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ABSTRACT
Molecular profiling of tumor samples has acquired importance in cancer research,
but currently also plays an important role in the clinical management of cancer
patients. Rapid identification of genomic aberrations improves diagnosis, prognosis
and effective therapy selection. This can be attributed mainly to the development of
next-generation sequencing (NGS) methods, especially targeted DNA panels. Such
panels enable a relatively inexpensive and rapid analysis of various aberrations
with clinical impact specific to particular diagnoses. In this review, we discuss the
experimental approaches and bioinformatic strategies available for the development
of an NGS panel for a reliable analysis of selected biomarkers. Compliance with
defined analytical steps is crucial to ensure accurate and reproducible results.
In addition, a careful validation procedure has to be performed before the application
of NGS targeted assays in routine clinical practice. With more focus on
bioinformatics, we emphasize the need for thorough pipeline validation and
management in relation to the particular experimental setting as an integral part of
the NGS method establishment. A robust and reproducible bioinformatic analysis
running on powerful machines is essential for proper detection of genomic variants
in clinical settings since distinguishing between experimental noise and real
biological variants is fundamental. This review summarizes state-of-the-art
bioinformatic solutions for careful detection of the SNV/Indels and CNVs for
targeted sequencing resulting in translation of sequencing data into clinically relevant
information. Finally, we share our experience with the development of a custom
targeted NGS panel for an integrated analysis of biomarkers in lymphoproliferative
disorders.
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INTRODUCTION
Recent progress and growing application use of next-generation sequencing (NGS)
technology, alongside the reduction of costs, has revealed new prospects in the field of
personalized medicine. Researchers and clinical laboratories worldwide are implementing
NGS to identify defects in the cancer genome to improve patient stratification and
treatment. These genomic aberrations are represented by single nucleotide variants
(SNVs), small insertions and deletions (Indels), copy number variants (CNVs) and
structural variants (SVs), which accumulate in the genome during tumor development.
Some of them are present at the time of diagnosis, while others occur as a consequence of
clonal evolution during the disease course (Wang et al., 2014; Landau et al., 2015).
Over the past years, it has been demonstrated that NGS is a unique tool for identifying
new genomic variants (Armaou et al., 2009; Ascierto et al., 2012; Lindsley et al., 2015;
Zoi & Cross, 2015), which can serve as important diagnostic and prognostic markers in
various cancer types. In the field of hematooncology, rapid adoption of NGS had an
enormous influence on the understanding of the genetic landscape, clonal evolution and
prognostic impact of new molecular markers during the disease course (Landau et al.,
2015; Pastore et al., 2015; Nadeu et al., 2016; Papaemmanuil et al., 2016; Dubois et al.,
2016).

An expanding catalogue of molecular markers with clinical importance can be analyzed
by targeted DNA sequencing of relevant regions in a fast, effective, and accessible manner
(Paasinen-Sohns et al., 2017). While targeted sequencing enables the detection of
various alterations in recurrently affected genomic regions, alternative NGS techniques,
such as whole-exome sequencing (WES) or whole-genome sequencing, can be used to
identify additional disease-related markers outside the areas of targeted assays (especially
genome-wide CNVs and SVs). Nevertheless, a higher cost and an overwhelming
amount of produced data (Metzker, 2010) requiring extensive and time-consuming
bioinformatic analysis limit their usage in routine diagnostics (Kuo et al., 2017). The use of
targeted NGS panels has indeed proven to be a financially feasible approach, providing
benefits in cancer patient management (Hamblin et al., 2017). Moreover, larger targeted
panels (>1 Mb) with the adjustments of design and cutoff values (Allgäuer et al., 2018;
Heydt et al., 2020) can nowadays substitute the use of WES for the estimation of tumor
mutation burden, which serves as a surrogate predictive marker in cancer (Rizvi et al.,
2015). In general, a variety of commercial cancer-specific panels is available and widely
used to detect genomic changes in different cancer types (Nikiforova et al., 2018; Steward
et al., 2019). However, an off-the-shelf approach may not always be appropriate for
clinical use as these panels may include several genes without established clinical
importance (e.g., genes investigated in clinical trials or research studies) or may lack
other genes of interest. A trend towards customization of targeted panels to fulfil the needs
of individual laboratories is evident. The decision whether to use a commercial NGS panel
or whether to put effort and labor into the design, validation and development of a
respective bioinformatic pipeline strongly depends on the clinical utility, available
bioinformatic support and financial and time capabilities of individual laboratories.
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The implementation of a reliable bioinformatic pipeline developed with respect to the
experimental approach is a major challenge for many clinical laboratories. Although
some targeted panels have been published together with their tailored pipelines (Kluk et al.,
2016; Soukupova et al., 2018), additional validation is necessary for each pipeline to
confirm or adjust panel specifics including the accuracy and sensitivity. The process of
tailored pipeline development starts with comprehensive literature and software survey
followed by an in-depth evaluation of results produced by every single bioinformatic step.
Despite several published best practice bioinformatic guidelines (Van der Auwera et al.,
2013; Gargis et al., 2015), the development of a pipeline is still a time-consuming and
laborious procedure. The resulting pipeline has to be highly reliable, adjusted to specific
laboratory needs and flexible to demands changing over time.

