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Abstract
Optimizing Home Care Services is receiving a great attention in Operations 
Research. We address arrival time consistency, person-oriented consistency and 
demand uncertainty in Home Care, while jointly optimizing assignment, schedul-
ing and routing decisions over a multiple-day time horizon. Consistent time sched-
ules are very much appreciated by patients who, in this setting, are very sensitive to 
changes in their daily routines. Also person-oriented consistency positively impacts 
on service quality, guaranteeing that almost the same set of caregivers take care of a 
patient in the planning horizon. Demand uncertainty plays a pivotal role, too, since 
both the set of patients under treatment and their care plan can change over time. 
To the best of our knowledge, this is the first paper dealing with all these aspects in 
Home Care via a robust approach. We present a mathematical model to the problem, 
and a pattern-based algorithmic framework to solve it. The framework is derived 
from the model via decomposition, i.e. suitably fixing the scheduling decisions 
through the concept of pattern. We propose alternative policies to generate patterns, 
taking into account consistency and demand uncertainty; when embedding them in 
the general framework, alternative pattern based algorithms originate. The results 
of a rich computational experience show that introducing consistency and demand 
uncertainty in pattern generation policies is crucial to efficiently compute very good 
quality solutions, in terms of robustness and balancing of the caregiver workload. 
In addition, a comparison with a simpler model, where no kind of consistency is 
imposed, shows the importance of considering consistency in pursuing a valuable 
patient-centered perspective, with a positive effect also on the efficiency of the solu-
tion approach.
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1  Introduction

The design of efficient Home Care Services is an area of study which is receiv-
ing increasing attention in Operations Research, motivated by the ever increasing 
age of population and the consequent need to reduce hospitalization costs. While 
cost containment is an objective usually pursued in many private as well as public 
companies, in the Home Care setting the design of patient-centered services defi-
nitely deserves investigation and as a result, may also entail an increase of profit-
ability. The term Home Care Services refers to medical, paramedical and social 
services that may be delivered to patient homes. The provision of Home Care ser-
vices has never been as relevant as in this period: indeed, it is crucial both in the 
COVID-19 era to cover overwhelming requirements and in the post COVID-19 
phase to support all those activities that during the acute phase of the pandemic 
have been reduced to the minimum such as non-urgent surgery, outpatient clinics 
and treatments, and diagnostic tests. Worldwide, healthcare systems are facing an 
unprecedented scenario and new challenges are being posed (Bryant et al. (2020), 
Coloma and Nicols (2020)).

Home Care Services need to address many complex decisions such as car-
egiver-to-patient assignment, scheduling of patient requests, and caregiver rout-
ing. Such decisional aspects have usually been considered separately in the lit-
erature, essentially by means of heuristic approaches (e.g. Eveborn et al. (2006), 
Liu et al. (2014), Nickel et al. (2012), Redjem and Marcon (2016)). On the other 
hand, the number of exact approaches which deal simultaneously with the differ-
ent planning aspects in Home Care is still rather small. We mention Gamst and 
Jensen (2012), Rasmussen et al. (2012) (on a daily perspective), Trautsamwieser 
and Hirsch (2014), and Cappanera and Scutellà (2015) where the concept of pat-
tern, i.e. a template for scheduling multiple visits, has been introduced to coordi-
nate several decisions in a multiple-day planning horizon. Patterns proved useful 
also in designing efficient decomposition algorithms Yalçındağ et al. (2016). We 
refer to Di Mascolo et al. (2017), Cissé et al. (2017) and Fikar and Hirsch (2017) 
for recent and comprehensive reviews on both heuristic and exact approaches to 
planning decisions in Home Care.

Although the literature on Home Care Services is now wide, data uncertainty 
has been taken into account only recently. In this context, addressing demand 
uncertainty (Cappanera et  al. (2018)) plays a pivotal role since both the set of 
patients under treatment and their care plan can change over time due to unex-
pected events. Thus, patient or visit cancellations as well as the insertion of new 
patients are likely to occur. Clearly, such uncertain events could be managed via 
a deterministic approach, by either disregarding the uncertain requests and opti-
mizing only on the certain ones, or considering all the patient requests, includ-
ing the uncertain ones, as certain. The first approach, that ignores the uncertain 
requests, would certainly produce cheaper solutions. But if any of these uncer-
tain requests would realize later on during the time horizon, likely these might 
not be served, giving rise to service disruptions. The second approach, instead, 
would produce very costly solutions that might turn out to be strongly underused. 



3

1 3

Addressing consistency and demand uncertainty in the Home…

Furthermore, trying to serve all the uncertain requests could lead to unfeasibil-
ity. This is why managing demand uncertainty via Robust Optimization, which 
offers a good trade-off between solution cost and care plan quality, appears to 
be particularly relevant in the Home Care context. In addition, a very few works 
have addressed consistency in Home Care. Consistency means service regularity 
and it is crucial also in related problems which are intimately connected to Home 
Care, like Field Service and more generally Vehicle Routing Problems (VRP). In 
particular, in VRP three main kinds of consistency are addressed (Kovacs et al. 
(2014)): (i) arrival time consistency - visit each patient at about the same time, 
(ii) person-oriented consistency - use the same subset of operators for all the vis-
its of a patient and (iii) delivery consistency - deliver always the same quantity or 
with the same frequency.

