communication via EVs is intriguing and certainly possible given the proximity of the 

different cell types involved in regulating bone development and homeostasis, more research 

is needed to elucidate the mechanism of exosome transfer and miRNA uptake and to 

conclusively demonstrate this in vivo. One study suggests that an interaction between 

ephrinA2 and EphA2 facilitates the recognition of osteoclast exosomes by osteoblasts [161]. 

Most likely, other processes will be necessary to permit miRNA transfer via exosomes 

within the bone microenvironment and basic science research is currently ongoing to better 

understand this phenomenon in other systems [167,168]. In vitro studies using fluorescently-

labeled exosomes or miRNAs has indeed shown that transfer to osteoblasts is possible 

[160,161,169]. Also, it was demonstrated that fluorescently-labeled prostate cancer cell-

derived exosomes enriched in miR-141-3p could home to bone in mice to induce 

osteoblastic bone metastasis due to the pro-osteogenic function of miR-141a-3p [169]. 
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While these studies are certainly rigorous and informative, more sophisticated imaging 

technologies [170] would be required to fully characterize exosome uptake and transfer of 

miRNAs to cells in the bone microenvironment in vivo.

5. Summary and perspectives

The importance of miRNA-mediated epigenetic regulation in controlling skeletal 

development and homeostasis is clearly evident. There is now a vast array of published 

reports demonstrating how osteoblast differentiation can be modulated in vitro by either 

over-expressing or inhibiting a specific miRNA. In many of these studies, the functional 

effect of targeting the miRNA of interest has been further confirmed in vivo utilizing rodent 

models of osteoporosis, bone fracture repair or heterotopic ossification, for example. It is 

therefore apparent that understanding how miRNAs regulate bone developmental processes 

will aid in the design of new therapeutic strategies to treat bone conditions.

These small non-coding RNAs are recognized as attractive therapeutic targets due to their 

size, known sequence and the fact that they can target multiple genes to subsequently alter 

cellular pathways and networks. This function is particularly relevant in the context of more 

complex diseases via the ability to target “interactomes”. In fact, a number of Phase I/II 

human clinical trials are underway toward testing the effects of miRNA mimics or 

antagomirs in vivo to treat specific diseases including cancers. While new research 

endeavors to improve the stability and cellular uptake of mimics/antagomirs are underway, 

additional efforts are needed to target cells specifically to the bone microenvironment. 

Indeed, a few studies have reported some success in the design of peptides/nanoparticles to 

target osteoclasts or osteoblasts in vivo [171-174]. Perhaps also attempts to better understand 

the biology behind why exosomes derived from certain cancer cells appear to home to bone 

[169] would also be advantageous toward designing strategies to predominantly target bone 

cells.

Many miRNAs known to regulate osteoblast differentiation have been discovered via 

expression profiling during in vitro osteogenesis using microarray or bulk RNA-Seq 

approaches. Other candidates have been identified from analysis of RNA extracted directly 

from bone or bone marrow. While useful information has been gained by such approaches, 

the ability to now determine expression of miRNAs at the single cell level in vitro or in vivo 

will aid in determining either new miRNA candidates to pursue and/or confirm those already 

shown to regulate bone cell function to then justify further studies. The introduction of 

miRNA-mRNA co-sequencing at the single cell level [175] will also aid in the development 

of regulatory networks that exist in different bone cells. These technologies may be useful in 

determining how miRNAs and regulatory networks change with age in specific bone cells, 

for example. Findings from such analyses could aid in determining miRNAs or miRNA-

regulated pathways that could be targeted to combat age-related bone loss or to enhance 

bone repair that is often deficient as a consequence of aging.

However, what should be done with this ever-increasing list of miRNAs that have been 

reported to have similar functions in either enhancing or suppressing osteogenesis? In this 

review, we have covered only a fraction of the published literature on miRNAs regulating 
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osteoblast differentiation. Also, additional miRNA candidates that have been shown to 

regulate terminal hypertrophic chondrocyte differentiation [176-180] may also turn out to be 

potential targets to enhance bone formation and repair given the requirement of hypertrophic 

cartilage in these endochondral processes. It may be that a large-scale project would be 

required to systematically test and directly compare the function of many of these miRNAs 

in vitro and in vivo to generate a consensus toward determining the most promising 

candidates to pursue with respect to modulating osteogenesis. From such studies, we may 

also learn that targeting multiple miRNAs may be better than modulating one in certain 

scenarios. Also, given that therapeutic strategies will likely result in miRNA delivery to 

multiple cell types within the bone microenvironment, the function of specific miRNAs 

regulating osteoblasts should also be determined in osteoclasts and other bone-associated 

cell types as well. This is particularly important given that miRNA-mediated cross-talk 

between bone cells may also represent a significant mode of regulation to control bone 

formation, turnover and repair.
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Fig. 1. 
Biogenesis, processing and function of microRNAs in the cell. In the nucleus, RNA 

polymerase II (RNA pol II)-mediated transcription results in generation of primary miRNA 

transcripts which are processed by a complex containing Drosha and DiGeorge Critical 

Region 8 (DGCR8) to form stem-loop precursor miRNAs (pre-miRNA). Pre-miRNAs are 

exported out of the nucleus by Exportin 5 and, in the cytoplasm, are processed further by a 

complex containing Dicer and TAR RNA Binding Protein (TRBP). Following unwinding of 

mature miRNA duplexes, one functional strand (here shown as the 5p strand) enters the 

RNA-induced Silencing Complex (RISC) where it binds to a specific region of the 3′UTR 

of its target mRNA. Complementary binding via the miRNA seed sequence is shown with 

black dotted lines. The outcome of miRNA-mediated binding is either mRNA degradation or 

suppression of mRNA translation.
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Fig. 2. 
MicroRNAs regulating osteoblast differentiation and function. Listed are the osteo-

enhancing and osteo-suppressing miRNAs included in Section 3 in addition to other 

miRNAs discussed in Sections 2 and 4 of this review. Confirmed miRNA targets are shown 

in parenthesis. Note that while long bone formation involves endochondral ossification, via 

formation of hypertrophic chondrocytes, all studies identifying functional miRNAs utilized 

in vitro osteogenesis assays that mimic intramembranous ossification whereby stem/

progenitor cells differentiate directly to osteoblasts. Also shown are miRNAs present in 

exosomes of osteoclasts or osteocytes that may function in regulating osteoblast 

differentiation or function. See Tables 1 and 2 for a list of the various stem/progenitor cell 

types used to determine the function of the majority of miRNAs listed in this figure. Note: 

not included in this figure is the reference to a report suggesting that let-7a-5p, present in 

osteoclast-derived exosomes, may enhance hypertrophic chondrocyte differentiation [164]. 

Note: while osteoblasts certainly secrete exosomes, we did not identify published studies 

reporting exosome-derived miRNAs from osteoblasts directly regulating other specific bone-

related cell types. Therefore, we did not include osteoblast-derived exosomes in this figure 

given that we cannot support this depiction with a specific published study.
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