In this review, we discuss the possibilities of a custom targeted NGS panel
implementation with a particular focus on bioinformatics. We emphasize state-of-the-art
approaches for the identification of genomic aberrations from DNA NGS data to make the
process of bioinformatic pipeline development more transparent. Finally, we share our
experience with the evaluation of a custom panel designed for a comprehensive analysis of
genomic markers in lymphoproliferative disorders with the emphasis on bioinformatic
tools assuring accurate results.

REVIEW METHODOLOGY
The motivation behind the compilation of this review was our hands-on experience with
the implementation of a custom targeted NGS panel for lymphoproliferative disorders and
the scarcity of bioinformatic publications accompanied by practical experience in the
development of specific bioinformatic pipelines in clinical use. Relevant and highly
impacted articles from 2009 to the present, spanning the field of bioinformatics, cancer
genomics and hematooncology, were scrutinized and systematically reviewed.
The bibliography was created using the Zotero citation manager.

EXPERIMENTAL DESIGN REMARKS
During the design of a custom targeted NGS panel, issues such as intended use, panel size
with respect to anticipated coverage, clinical validity and utility must be considered.
Each laboratory should think over its facilities, time and cost demands, sample
turnaround, flexibility and bioinformatic support. It is also essential to determine the
spectrum of targeted aberrations before selecting a target enrichment approach and an
NGS platform. Generally, targeted NGS gene panels are designed to identify variants
such as SNV/Indels and are either limited to only well-described hotspot mutations in
clinically relevant genes (especially in routine diagnostics) or include whole coding
sequences and splice sites. In addition, larger panels may target selected CNVs and SVs
requiring more sophisticated bioinformatic analyses. For the detection of subclonal
aberrations, a high sequencing depth is necessary. Crucial recommendations for NGS
panel and bioinformatics pipeline validation were published by the Association for
Molecular Pathology and College of American pathologists (Jennings et al., 2017; Roy et al.,
2018).
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Target enrichment is an essential step in NGS testing. For sequencing
library preparation, two major approaches are used: (1) hybrid capture-based and
(2) amplification-based (Fig. 1). Several studies describe the benefits and drawbacks of
both methods (Sulonen et al., 2011; Chilamakuri et al., 2014; Gargis et al., 2015; Kuo et al.,
2017). The amplification approach is based on the multiplex polymerase chain reaction
(PCR) method, which requires short hands-on time, but also precise PCR optimization to
produce uniform amplification efficiency across all targets. Moreover, PCR amplification is
less efficient in regions with high guanine-cytosine (GC) content or in repetitive regions.
Importantly, the identification of larger Indels or chromosomal rearrangements is
generally complicated since these aberrations could span over the location of a PCR
primer. In the hybrid capture approach, sequence-specific probes are designed to catch
DNA fragments of interest. These biotinylated oligonucleotides are significantly longer
than PCR primers and can, therefore, tolerate the presence of several mismatches resulting
in an effective enrichment process. Generally, it has been shown that the capture-based
methods show better performance than amplification-based ones, with respect to
sequencing complexity and uniformity (Samorodnitsky et al., 2015). Besides, the
amount of captured DNA is proportional to the DNA present in a sample allowing CNV
detection by a “read depth” approach. The method is also less affected by DNA quality,
enabling the analysis of such biological materials as formalin-fixed, paraffin-embedded
(FFPE) blocks (Hung et al., 2018) or circulating free DNA (cfDNA) (Rossi et al., 2017).
Several commercial targeted NGS technologies are available in custom design and their
comparison performed by Samorodnitsky et al. (2015) could serve as an informed decision
for individual laboratory applications.

The occurrence of duplicated DNA fragments generated during the amplification
step in library preparation represents a common issue in NGS data analysis. It is difficult to
determine which sequences originate from genomic DNA and which are a product of PCR

Amplification-based Hybrid capture-based

TARGET 1 TARGET 2 TARGET 3

Target specific primers

TARGET 1 TARGET  2 TARGET 3

PCR amplification of targets

Target specific probes

TARGET 1 TARGET 2 TARGET 3

TARGET 1 TARGET 2 TARGET 3

Capture and PCR amplification of targets

A B

Figure 1 Target enrichment approaches for NGS library preparation. (A) The amplification-based
method with the use of the PCR primers. (B) The hybrid capture-based method utilizing target-specific
probes. Full-size DOI: 10.7717/peerj.10897/fig-1

Hynst et al. (2021), PeerJ, DOI 10.7717/peerj.10897 4/29

http://dx.doi.org/10.7717/peerj.10897/fig-1
http://dx.doi.org/10.7717/peerj.10897
https://peerj.com/


amplification. Unique molecular identifiers (UMIs) (usually 8–12 bp long), ligated to
genomic fragments before the first PCR amplification, help solve this problem (Fig. 2A).
Nonetheless, the incorporation of the UMIs increases the cost and uses up some of the
assay capacity. The consequent bioinformatic analysis requires additional solutions to
utilize UMIs in PCR duplicate recognition. Subsequent steps of deduplication and the
creation of consensus sequences lead to the in silico removal of sequencing duplicates and
thus increase the sensitivity of the assay. We discuss bioinformatic solutions for read
deduplication with the use of UMIs in the bioinformatic part.

BIOINFORMATIC DATA ANALYSIS
Bioinformatic workflow management
In any NGS experiment, a bioinformatic pipeline needs to fulfil several analytical
requirements determined by the assay design. In other words, the analysis has to ensure the
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Figure 2 Schema of UMIs experimental and bioinformatic processing. (A) During NGS library
preparation, UMIs are ligated to DNA fragments, followed by PCR amplification and sequencing.
(B) Structure of the outer part of a read is depicted. (C) Bioinformatic read deduplication and error
correction using UMI identification and read clustering. Depending on the selected tool, deduplication
results either in a consensus read creation or the selection of the most representative read.