Arrival time consistency and person-oriented consistency have nowadays a 
preeminent role also in Home Care. Time consistent schedules are very much 
appreciated by patients who, in this setting, are often fragile and thus particu-
larly sensitive to changes in their daily routines. When arrival time consistency 
is imposed, all the visits in the care plan of a patient are done at about the same 
time during the planning horizon. This kind of service regularity offers a series of 
valuable advantages to patients, to their relatives and to the service provider. In 
fact, arrival time consistency: (i) positively impacts the trust the patient places in 
the service provider, (ii) allows people around the patient (relatives and caregiv-
ers) to better organize and plan their own activities, and (iii) makes it possible to 
take advantage of flexibility in designing the service. Indeed, a different and less 
flexible way to guarantee time consistency might be represented by time windows 
imposed on the visit schedule: the patients themselves might express a preference 
(soft constraint) or a hard constraint on the time slot in which visits should occur. 
However, when imposing time window constraints, the service provider may fail 
to get a feasible solution that accommodates all the patients’ requests and, con-
sequently, a negotiation process with patients must start to relax their requests 
possibly incurring in penalties for the provider and, ultimately, raising patient 
dissatisfaction. In contrast, when arrival time consistency is assured, the patients 
take for granted that all their visits will occur at about the same time, even if 
they do not know at what time, and the service provider is thus able to exploit 
the flexibility deriving from choosing the time slot in which visits will be given. 
This is especially reasonable for categories of patients like the palliative ones, 
considered in our computational study. Also notice that, although patients do not 
express their preferences on time of visits, the optimized schedule clearly con-
tains information on time, thus allowing the service provider to advice patients 
well in advance.

Also person-oriented consistency positively impacts on service quality, both 
from the patient and the caregiver side. Indeed, person-oriented consistency, 
often referred to as care continuity in the Home Care literature (Borsani et  al. 
(2006), Duque et  al. (2015)), guarantees that almost the same set of caregiv-
ers take care of a patient in the planning horizon. The communication between 
patients and caregivers is therefore simplified: caregivers who visit patients 
on a regular basis acquire information about their preferences, thus making it 
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possible to better organize working activities and to provide a high quality ser-
vice. In addition, because of the physical intimacy, patients feel comfortable 
when they receive service by known caregivers.

The aim of this paper is to consider both consistency and demand uncertainty 
in Home Care, by extending the Robust Home Care Problem introduced in Cap-
panera et  al. (2018). Precisely, the main contributions can be summarized as 
follows: (1) we define a new problem in Home Care, i.e. the Consistent Robust 
Home Care problem, where arrival time consistency, person-oriented consist-
ency and demand uncertainty are addressed while jointly optimizing assign-
ment, scheduling and routing over a multiple-day time horizon; (2) we present 
a mathematical model and a matheuristic to the Consistent Robust Home Care 
problem, suitably fixing scheduling decisions within the model through the con-
cept of pattern; (3) we propose alternative pattern generation policies, explicitly 
taking into account consistency issues in addition to demand uncertainty; when 
embedding them in the general framework, alternative pattern based matheuris-
tics originate; (4) we present the results of a wide computational experience, on 
newly generated instances based on real data, showing that the pattern based 
approach seems to be a viable tool to successfully address the Consistent Robust 
Home Care problem, especially when the pattern generation policies encompass 
consistency and demand uncertainty; in fact, some of the algorithms are able to 
efficiently compute very good quality solutions, particularly in terms of robust-
ness; (5) we compare the proposed algorithms with a simpler approach, where 
no consistency is imposed, showing the value of considering consistency from a 
patient-centered perspective; in fact, not considering consistency has a negative 
impact on the solution quality, in terms of number of patients who are visited 
by more than one caregiver, and also in terms of number of patients with visits 
scheduled in different time slots during the planning horizon.

To the best of our knowledge, the novelty of both the model and the algo-
rithm proposed still remain also when the related context of Consistent VRP is 
considered where as far as we know, arrival time consistency, person-oriented 
consistency and demand uncertainty issues have never been addressed together 
via robust optimization.

The plan of the paper is the following. After a review of the literature address-
ing uncertainty or consistency in Home Care and in some related problems, pro-
vided in Sect.  2, the Consistent Robust Home Care Problem is introduced in 
Sect. 3. Sect. 4 presents the robust mathematical model we propose to formulate 
the problem. Section 5 outlines the pattern based algorithmic framework used to 
solve the problem, which relies on the mathematical model in Sect. 4. In particu-
lar, the Sects. 5.1.1 and 5.1.2 present alternative consistent pattern generation 
policies which allow to obtain alternative consistent algorithms from the general 
framework outlined in Sect. 5. Section 6 presents the results of a rich computa-
tional experience aimed at evaluating the proposed algorithms in terms of effi-
ciency and quality of the determined solutions. Section 7 reports computational 
results showing the value of considering consistency on the patient perspective. 
Section 8 concludes the paper.
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2 � Literature review: uncertainty and consistency in Home Care

Here we shall describe the main results from the literature concerning data uncer-
tainty in Home Care (Sect. 2.1) and consistency in Home Care (Sect. 2.2). Papers 
dealing with uncertainty together with some forms of (relaxed) consistency will 
be presented in Sect. 2.3, with the exception of those where the only form of con-
sistency addressed is the care continuity one, which will be mentioned in 2.1. The 
review will include also papers dealing with consistency in the strictly related con-
text of VRP; this will be provided in Sect. 2.4.

2.1 � Uncertainty in Home Care

As outlined before, the literature addressing data uncertainty in Home Care is quite 
recent, and therefore there are a few works on this subject. In Carello and Lanzarone 
(2014) the problem of assigning a set of patients to a set of caregivers over a time hori-
zon is considered imposing care continuity, i.e. exactly one caregiver must be assigned 
to each patient, and assuming that the amount of working time required by each patient 
is uncertain. A cardinality-constrained robust assignment model is proposed and 
tested on real-life instances. Also, a robust assignment model which includes the time-
dependency of the patient demands, and which is based on the implementor-adversarial 
framework, is presented in Carello et al. (2017). An implementor/adversary algorithm 
is used also in Holte and Mannino (2013) for a cyclic robust scheduling problem arising 
in health care. Moreover, a real-time scheduling model is proposed in Du et al. (2019) 
to minimize the total required scheduling time in case of unexpected events, together 
with an improved memetic algorithm to optimize the model. Notice that only assign-
ment or scheduling decisions are addressed in the above mentioned papers. Scheduling 
and routing in Home Care in the case of stochastic service times are addressed in Yuan 
et al. (2014). A stochastic programming model with recourse is proposed, which is then 
transformed into a set partitioning problem and an elementary shortest path problem 
with resource constraints. A branch and price approach is designed and validated by 
means of numerical experiments. The case of stochastic service times is also addressed 
in Rodriguez et al. (2015), where the authors propose a two-stage approach, based on 
integer linear stochastic programming, to deal with staff dimensioning in Home Care, 
and in Liu et al. (2018), where a branch and price algorithm is proposed by consider-
ing stochastic travel times in addition to stochastic service times. Uncertainty on the 
availability of the caregivers is considered in Nguyen et al. (2015), where a matheuris-
tic is proposed to handle the case where caregivers are unexpectedly unable to oper-
ate. More recently, demand uncertainty in Home Care is addressed in Hewitt et  al. 
(2016) by estimating the demands, at the beginning of the time horizon, starting from 
some historical data. The strategy of optimizing for the entire time horizon, using such 
demand estimates and imposing care continuity, is compared to a rolling horizon strat-
egy, where demands are updated dynamically as soon as they reveal, using an iterative 
heuristic approach. Scheduling decisions are not addressed. Demand uncertainty and 
care continuity are managed also in Cappanera et al. (2018) where, in addition, patient 
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assignment, scheduling of patient requests and caregiver routing are jointly optimized 
via a special case of Γ-robustness (Bertsimas and Sim (2004)).

Finally, considering a related application context, a robust optimization model for 
dispatching technicians under stochastic service times is proposed in Souyris et  al. 
(2013) within a branch and price framework. Moreover, a multi-period technician 
scheduling problem with experience-based service times and stochastic customers is 
addressed in Chen et al. (2012).

2.2 � Consistency in Home Care

By considering the Home Care studies, only a few papers have addressed a kind of con-
sistency different from the care continuity one, which on the contrary has been widely 
taken into account. The focus here is on this restricted set of papers. A dynamic peri-
odic nurse routing and scheduling problem with visit time consistency constraints is 
proposed in Bennett and Erera (2011). A set of dynamic patients needs to be visited 
according to a given weekly frequency over a given time horizon, and each visit must 
be scheduled at a time chosen from a fixed menu of allowable appointments. The con-
sistency requirements impose that weekly visits, occurring according to allowable visit-
day combinations, must repeat on the same days and times throughout the time horizon. 
A rolling horizon myopic planning approach for the single nurse case is proposed and 
tested by exploiting an insertion heuristic. Similarly, a scheduling problem in Home 
Care where patients arrive dynamically over time and, for the sake of service continu-
ity, they have to be visited at the same day and time each week during their episode of 
care, is heuristically approached in Demirbilek et al. (2018), Demirbilek et al. (2019). 
There, the Home Care provider has to decide whether or not to accept the patient and, if 
accepted, schedule his requests. Again, the case of a single nurse operating in a specific 
area is addressed. Notice that patient demand is not treated as uncertain in the above 
mentioned papers. The Home Care system is in fact studied in a dynamic way, from an 
operating perspective rather than from a planning point of view, and requests have to be 
managed as soon as patients deterministically enter the system.

On the other hand, Lin et al. (2018) addresses the case where each patient is associ-
ated with a list of tasks to be accomplished each week, and he has to indicate a fixed 
time slot of a certain day of each week within which all his tasks must be executed. 
Two time slots are considered: a morning and an afternoon one. Therefore, the consid-
ered form of consistency can be viewed as a special case of the one addressed in this 
work, since for each patient all the visits must occur in a unique time slot. Furthermore, 
this time slot is fixed according to the patient’s indications, rather than to be optimally 
selected, as in this study.

2.3 � Uncertainty plus relaxed forms of consistency

In Sungur et  al. (2010) the authors address a courier deliver problem where cus-
tomer demands and service times are uncertain. Demand and service time uncer-
tainty is not managed via robustness, but via a scenario based approach, by deriv-
ing probability estimations starting from some historical scenarios. Neither care 
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continuity nor other forms of temporal consistency are hardly imposed, and so, 
guaranteed. Rather, the authors introduce the concept of route similarity, and try to 
generate daily routes which are “similar” to some master plan routes, where simi-
larity is expressed as “the number of customers of the daily route that are within a 
given distance of any customer on that master plan route”.

2.4 � The consistent VRP

In VRP, the focus is progressively moving from company-first strategies to cus-
tomer-first strategies (Kovacs et  al. (2014)), and since customer-satisfaction often 
increases when service is provided at regular times of the day and by the same driver 
each time, then consistency now represents a key tool to survive in a competitive 
market. The Consistent Vehicle Routing Problem, ConVRP, was originally intro-
duced by Groër, Golden and Wasil Groër et al. (2009), who combined arrival time 
consistency and person-oriented consistency with the traditional VRP constraints. 
A number of metaheuristics have been then proposed to solve the ConVRP (Kovacs 
et  al. (2014), Tarantilis et  al. (2012)) and some generalizations (Kovacs et  al. 
(2015)). The generalized ConVRP was further extended in Kovacs et al. (2015) in 
a multiobjective perspective. See also Feillet et al. (2014) for an interesting form of 
time consistency in VRP, where the authors minimize the maximum number of dif-
ferent time slots a patient is visited in.