Full-size DOI: 10.7717/peerj.10897/fig-2
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accuracy and reproducibility of results under individual experimental settings, which is
especially relevant in routine diagnostics. Both properties are likewise essential when
investigating the clonal expansion of aberrations across different time points during
the disease course. Proper workflow management helps fulfil these requirements by
ensuring software installation and versioning, organization of input and output data, and
resource management during the execution of a pipeline.

Software (package) management can be ensured by the Conda package management
system. Conda provides a unified method of software installation and concurrently allows
the management of individual projects within specific environments, ensuring consistency
and stability. The Bioconda channel (Grüning et al., 2018) specializes in tools used in
bioinformatic analysis. The execution of several programs chained through their inputs
and outputs is managed by workflow engines such as Snakemake (Köster & Rahmann,
2018), Bpipe (Sadedin, Pope & Oshlack, 2012), reflow (https://github.com/grailbio/reflow)
and nextflow (Di Tommaso et al., 2017), which also offers a set of curated pipelines
under the nf-core project (Ewels et al., 2020). The “chaining” provides efficient
administration of input and output data while monitoring used processes and resources.
The workflow engines are managed through text-based configuration files.

Alternatively, the open-source Galaxy framework (Afgan et al., 2018) provides a
user-friendly graphical interface and thus caters to users with little or no prior
programming experience. It contains a comprehensive repository of preinstalled
software for genomic, proteomic, or metabolomic data processing, which can be easily
managed and combined into an analytical pipeline. A public Galaxy server provides
computational resources sufficient for experimenting and small analyses with more than
124,000 registered users worldwide.

Yet another approach is represented by the bcbio-nextgen project (Chapman et al.,
2020), which offers a resource manager (for both tools and data resources) as well as a
collection of curated, reusable, highly optimized pipelines. On top of this, pipeline
execution is highly customizable through configuration files. This solution shifts a
considerable part of the workload on the community behind the development and
maintenance of bcbio and is suitable for common applications of NGS.

Finally, one of the most recent yet already widely used technologies are containers
such as docker (Merkel, 2014) and singularity (Kurtzer, Sochat & Bauer, 2017). They allow
for a self-contained environment, in which analyses can be run. More importantly, the
benefit of encapsulation lies in the ability to distribute a given container, which
significantly improves the reproducibility of analyses. Essentially, all current pipeline
managers support containers, and containers are in exchange supported by a wide range of
underlying architectures, including cloud services mentioned in the following chapter.

Hardware requirements
Appropriate hardware infrastructure is required to perform bioinformatic data analysis.
It is important to understand the demands on hardware equipment because insufficient
capacity could potentially lead to poor or erroneous results (Wade, Curtis & Davenport,
2015). For targeted NGS panel data analysis in diagnostic use, the basic hardware essentials
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are: (1) sufficient space to store pipeline inputs and outputs including intermediate or
temporary files, (2) enough computational capacity (number of CPUs/GPUs and
RAM size) and importantly, (3) security for sensitive data management.

There are several external options, which fulfilled the above-mentioned criteria.
Commercial Amazon Web Services’ Elastic Compute Cloud (Amazon, 2020) provides
scalable computational and storage resource to perform a range of bioinformatics
analyses. Non-commercial institutional clouds such as European Grid Infrastructure (EGI)
(EGI, 2020) or US The Open Science Grid (OSG, 2020) provide free advance computing
services for scientists and research infrastructures. However, it is often advantageous to
administrate local hardware for better control over computational resources, data security,
and software management. The scale of this computational facility for each lab performing
NGS experiments is individual, depending on sample turnaround, the number of
ongoing projects and previous experience. In the last chapter, we showcase and further
discuss the measurements of the consumption of computational resources of an exemplary
analysis of our custom NGS panel. In general, a minimal analytical pipeline, akin to
the one presented here, consisting of only the essential steps (read alignment, variant
calling and variant annotation) could potentially run on a laptop equipped with at least
8GB of RAM. As these crucial steps undergo the most scrutiny (Lenis & Senar, 2015),
they are highly optimized for speed and memory efficiency. Despite this possibility, the
general trends favor commercial/institutional cloud services and/or large computational
servers optionally with dedicated hardware such as GPU’s and even FPGA’s. Several such
GPU implementations for both the alignment and variant calling have been published
(Klus et al., 2012; Cardoso et al., 2016; Ahmed et al., 2019; Ren et al., 2019).