Notice that, in all the papers cited before, uncertainty issues are not addressed.

3 � The consistent Robust Home Care problem

3.1 � Problem addressed

We are given a set N of n patients asking for service, a set O of skilled caregivers 
based at a “depot”, a multiple-day planning horizon W, and a set K of skills, hierar-
chically organized, so that a caregiver with skill k can work requests with skill up to 
k. Each caregiver � ∈ O has a workday length D� , which has to be respected.

Demand uncertainty is addressed, where some patient requests are certain (they 
will certainly occur), whereas others are uncertain. Each patient j is thus associated 
with both a certain care plan r̄j , specifying the number of the certain requests of j, 
for each skill, and an uncertain care plan r̃j , indicating the number of his uncertain 
requests, again for each skill. Notice that r̃j or r̄j could be missing for a patient j: 
the first case verifies if j is a deterministic patient, whereas the latter can be used to 
denote j as a potentially new patient.

Moreover, two forms of consistency are considered, along the lines in Kovacs 
et al. (2014): (i) care continuity (or person-oriented consistency) and (ii) arrival time 
consistency. Care continuity bounds to H the number of different caregivers who can 
visit each patient during the time horizon, where H is given. Arrival time consist-
ency guarantees that all the visits required by a patient must be performed always 
in the same daily time slot throughout the planning horizon. Hereafter T will denote 
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the set of the time slots in which each day is partitioned, for example morning and 
afternoon.

The Consistent Robust Home Care Problem consists in (i) assigning caregivers to 
patients by respecting the skill compatibilities, (ii) scheduling the patient requests, 
both certain and uncertain, over the time horizon, (iii) determining a routing for 
each caregiver and each scheduled day, which satisfies the caregiver workday length, 
while (iv) managing demand uncertainty and (v) guaranteeing arrival time consist-
ency and person-oriented consistency. The goal to achieve is the caregiver work-
load balancing. It is thus a challenging problem which extends the Robust Home 
Care Problem introduced in Cappanera et al. (2018) by managing consistency and 
demand uncertainty at the same time.

3.2 � Modelling issues and assumptions

In order to model the double nature of the patient requests, i.e. either certain or 
uncertain, each patient j ∈ N is modelled by a pair of nodes in the logistic network: 
by a node j ∈ N̄ = {1,… , n} , representing the certain copy of the patient with the 
related certain care plan r̄j , and by a node j + n ∈ Ñ = {n + 1,… , 2n} , representing 
his uncertain copy with the uncertain care plan r̃j . The resulting logistic network is 
thus composed of 2n nodes plus the depot.

As in Cappanera et al. (2018), decisions concerning scheduling of skilled (certain 
and uncertain) visits in the planning horizon, caregiver to patient assignment, and 
routing of the caregivers are coordinated by means of the concept of  pattern, intro-
duced in Cappanera and Scutellà (2015), which represents a template for scheduling 
the patient requests along W. More precisely it is assumed that, for each j, the 
requests expressed by the care plan of j can be operated according to a set Pj of a 
priori given patterns. Formally, denoting by P = ∪2n

j=1
Pj the set of all patterns, and 

assuming that each patient requires at most one visit per day, each pattern p ∈ P is 
such that p(d) = 0 if no service is offered on day d, while p(d) = k indicates that a 
visit of skill k is operated according to pattern p on day d. The pattern p ∈ Pj , 
selected for j, thus determines the scheduling of the requests of j along W, and it has 
to be compatible with his care plan, guaranteeing the required number of visits of 
appropriate skill. Notice that certain or uncertain requests are scheduled depending 
on whether j ∈ N̄ or j ∈ Ñ.

Demand uncertainty is managed via sequence-preserving Γ-robustness, a spe-
cial case of Γ-robustness defined in Cappanera et al. (2018) and tailored to vehicle 
routing problems. Γ-robustness (Bertsimas and Sim (2004)) allows one to achieve 
a compromise between degree of robustness and solution cost. In the Robust 
Home Care context, it addresses scenarios where at most Γ uncertain requests (or, 
equivalently, at most Γ nodes from the set Ñ ) in each tour may realize, where Γ is 
a given parameter. The rationale is that a set of tours, over the planning horizon, 
which includes all the certain and the uncertain requests would result in a very 
conservative and unnecessarily expensive solution, since it is likely that only a 
subset of the uncertain requests will realize. This is why Γ-robustness focuses 
on Γ-tours, i.e. the subtours obtained from a given tour by considering at most 
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Γ nodes of Ñ , which are said to be generated from that tour. Sequence-preserv-
ing Γ-robustness, instead, considers special Γ-tours, called sequence-preserving 
Γ-tours, i.e. the Γ-tours where nodes are visited in the same order of the tour 
that generated it. Besides being computationally tractable, sequence-preserving Γ
-robustness is also greatly appreciated in practice by caregivers, who experiment 
a limited deterioration of their planned tours in case a disruption occurs.

Sequence-preserving Γ-robustness is enriched with care continuity (or person-
oriented consistency) and arrival time consistency, as previously introduced. 
Notice that both forms of consistency refer to the original set of patients. In order 
to handle arrival time consistency, each original caregiver � is replaced by |T| 
copies of it, one for each time slot in T. The copy of caregiver � related to t ∈ T  
will be denoted as �t . As an example, in case a day is organized in two time slots, 
i.e. a morning slot and an afternoon slot, each original caregiver � is replaced 
by two copies of it, one relative to the morning shift and the other relative to the 
afternoon shift. This setting, which is very frequent in practice, at least for pallia-
tive cares, is the one our experimentation is based on. Arrival time consistency is 
thus guaranteed by assigning to each patient caregivers referring to the same time 
slot in T. With a little abuse of the notation, hereafter we shall use O to indicate 
the set of the copies of the caregivers, with � denoting its generic element. When 
necessary, however, �t will be used to specify which copy we are referring to.