Sequencing reads preprocessing and alignment
Short, single or paired-end reads are produced by the Illumina sequencers, the most widely
used sequencing platform. The read structure (Fig. 2B) consists of the inner part (the actual
sequenced DNA fragment, so-called “insert”) and the outer part comprising a variable
combination of: (1) platform-specific sequences for binding the fragment to a flow cell
(adaptor sequences), (2) single or dual indexes for read assignment to an individual
sample, (3) sequencing primer sites for paired-end reads and optionally (4) molecular
barcodes (i.e., UMIs) used for tagging the individual DNA molecules in a given sample
library. Adaptor sequences and indexes are unnecessary for downstream analysis and
are removed from the beginning of the read. Trimming is done during the demultiplexing
step, where sequencing base calls are transformed into text-based read representation
and stored in FASTQ formatted files. The result of the demultiplexing step is usually a
pair of FASTQ files (R1 and R2, representing forward and reverse read) per sample. A third
FASTQ file (R3) may be generated to store UMI sequences or, optionally, UMIs may
be written in the read names of the R1 and R2 files. Finally, parts of the sequencing
adaptors may also be present at the end of a read (given a short insert) and can also be
removed from the read structure of both read pairs. This step is debatable and may be
considered irrelevant as the adaptor sequences will be “soft-clipped” by the aligner.
However, several variant callers are “soft-clip aware” (e.g., GATK’s HaplotypeCaller
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and Mutect2) and will try to realign the sequence around the soft-clipped bases.
We, therefore, find adaptor (as well as quality) trimming generally advisable. Recently,
more than 30 adaptor trimming tools were published, including the popular Cutadapt
(Martin, 2011), Trimmomatic (Bolger, Lohse & Usadel, 2014) or the fastp (Chen et al.,
2018) program.

Consequent quality control (QC) of preprocessed reads ensures sequencing data
quality and integrity. FASTQ files contain (apart from the actual sequences of reads)
read quality information represented by Phred Quality score (Q); base-calling error
probability per each base. The FastQC tool can be used to summarize and visualize
the Phred Quality score, GC content, sequencing into adaptors, the occurrence of
overrepresented sequences and other parameters. Unsatisfactory reads with low Q scores
can be trimmed or discarded from further downstream analysis by most of the standard
trimming tools.

The preprocessed FASTQ files are subsequently mapped to the reference genome
during the alignment step. The most recent human genome assembly is currently available
in two, mostly interchangeable, versions; the GRCh38 (Schneider et al., 2016) reference
(managed by the Genome Reference Consortium) and the hg38 reference (managed by
UCSC). An older version of the reference hg19 (GRCh37) (Church et al., 2011) is still
widely used. In general, the alignment is a fundamental and computationally demanding
step, which allows the mapping of a sample onto the reference sequence (i.e., assigning
genomic coordinates to each read). This process is error-tolerant, as mismatches between
the sequencing reads and the reference may represent genomic variability and, more
importantly, real pathogenic variants. The result of the alignment step is stored in a
Sequence Alignment Map file or its more compact binary counterpart (BAM file).
Within this format, each read contains additional information about genomic alignment
coordinates, mapping quality information (MAPQ), splice alignment indicator (Compact
Idiosyncratic Gapped Alignment Report, CIGAR) and more. MAPQ is often used to
identify low-quality reads, which may adversely affect the identification of gene variants.
The CIGAR string is a compressed representation of the alignment of an individual
read, encoding which parts of the read match or mismatch the genomic reference and
whether there are inserted or removed bases. MAPQ and CIGAR are helpful indicators for
proper detection of real genomic variants as well as for determining alignment bias, which
arises mainly from sequencing errors or repetitive regions. Freely available software for
DNA read alignment such as NovoAlign (Novocraft, 2020), Bowtie2 (Langmead &
Salzberg, 2012), Smalt (SMALT: Wellcome Sanger Institute, 2020) and Stampy (Lunter &
Goodson, 2011) can be used, but they provide non-consistent results in various datasets
(Ruffalo, LaFramboise & Koyutürk, 2011). Burrows-Wheeler aligner (BWA) is currently
the most common software used for mapping (Li & Durbin, 2009), showing the best
performance across multiple NGS datasets in alignment sensitivity, computational time, or
the alignment of reads in repetitive regions (Thankaswamy-Kosalai, Sen & Nookaew,
2017). Therefore, BWA represents the preferred alignment tool for the majority of DNA
based NGS techniques, including targeted panel assays.
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Sample specific BAM files serve as input for the consecutive analytical branches,
including the detection of SNV/Indels, CNVs and SVs. Before these analyses, PCR
duplicates should be marked and removed from the BAM files to increase the accuracy of
testing. This step is essential for the detection of low frequent somatic SNV/Indels and
CNVs. The need for duplicates removal is amplified when analyzing fragmented
low-quality DNA samples, for example, FFPE. It was shown that the overall duplication
level in FFPE samples reached ~50–60% compared to less than 20% for DNA from
fresh frozen tissue (Bewicke-Copley et al., 2019). To remove PCR duplicates, two
approaches can be applied: (1) Picard tool mark duplicates (https://broadinstitute.github.
io/picard/) is used to either tag or remove duplicated reads according to identical
alignment coordinates of sequencing reads, or (2) use of UMIs processed by designated
bioinformatics tools described in the following chapter.

UMI processing for in silico read deduplication
The employment of molecular barcodes for the labeling of different DNA fragments is not
recent (Jabara et al., 2011; Liang et al., 2014) and is nowadays implemented in many NGS
assays. This advanced experimental approach allows precise identification of PCR
duplicates and sequencing error correction in silico. Specifically, dual indexing with
UMIs resolves index swaps, increases the sensitivity of variant detection and reduces
inaccuracies in read count-based analyses (e.g., gene expression analysis, CNV analysis)
(MacConaill et al., 2018; Costello et al., 2018). Bioinformatic approaches for UMI
processing mostly rely on read alignment and consist of three main steps (Fig. 2C):
(1) UMIs are identified within the read structure, and corresponding read pairs
(forward/reverse) are tagged with the sequence of the UMI, (2) position matched reads
(i.e., reads mapping exactly to the identical location on the reference genome) sharing
the same UMI are clustered into groups, (3) read clusters are then collapsed into a
consensus sequence, or a representative sequence is selected. For example, UMI-tools
(Smith, Heger & Sudbery, 2017) dedup approach uses the highest alignment quality
(MAPQ) to choose the most representative read sequence, while the fgbio (fgbio, 2020)
CallMolecularConsensusReads applies a likelihood model to each base of the source
read molecule, which finally leads to a consensus read creation. Other commonly used
software is gencore (Chen et al., 2019b) or Je (Girardot et al., 2016). Alternative
approaches, like the Calib program (Orabi et al., 2019), utilize alignment-free clustering,
which is more suitable for high coverage amplicon sequencing. Nevertheless, this approach
does not take into account potential substitution errors in UMI sequences.