According to the definitions given above, a set of daily tours C , including all 
the certain and the uncertain requests, and an assignment of caregivers to such 
tours, define a consistent robust solution with respect to Γ if: 

1.	 for each tour � ∈ C  , the length of each sequence-preserving Γ-tour generated by 
� , taking into account the travel time along the links of the tour and the service 
time at the patients, does not exceed the workday length of the caregiver assigned 
to �,

2.	 the caregivers serving a given patient in the solution, at most H, all refer to the 
same time slot in T.

Point 1 guarantees that, for each tour � in the solution, the caregiver assigned to 
� is able to perform the tour whatever the (at most Γ ) uncertain requests of � will 
possibly realize, without changing the planned order of the visits. Equivalently, 
the maximum length of the sequence-preserving Γ-tours generated by � is less 
than or equal to the workday length of the caregiver. Care continuity and arrival 
time consistency are ensured by point 2.

Summarizing, the Consistent Robust Home Care Problem jointly addresses: (i) 
care plan scheduling, assigning a pattern both to the certain copy j and to the 
uncertain copy j + n of each patient j, thus scheduling respectively all the certain 
( ̄rj ) and the uncertain ( ̃rj ) requests in the planning horizon; (ii) caregiver assign-
ment, assigning caregivers to patients while guaranteeing skill compatibility 
between patient requests and caregivers, and (iii) daily caregiver routing, deter-
mining the tour of each caregiver in each day of the planning horizon, so that the 
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resulting solution constitutes a consistent robust solution with respect to Γ . The 
goal is to balance the caregiver workload.

We conclude the section by listing the notations used next to state a mathematical 
model to the problem and to describe the models used to define pattern generation 
policies.

4 � Mathematical model

Here we present a mathematical formulation of the care continuity constraints and 
of the arrival time consistency constraints, that is the families of constraints that 
extend the Robust Home Care Problem in Cappanera et al. (2018) from a consist-
ency perspective. Also the objective function is presented. The complete mathemati-
cal formulation is reported in the Appendix.

To formulate the temporal constraints, let us firstly introduce the following fami-
lies of variables, which model respectively the care plan scheduling, the caregiver 
assignment and the routing decisions:

W planning horizon

A set of arcs in the logistic network

O set of skilled caregivers

Od ⊆ O set of caregivers available on day d, for each d ∈ W

T set of daily time slots

𝜔t copy of caregiver𝜔 for t ∈ T

K set of skills

s𝜔 ∈ K skill of caregiver𝜔,𝜔 ∈ O

D𝜔 workday length of caregiver𝜔,𝜔 ∈ O

N̄ = {1,… , n} set of certain copies of patients

Ñ = {n + 1,… , 2n} set of uncertain copies of patients

r̄jk number of certain visits required by j inW for skill k, j ∈ N̄, k ∈ K

r̃jk number of uncertain visits required by j inW for skill k, j ∈ Ñ, k ∈ K

aj service (or assistance) time at patient j, j ∈ N̄ ∪ Ñ

tij traveling time from node i to node j, (i, j) ∈ A

H maximum number of caregivers who can visit each patient inW

Pj set of patterns for j, j ∈ N̄ ∪ Ñ

P overall set of patterns.

zjp =

�
1 if pattern p is assigned to j

0 otherwise
j ∈ N̄ ∪ Ñ, p ∈ Pj

u𝜔j =

�
1 if caregiver 𝜔 visits patient j

0 otherwise
𝜔 ∈ O, j ∈ N̄

x𝜔d
ij

=

⎧
⎪⎨⎪⎩

1 if caregiver 𝜔 travels along (i, j)

on day d

0 otherwise.

(i, j) ∈ A, d ∈ W,𝜔 ∈ Od
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Notice that, for each caregiver � , a unique variable u�j is introduced for the two 
nodes, j and j + n , modelling patient j. Furthermore, let us introduce the following 
variables to guarantee the time consistency:

Using the variables and notation above, the requirement of at most one visit per 
patient at a day and the arrival time consistency constraints can be formulated as 
follows:

Using the routing variables x�d
ij

 , constraints (1) impose that, on each day and for 
each patient j, at most one of the two nodes modelling the patient, i.e. j and j + n , 
can be visited. Constraints (2)-(3) are logical conditions modelling the arrival time 
consistency requirements. In fact, they guarantee that all the caregivers assigned to a 
patient refer to the same time slot. Specifically, constraints (2) impose that if at least 
one caregiver related to a time slot other than t is assigned to patient j, then variable 
Consjt takes value zero and thus patient j can not be visited in time slot t. Symmetri-
cally, if a caregiver related to a time slot t visits patient j, then Consjt is forced to one 
(see constraints (3)) and a visit to j of a caregiver related to a time slot other than t is 
forbidden (see constraints ((2)).

Regarding the care continuity constraints, they can be expressed as:

Together with the consistency constraints (2)-(3), constraints (4)-(6) bound to H the 
number of different caregivers who can visit each patient (in exactly one time slot) 
during the time horizon.

Finally, a further set of constraints guarantees that the length of each sequence-
preserving Γ-tour does not exceed the workday length of the assigned caregiver. 