Evaluation of target enrichment efficiency
Coverage analysis is used to assess the efficiency of the primers or probes, which helps with
the optimization of the target enrichment process. It is also essential to evaluate the
uniformity of coverage across targets and sequencing runs to ensure maximum result
reproducibility. Further, the ability to detect any genomic variants, correctly estimate VAF,
and to reduce the false-positive rate at the same time improves with increasing depth and
coverage uniformity (Sims et al., 2014). The effect of deduplication directly translates into
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the decrease in coverage and can be observed by comparing coverage statistics before and
after the removal of duplicates.

Should a more thorough examination of coverage, both on- and off-target, be required,
bedtools (Quinlan & Hall, 2010) coverage provide per-base coverage information across
the whole genome or specific regions specified within a BED file (Ensembl., 2020).
Such comprehensive information can be used to get a table of statistics such as min/max
read depth, mean or median across defined regions and thus enabling disclosure of
probable off-target locations. Statistics regarding the distribution of aligned reads between
the targeted and non-targeted regions are an important quality control metric of
sequencing assay design. The proportion of on-target reads covering targeted genomic
regions enables the assessment of enrichment efficiency. The assignment of roughly >70%
of the reads to target regions is considered a good library indicator (Hung et al., 2018),
but this strongly depends on panel size and overall depth of coverage. A lower amount of
the on-target reads can indicate an abundant occurrence of repetitive or homologous
sequences in the targeted regions resulting in poor enrichment.

Variant identification algorithms
Bioinformatic approaches for genomic variant identification are aimed to distinguish
true biological variants from sequencing background. Dedicated programs are in
abundance and, therefore, it is essential to understand underlying algorithms and
parameters controlling their behavior to select the correct tool. Independent analytical
branches identify different types of aberrations. We will predominantly discuss approaches
and software for the detection of somatic and germline SNVs/Indels and CNVs.
Furthermore, we will discuss different analytical procedures according to the experimental
settings, for example, the availability of matched control (non-tumor or “normal”) sample
from the same individual. For SVs, specific probes or primers can be designed to enrich
and detect those events (McConnell et al., 2020). We remark that the common division of
CNVs and SVs to the distinct groups is debatable since SVs, in general, include
quantitative CNVs (comprising deletions, insertions, and duplications), translocations
and/or inversions (Scherer et al., 2007). However, alterations that do not change the copy
number of the genome have to be detected by specific algorithms (Guan & Sung, 2016).

Variant calling of SNV/Indels
The general strategy for variant identification is the calculation of the proportion of
non-reference bases in a batch of reads that cover each position in a targeted region.
The analysis of germline variants is straightforward since their VAF is about 50% or 100%,
and the level of sequencing noise is expected to be of lower frequencies. GATK
HaplotypeCaller (McKenna et al., 2010), MAQ (Li, Ruan & Durbin, 2008) or inGAP
(Qi et al., 2010) represent germline-only variant callers. Nevertheless, some somatic callers
can identify both germline and somatic variants such as Strelka2 (Kim et al., 2018),
Varscan2 (Koboldt et al., 2013) or Octopus (Cooke, Wedge & Lunter, 2018). Further,
we focus on the analysis of the somatic SNV/Indels since they represent a more challenging
task compared to the detection of germline variants.
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In the case of somatic variant calling, it is necessary to distinguish minor variants
from background noise because true somatic variants can occur at low frequencies,
especially in samples with low purity or rare tumor subclones. Herein, a statistical
evaluation is critical to determine the underlying genotype and to discriminate among
variants and artefacts. An ideal scenario for precise somatic variant identification is a
paired sample analysis, where tumor and matched normal sample are compared. Variants
present in the non-tumor sample are considered germline and excluded from subsequent
interpretation. Several studies have evaluated somatic variant calling with default
parameters in a tumor/normal setting (Ellis et al., 2012; Parry et al., 2015; Chen et al.,
2015). The most popular open-source variant callers (Table 1) used diverse strategies
for variant filtering that leads to differently reported variants demonstrating low
concordance among various calling algorithms (Liu et al., 2013; Ewing et al., 2015; Xu,
2018). Cacheiro et al., 2017 concluded that each evaluated caller exhibits a different ability
to call SNV/Indels properly and showed discrepancies in the estimation of VAF. In a
study by Bian et al., 2018, various callers like FreeBayes (Garrison &Marth, 2012), VarDict
(Lai et al., 2016), GATK MuTect, GATK Mutect2 (Benjamin et al., 2019) and MuSE
(Fan et al., 2016) were tested to assess specificity and sensitivity. GATK MuTect2 shown
the best performance according to evaluated metrics, including the highest ratio of
true/false positive variants across multiple datasets. (Chen et al., 2019a) showed that
Strelka2 (Kim et al., 2018) identifies variants accurately and outperforms other tools in
computational costs. The computational time of analysis is important, especially in routine

Table 1 A list of commonly used open-source variant callers and their usage possibilities.

Variant caller Tumor-only mode Variant type detection References

CaVEMan NO SNV Jones et al. (2016)

DeepSNV NO SNV Gerstung et al. (2012)

DeepVariant YES SNV, Indel Poplin et al. (2018)

EBCall NO SNV, Indel Shiraishi et al. (2013)

FreeBayes YES SNV, Indel Garrison & Marth (2012)

HapMuc YES SNV, Indel Usuyama et al. (2014)

LocHap NO SNV, Indel Sengupta et al. (2016)

LoFreq YES SNV, Indel Wilm et al. (2012)

MuSE NO SNV Fan et al. (2016)

Mutect YES SNV Cibulskis et al. (2013)

Mutect2 YES SNV, Indel Benjamin et al. (2019)

Octopus YES SNV, Indel Cooke, Wedge & Lunter (2018)

Platypus YES SNV, Indel Rimmer et al. (2014)

SAMtools YES SNV, Indel Li et al. (2009)

SomaticSniper NO SNV Larson et al. (2012)

Strelka2 NO SNV, Indel Kim et al. (2018)

UMI-VarCal YES SNV Sater et al. (2020)

VarDict YES SNV, Indel Lai et al. (2016)

VarScan2 YES SNV, Indel Koboldt et al. (2012)
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diagnostics, where results need to be obtained quickly. Rapid end-to-end analysis of
sequencing data contributes to the improvement of cancer patient management,
particularly in terms of effective therapy initiation. Combining results of multiple somatic
callers to get consensus calls is more time consuming but provides more accurate
variant calling. However, taking the intersection or the union of the call sets can lead to a
drop in sensitivity or an increase in false-positive variants, respectively (Callari et al.,
2017).

A matched non-tumor sample is not always easily accessible, especially in routine
diagnostics or in retrospective analyses. Fortunately, some callers allow a “tumor only”
mode of variant calling (Table 1), albeit with some additional challenges. Such calling
indispensably requires the filtering of germline variants according to the information
available in public population databases. However, this approach is not comprehensive
as each individual could potentially have unknown germline variants, which are not
included in the databases and could be wrongly considered somatic (Jones et al., 2015).
Efficient identification of relevant mutations also strongly depends on the sufficient
read depth and exclusion of false-positive calls. Some tools for tumor-only variant calling
try to solve the stated issue with machine learning (Kalatskaya et al., 2017), but this
requires large training datasets, which are not usually available during the implementation
of targeted panels. This approach also does not consider the dynamics of tumor clone
development in time. The validation of discovered variants is highly recommended not
only for in-house developed algorithms but also for all commercial or freely available
components (Roy et al., 2018).

Variant annotation and prioritization
Most variant callers use Variant Call Format (VCF) files to collect identified variants. VCFs
store information such as mutation genotype, variant frequency, or genomic coordinates.
Accurate annotation of generated variants is crucial for subsequent interpretation.
Generally, the process of variant annotation integrates genomic variants into a functional
and clinical context. Recently, several tools such as variant effect predictor (McLaren et al.,
2016), ANNOVAR (Wang, Li & Hakonarson, 2010), SnpEff (Cingolani et al., 2012) or
GATK VariantAnnotator were developed to provide comprehensive annotations
including variant classification, standardized nomenclature, functional prediction, and
information from available databases (Table S1). For routine diagnostics, it is essential to
adhere to the unified nomenclature proposed by the Human Genome Variation Society
(HGVS) (Claustres et al., 2014), which is a standard in variant description used for
clinical reports. Mutalyzer (Wildeman et al., 2008), a web-based software, can be used
to retrieve proper HGVS nomenclature for particular variants. However, the variant
description itself is not sufficient for the assessment of its functional and clinical impact
in the majority of cases. Therefore, multiple clinically relevant annotations are provided
by tools collecting information from population databases or reports in published
literature, or, in some cases, the effect of a variant may be estimated in silico (Table S2).
Such information is permanently updated and is accessible through mentioned
stand-alone annotation tools, which can be easily implemented within a bioinformatic
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pipeline. Concurrently, the web-based Cancer Genome Interpreter (Tamborero et al.,
2017) can be used to annotate somatic variants found in tumor samples, and it
automatically predicts the possible role of a variant in tumorigenesis and treatment
response.

After annotation, a prioritization of variants is performed to select clinically relevant
variants to be reported to a clinician. Variant filtering strategies usually include several
general steps and also specific steps according to individual panel settings determined
by the validation process. Firstly, variants may be filtered by “variant type”, where intronic,
synonymous, non-coding variants are often of little interest and considered non-
pathogenic. Secondly, a VAF cutoff, under which variants can no longer be reliably
distinguished from the background noise (assay detection limit), has to be made, all
the while considering the absolute depth and the number of alternative reads (i.e., a VAF of
5% at 1,000x coverage is different to VAF of 5% at 20x coverage). Finally, remaining
variants must be inspected in the context of polymorphism database (dbSNP), mutation
databases (e.g., COSMIC, IARC TP53) and population databases (e.g., 1000 Genomes,
GnomAD) to help differentiate between mutations and common polymorphisms. In silico
prediction of functional impact should be used only as a supplementary tool for variant
interpretation and never as the sole evidence for possible pathogenic impact (Li et al.,
2017). After prioritization, variants with VAF of about 50% or 100% represent candidates
for the investigation of their potential germline origin.