Consjt =

{
1 if all visits to patient j are scheduled in time slot t

0 otherwise.
j ∈ N̄, t ∈ T

(1)
∑
𝜔∈Od

( ∑
(i,j)∈A

x𝜔d
ij

+
∑

(i,j+n)∈A

x𝜔d
i(j+n)

)
≤ 1 ∀j ∈ N̄,∀d ∈ W

(2)Consjt ≤ 1 −

( ∑
𝜔t� ∈O,t

�≠t

u𝜔t� j
∕H

)
∀j ∈ N̄, t ∈ T

(3)Consjt ≥
∑
𝜔t∈O

u𝜔t j
∕H ∀j ∈ N̄, t ∈ T

(4)x𝜔d
ij

≤ u𝜔j ∀j ∈ N̄,∀(i, j) ∈ A,∀d ∈ W,∀𝜔 ∈ Od

(5)x𝜔d
i,j+n

≤ u𝜔j ∀j ∈ N̄,∀(i, j + n) ∈ A,∀d ∈ W,∀𝜔 ∈ Od

(6)
∑
𝜔∈O

u𝜔j ≤ H ∀j ∈ N̄.
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These constraints are given here in a intuitive form and are described in detail in 
the Appendix:

where for each day d and each caregiver � ∈ Od , R�d
SΓ

 represents the maximum 
length amongst all the sequence-preserving Γ-tours generated by the tour of � on 
day d, say � . By imposing that such a maximum length cannot exceed the workday 
duration of � , we ensure that all the sequence-preserving Γ-tours generated by � sat-
isfy the workday length of �.

Constraints (7) are used to state the objective function, aiming at balancing the 
caregiver workloads. This social equity criterion was also investigated in Cappanera 
and Scutellà (2015), Yalçındağ et al. (2016) and Cappanera et al. (2018). Precisely, 
we have considered the objective function minmax, which minimizes the maximum 
caregiver utilization factor. In the robust framework under study, the caregiver utili-
zation factor is expressed as the total workload of the caregiver during the planning 
horizon in the worst scenario, over his maximum possible workload. The workload 
refers to the original set of the caregivers and therefore it must be computed car-
egiver-wise, i.e. considering the copies of each original caregiver all together. The 
overall mathematical model can thus be sketched as:

where variable maxUF bounds from above the maximum caregiver utilization factor, 
to be minimized.

5 � The solution approach

We use a pattern based decomposition approach, along the lines preliminarily out-
lined in Cappanera et  al. (2018) and Cappanera and Scutellà (2017). Specifically, 
for both the certain and the uncertain copy of each original patient, scheduling deci-
sions are fixed within the mathematical model according to the pattern generated 
for him in a pattern generation phase. In addition, as in Cappanera et  al. (2018), 
each R�d

SΓ
 expression in constraints (7) is replaced by a suitable upper approximation 

reported in the Appendix, thus originating a matheuristic approach. Therefore, the 
pattern generation tool plays a preeminent role in driving efficiently towards good 
quality solutions. In this study, we propose some pattern generation policies properly 
designed to take into account the consistency and demand uncertainty aspects which 
characterize the Consistent Robust Home Care Problem. Specifically, the generated 
patterns schedule all the requests of a patient j, certain and uncertain, in one of the 
available time slots. In addition, some policies also manage demand uncertainty. 

(7)R�d
SΓ

≤ D� ∀d ∈ W,∀� ∈ Od

min maxUF
(1) − (7)

additional constraints in the Appendix�
d∈W

(
�
t∈T

R
�td

SΓ
)

�W�⋅(∑t∈T D�t
)

≤ maxUF,∀ original caregiver �,
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Different solution algorithms are thus obtained depending on the specific policy 
used for generating patterns and, so, for fixing the scheduling decision variables zjp . 
Furthermore, depending on the time slot where the requests of a patient j are sched-
uled, the set of the caregivers who are eligible for j in constraints (6) is restricted 
accordingly. The policies will be described in detail in the next section, whereas in 
Sect. 6 they will be compared with their consistency-unaware counterparts defined 
in Cappanera and Scutellà (2017).

5.1 � Consistent pattern generation policies

We propose and experiment some alternative pattern generation policies taking into 
account the consistency requisites and, in some cases, also the demand uncertainty. 
All the policies involve multicommodity flows on an auxiliary layered network 
GW = (NW ,AW ) , having one layer for each considered day in the planning horizon 
W, plus a source node (denoted by s) and a destination node (denoted by b). Each 
layer in GW is composed of |T||K| + |T| nodes: |T| nodes of type 0t , for t ∈ T  , which 
indicate that no visit is scheduled in the time slot t of the day corresponding to that 
layer, and |T| nodes for each skill k in K, denoted by kt , for t ∈ T  , which represent 
the scheduling of a visit of skill k in the time slot t. Let Ld denote the set of nodes in 
the layer corresponding to day d ∈ W . Then, in GW there exists a directed arc from 
s to the nodes in the first layer, from each node in the last layer to b, and from each 
node in Ld to each corresponding “consistent” node in Ld+1 (i.e. each node of type 
t is connected only to nodes of type t), for each d ∈ W but the last, as exemplified 
in Fig. 1 for a 5-day planning horizon, two skills and two time slots referred to as m 
(morning) and a (afternoon).

Any directed s-b path in GW thus corresponds to a potential pattern: if the node 
kt in Ld is visited, then a visit of skill k will occur on day d in the time slot t; 

0m

1m

0a

1a

2a

2m

s

0m

1m

0a

1a

2a

2m

0m

1m

0a

1a

2a

2m

0m

1m

0a

1a

2a

2m

0m

1m

0a

1a

2a

2m

b

Fig. 1   The layered graph G
W

 for |W| = 5 , |K| = 2 , |T| = 2 , and a pattern example in dashed line
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otherwise, i.e. a node of type 0t is visited, then no visits will occur on d in the 
time slot t. Notice that, by construction, the nodes composing a path in GW are all 
of the same type t, i.e. they all refer to the same time slot, so ensuring the time 
consistency of the scheduled visits. As an example, the path consisting of dashed 
arcs in Fig. 1, corresponds to pattern (1, 2,  0,  2,  1) according to which exactly 
four visits will occur in the afternoon: two of skill 1 on Monday and Friday, and 
two of skill 2 on Tuesday and Thursday respectively.