High confident clinically relevant somatic variants may be visualized using Integrative
Genomics Viewer (IGV) (Thorvaldsdottir, Robinson & Mesirov, 2013). It helps to
identify false positive variants, which were not filtered out during the bioinformatic and
prioritization steps. Manually identified artifacts are often variants: (1) with low-quality
base calls, (2) from the erroneous end of reads, (3) arising from the misleading alignment
of repetitive or homologous regions, and (4) with strand bias.

CNV analysis in targeted sequencing

Chromosomal aberrations play an indisputable role in cancer development and generally
contribute to human genome variation (Lupski, 2015). Targeted identification of deletions
and amplifications of specific genomic loci in cancer patients acquired relevance after
determining their evident or potential clinical impact (Concolino et al., 2018; Baliakas
et al., 2019; Yu et al., 2020). In general, all types of CNVs can be detected by one or
more bioinformatic methods (Zhao et al., 2013) including: (1) paired-end mapping
approach, (2) split read-based approach, (3) read depth-based approach, (4) de novo
read assembly of CNV events, or (5) a combination of these approaches. The most
widely-used approach is based on split reads and is used to detect and localize breakpoints
of any type of CNVs.

In NGS targeted panels, a read depth-based strategy for CNV detection is employed in
the majority of the developed software. This approach operates under the basic assumption
that the number of DNA copies is proportional to the sequencing read depth in an
analyzed genomic locus. Practically, the identification of copy number changes is based on
the calculation of read depth variance between the tumor and normal sample within a
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given region. Such normalization helps remove biases arising from GC rich regions and
non-uniformly covered target regions. However, a comprehensive normalization step is
more challenging for samples with fragmented DNA (FFPE samples or cfDNA), where
the signal is non-uniformly dispersed. The presence of a heterozygous deletion in the
tumor sample leads to halved coverage in the affected region compared to the normal
sample, while coverage in the unaffected regions remains approximately the same. Vice
versa, a gain of chromosomal material results in increased read depth. A final plot of log2
normalized read depth displays the occurrence of known clinically significant CNV
markers. Illustratively, Fig. 3 shows the identification of del(13p) and del(11q) in a patient
with chronic lymphocytic leukemia. Conversely, it could be challenging to identify
novel potentially relevant disease markers due to probe density and plot resolution given
by assay design. Notably, shorter aberrations or minor clones can be barely visible in a
noisy background. Circular Binary Segmentation (CBS) segmentation (Olshen et al., 2004)
is used to translate and join these noisy copy number neutral or aberrant regions to
segments, which represent an equal copy number state.

In a tumor-only scenario, the selection of an appropriate normal sample represents
an additional task, which dramatically influences the precision of results. Two main
approaches can be applied. Firstly, a copy number neutral reference sample sequenced in
the same batch with the tumor samples can be used for normalization to ensure coverage
uniformity. The most suitable material seems to be commercially available reference
genomic DNA provided intentionally for human genome sequencing (Zook et al., 2016).
Secondly, a “virtual normal sample” can be generated from an overall read depth mean of
multiple tumor samples analyzed concurrently in a sequencing run. This statistical
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Figure 3 Visualization of clinically relevant CNV markers (del11q and del13p) detected in a
peripheral blood sample from a patient with chronic lymphocytic leukemia. (A) Read depth
approach, (B) B-allele frequency of analyzed SNPs. Probes along the chromosomes (X-axis) are depicted
equidistantly. Full-size DOI: 10.7717/peerj.10897/fig-3
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solution is implemented in software such as ExomeDepth (Plagnol et al., 2012),
ONCOCNV (Boeva et al., 2014), CNVkit (Talevich et al., 2016) and panelcn.MOPS
(Povysil et al., 2017). While ExomeDepth was designed to analyze CNVs in whole-exome
data, ONCOCNV, panelcn.MOPS and CNVkit allow efficient analysis of targeted panels
as well (Paradiso et al., 2018). Moreover, CNVPanelizer (Oliveira & Wolf, 2019) was
explicitly developed to analyze CNVs in targeted panel assays. GATK’s best practice
provides a pipeline for somatic CNV calling; however, this workflow was recently
optimized for WES.

B-Allele Frequency (BAF) analysis constitutes a complementary method to identify
copy number aberrations (Fig. 3B) with the benefit of copy neutral loss-of-heterozygosity
(cnLOH) detection. BAFs are mostly seen in the context of SNP arrays and represent
allelic frequencies of germline SNPs. Their values are expected to be 0 (SNP not present),
0.5 (a heterozygous SNP), 1 (homozygous SNP). In affected regions of tumor DNA,
heterozygous SNPs are expected to be “out of phase”, shifted symmetrically above and
below the heterozygous state. In perfectly pure tumor samples with fully clonal deletion,
heterozygous SNPs in the affected region are expected to have BAF of 0 and 1. In reality,
tumor samples are often “contaminated” by normal cells (especially in solid tumors) or
contain minor subclones, which leads to the typical BAF range from <0 to 0.5> and
<0.5 to 1> depending on the degree of contamination and the clonality of a given
aberration. In targeted NGS, the informative strength and resolution of this approach are
limited by the number of heterozygous SNPs analyzed in the target regions.

A comprehensive analysis of genomic markers by the targeted custom
NGS panel-practical experience from Czech laboratory
Finally, we would like to share our practical experience with the implementation of a
versatile capture-based NGS panel targeting various molecular markers in
lymphoproliferative diseases. We aimed to integrate analyses of several markers with
established or potential prognostic and predictive impact in B-cell neoplasms, including
gene mutations, chromosomal aberrations, immunoglobulin (IG) or T-cell receptor
(TR) rearrangements, and clinically relevant translocations. None of the available
commercial or published research panels (Rodríguez-Vicente, Díaz & Hernández-Rivas,
2013; Kluk et al., 2016; Hung et al., 2018; Kim et al., 2019) suited our needs, and therefore
we decided for a capture-based technology utilizing UMIs and a custom design due to the
advantage of tailored options. Finally, our panel with a total capture size of 1.13 Mb
included probes for the analysis of: (1) all exons and splice sites of 70 protein-coding genes
and all functional genes of IG and TR loci, (2) recurrent deletions 17p, 11q, 13q in the
desired resolution (300 kb–1 Mb) and (3) genome-wide CNVs and cnLOH enabled by
the evenly spaced backbone of probes. The identification of common translocations in
lymphomas, that is t(11;14), t(14;18), t(3;14), was ensured by probes covering the whole
IGHJ region.

The validation of experimental and bioinformatic procedures was performed by the
sequencing of 63 DNA samples extracted from various types of biological material
obtained from 49 patients with diverse lymphoproliferation. The validation sample cohort

Hynst et al. (2021), PeerJ, DOI 10.7717/peerj.10897 15/29

http://dx.doi.org/10.7717/peerj.10897
https://peerj.com/


was selected to get a representative set of previously identified genetic alterations: (1) 109
SNV/Indels at various VAF (1–100%), (2) 79 CNVs (gains, losses) and cnLOHs of
various extent (0.014–137 Mb) and tumor load (15–100%), (3) common translocations
and IG/TR rearrangements. Commercial reference gDNA (NA24631; Coriell Institute,
Camden, NJ, USA) was used in each sequencing run as a normal sample for CNV analysis
and also for the assessment of panel performance (Hardwick, Deveson & Mercer, 2017).
We validated several parameters according to available guidelines (Jennings et al., 2017)
including accuracy metrics (positive percentage agreement, PPA; positive predictive
value, PPV), sensitivity (limit of detection, LOD), reproducibility and specificity.
The intended coverage was approximately 1000x after deduplication to achieve assay
sensitivity of at least 5% VAF.

The in-house bioinformatic data analysis workflow consists of two independent
branches: (1) a pipeline for detection of SNVs/Indels and CNVs implemented in
Snakemake, and (2) a pipeline for the identification of IG/TR gene rearrangements and
translocations. All scripts and software used in the first branch of bioinformatic analysis
and with all non-default parameters are listed in Table S3. We measured the analysis
run time (Fig. S1A) and memory (RAM) usage (Fig. S1B) in each step for ten samples
analyzed in one sequencing run. Four CPUs cores with no parallelization were used, and
the overall analysis running time was ~78 h. We will not dissect the second analytical
branch since it exceeds the scope of this review.

Our panel demonstrated high coverage uniformity throughout all targets and across
individual runs and showed the following basic parameters: (1) median coverage 921x
after deduplication with 90% of targets >500x, 0.4% of targets <100x, (2) 43% PCR
duplicates on average and (3) 27% off-targets reads on average (calculated before
deduplication). The panel enables reproducible detection of SNV/Indels with high
accuracy (PPA 100%, PPV 100%) and sensitivity when complying with our 5/5 rule for
variant prioritization (i.e., VAF >5% and >5 variant reads) established during the
validation process. The pre-defined LOD of 5% was corroborated by a dilution
experiment. Manual inspection of suspicious variants in IGV was performed to avoid
misinterpreting artifacts as true variants. The evaluation of CNV detection confirmed
an expected high resolution of 300 kb–1 Mb in recurrently deleted loci of 17p, 11q and
13q arms and over 6 Mb across the whole genome depending on the backbone probe
density. Out of all the tested CNVs, 91% were correctly identified. Seven undetected
aberrations were below the resolution of the assay (either by extent or by their clonal
proportion). The dilution experiment and validation results led us to set the threshold
for CNV detection to log2 ratio ≥±0.2 and BAF ≥±0.1, which corresponds to the presence
of at least 20% of cells with a respective chromosomal aberration in a sample. It is
advantageous to combine both approaches, read depth and SNP analysis, since altogether,
they provide complementary results.

In summary, we successfully implemented a versatile NGS capture-based tool for
integrated analysis of molecular markers with research and clinical merit for patients with
lymphoid malignancies (publication is under revision).
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CONCLUSIONS
The purpose of this review was to provide a guidebook for the development of a
robust bioinformatic pipeline for the analysis of clinically relevant molecular markers
detected by targeted NGS panel intended for routine use. We present an overview of
contemporary bioinformatic approaches for the analysis of genomic aberrations supported
by an example of a successfully implemented comprehensive capture-based NGS panel.
According to our experience, the most crucial steps for targeted NGS tool development are:
(1) appropriate selection of validation cohort comprising plenitude of representative
samples and diverse targets, (2) careful optimization and validation of the analytical
pipeline based on state-of-the-art bioinformatic approaches to ensure high accuracy of the
results and (3) robust software and hardware environment. The whole procedure of
specific tool implementation is rather time-consuming but highly rewarding, especially
when a custom assay with long-term use needs to be established.
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