Four consistency-aware pattern generation policies have been proposed, 
namely Consistent Spread Uncertainty (C-SprU), Consistent Regularize (C-Reg), 
Consistent Balance (C-Bal) and Consistent Balance Uncertainty (C-BalU). They 
are based on multicommodity flow models on GW , where a binary commodity is 
introduced for each j ∈ N ∪ Ñ (recall that N is the set of nodes corresponding to 
certain patients, while Ñ is the set of their uncertain copies), and the related flow 
variables {f j

hi
} model a directed path, from s to b, in the layered graph, that is a 

consistent pattern. Specifically, C-SprU pursues the twofold aim of spreading as 
much as possible the uncertain visits across the planning period so that it is likely 
that many of them are covered if they realize, while looking for service regularity. 
This is obtained by minimizing the number of generated consistent patterns for 
certain patients and maximizing the number of generated consistent patterns for 
the uncertain ones. In fact, the minimization of the number of different patterns 
used to schedule certain visits allows to obtain service regularity, while the maxi-
mization of the number of different patterns to schedule uncertain visits allows to 
spread them in the planning horizon. C-Reg is the particular case of C-SprU aris-
ing when all the patients are treated as certain, and therefore it tends to minimize 
the number of consistent patterns. The last two policies are inspired by balancing 
criteria. In fact, they take into account the number of visits occurring each day of 
the planning period, and minimize the difference between the maximum and the 
minimum such values over W. The difference between the two policies concerns 
the type of visits that are considered: in C-Bal all types of visits occurring in a 
day are considered, i.e. certain and uncertain; in C-BalU only uncertain visits are 
considered.

Notice that the proposed policies generalize the ones used in Cappanera and 
Scutellà (2015) and the ones described in Cappanera and Scutellà (2017), where 
consistency requirements are not addressed. In Sect. 6, both the consistency-aware 
policies and their consistency-unaware counterparts are experimentally investigated. 
The consistency-unaware policies will be referred to as SprU, Reg, Bal and BalU, 
respectively. The names of the first two policies, namely SprU and Reg, correspond 
respectively to Col and FB in the previous works: their name has been changed to 
reflect the interesting interpretation they have when consistency is introduced.

The four multicommodity flow models, each relevant to a pattern generator pol-
icy, are presented in detail in the following.
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5.1.1 � Spread uncertainty and regularize multicommodity flow models

The pattern generation policy C-SprU is based on the following model:

(8)

(C-SprU) min
�

(h,i)∈AW

(qhi − q̃hi)

�
(h,i)∈AW

f
j

hi
−

�
(i,h)∈AW

f
j

ih
=

⎧
⎪⎨⎪⎩

−1, if i = s,

1, if i = b,

0, otherwise

∀i ∈ NW ,∀j ∈ N ∪ Ñ

(9)

∑
k∈K

∑
(s, kt) ∶

kt ∈ L1

f
j

skt
+ f

j

s0t
≤
∑
k∈K

∑
(s, kt) ∶

kt ∈ L1

f
j+n

skt
+ f

j+n

s0t
∀j ∈ N,∀t ∈ T

(10)

∑
d∈W

∑
t∈T

∑
(h, kt) ∶

kt ∈ Ld

f
j

hkt
= r̄jk ∀j ∈ N̄,∀k ∈ K

(11)

∑
d∈W

∑
t∈T

∑
(h, kt) ∶

kt ∈ Ld

f
j

hkt
= r̃jk ∀j ∈ Ñ,∀k ∈ K

(12)
�
k∈K

�
t∈T

⎛
⎜⎜⎜⎜⎜⎝

�
(h, kt) ∶

kt ∈ Ld

f
j

hkt
+

�
(h, kt) ∶

kt ∈ Ld

f
j+n

hkt

⎞
⎟⎟⎟⎟⎟⎠

≤ 1 ∀j ∈ N̄,∀d ∈ W

(13)

∑
j∈N̄∪Ñ

aj

∑
k�≥k

∑
(h, k�

t
) ∶

k�
t
∈ Ld

f
j

hk�t
≤ 𝜖

∑
𝜔t ∈ Od ∶

s𝜔t
≥ k

D𝜔t
∀d ∈ W,∀k ∈ K,∀t ∈ T

(14)
∑
j∈N

f
j

hi
≤ |N| ⋅ qhi ∀(h, i) ∈ AW

(15)
∑
j∈Ñ

f
j

hi
≤ |Ñ| ⋅ q̃hi ∀(h, i) ∈ AW
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Constraints (8) are the classical commodity-wise flow conservation constraints, 
which are used to design a path, i.e. a pattern, for each copy (certain and uncertain) 
of each patient, in order to schedule his certain and uncertain requests, respectively. 
As observed, by construction the nodes in a path all refer to the same time slot, so 
ensuring the visit consistency for each ∀j ∈ N ∪ Ñ . But, as previously remarked, the 
consistency must be guaranteed for the original set of the patients, and not separately 
for their certain and uncertain copies. Therefore, constraints (9) are introduced to 
guarantee the consistency of all visits of a patient throughout the planning horizon. 
In fact, if the pattern designed for the uncertain copy of a patient does not comprise 
nodes related to a time slot t, then no nodes referring to t can belong to the pattern of 
his certain copy, for each time slot t.

Flow variables are also used to guarantee the proper number of visits for each 
skill thanks to constraints (10) and (11), and therefore model a pattern which is com-
patible with the patient care plan, both for the certain (10) and the uncertain (11) 
requests of each patient. Furthermore, they allow to guarantee that at most one visit 
per day will be scheduled for each patient (12). Constraints (13) take into account, 
skill by skill, the operators’ availability on each daily time slot. In fact they impose, 
separately for skill k and each day, that the sum of the service time ( aj ) of the visits 
scheduled in each time slot of the day does not exceed the related availability of the 
operators of skill at least k, properly reduced by a parameter � . Parameter � reduces 
the caregiver availability thus preventing infeasibilities that might occur when rout-
ing is considered: in fact, pattern generation neglects the traveling times. The auxil-
iary variables qhi and q̃hi are introduced to detect which arcs are used to design con-
sistent patterns: specifically, for a given arc (h, i), qhi will be set to one if the arc is 
used by a patient in N , while q̃hi will be set to one when (h, i) is used by a patient in 
Ñ . Finally, constraints (14) and (15) link together the flow variables f j

hi
 respectively 

with the design variables qhi and q̃hi , and they guarantee that if arc (h, i) is used, i.e. 
qhi = 1 (respectively q̃hi = 1 ), it can be crossed by any number of certain (uncertain) 
patients, whereas if that arc is not used, i.e. qhi = 0 (respectively q̃hi = 0 ), then it 
cannot be traversed. By minimizing the difference between the total number of arcs 
used for certain patients and the total number of arcs used for uncertain copies, the 
model will tend to regularize service and spread uncertainty, as previously observed.

C-Reg is the particular case of C-SprU where all patients are treated as certain. 
The total number of arcs used is so minimized, pursuing service regularity.

(16)f
j

hi
∈ {0, 1} ∀(h, i) ∈ AW ,∀j ∈ N ∪ Ñ

(17)qhi ∈ {0, 1} ∀(h, i) ∈ AW

(18)q̃hi ∈ {0, 1} ∀(h, i) ∈ AW .
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5.1.2 � Balanced multicommodity flow models

The two additional models, based on a balancing criterion, consider the number 
of visits occurring each day, and minimize the difference between the maximum 
and the minimum of such values over W. This is done by means of two variables, 
namely, zmin and zmax , which represent respectively the minimum and the maximum 
number of visits occurring daily in W. The difference between the two models con-
cerns the type of visits considered: in C-Bal both certain and uncertain visits occur-
ring in a day are considered, whereas in C-BalU only uncertain visits are taken into 
account. The first of the two models is:

As in the previous models, the block of constraints (8)-(13) is related to the flow 
variables {f j

hi
} , ∀j ∈ N ∪ Ñ . Then in (19), for each day, the total number of visits per-

formed on that day, independently of the skill, is bounded between the lower bound 
zmin and the upper bound zmax . The difference between such bounds is minimized in 
an attempt to spread the visits equally among the days.

The model C-BalU is exactly as C-Bal but for constraints (19), which are replaced 
by the following counterpart, where the daily number of visits is computed by con-
sidering only uncertain visits:

6 � Computational experiments

In this section, we first describe the instances of our experimental setting, which are 
characterized by |T| = 2 time slots: morning and afternoon. Then we show the results 
obtained when the policies in Sects. 5.1.1 and 5.1.2, both the consistency-aware and 
their consistency-unaware counterparts, are used within the pattern based decompo-
sition approach, giving rise to alternative algorithms to the Consistent Robust Home 
Care problem. The following metrics are used to evaluate the impact of the alternative 
policies: (i) number of possible realizations of the uncertain visits; (ii) workload bal-
ance among caregivers, and (iii) optimality gap of the solution obtained. The number of 
possible realizations of uncertain visits is determined by looking at the solution of the 

(19)

(C - Bal) min zmax − zmin

s.t.(8) − (13)

zmin ≤
∑

j∈N̄∪Ñ

∑
k∈K

∑
t∈T

∑
(h, kt) ∈ Aw

s.t.kt ∈ Ld

f
j

hkt
≤ zmax ∀d ∈ W

f
j

hi
∈ {0, 1},∀(h, i) ∈ AW ,∀j ∈ N̄ ∪ Ñ.

(20)
(C-BalU) zmin ≤

∑
j∈Ñ

∑
k∈K

∑
t∈T

∑
(h, kt) ∈ Aw

s.t. kt ∈ Ld

f
j

hkt
≤ zmax ∀d ∈ W.
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optimization model. Specifically, for each duplicated caregiver and for each day in the 
planning horizon, we store the minimum between the number of uncertain nodes pre-
sent in the tour of the caregiver and Γ . Such a value represents the maximum number of 
uncertain visits that can be covered in that tour if they realize. The sum of these values 
over all the tours and the days is the number of possible realizations of the uncertain 
visits. Instead, the maximum theoretical number of uncertain visits that can be real-
ized by our approach can be computed a priori and is given by the minimum between 
the number of uncertain visits in the instance and 2 ⋅ Γ ⋅ |W| ⋅ |O| , where 2 ⋅ |O| is the 
number of (duplicated) caregivers, |W| the planning horizon length and Γ the uncer-
tainty parameter. The workload balance is measured as the percentage difference 
between the maximum and the minimum caregiver utilization factor and it is referred 
to as ΔUF . The first two metrics refer to solution quality whereas the third one refers to 
computational efficiency. In the following, for each group of instances, we report sepa-
rately the results relative to solution quality and to efficiency. A discussion of the main 
insights obtained concludes the section.

6.1 � The test bed

We generated 33 consistent robust instances by extending the data set in Cappanera 
and Scutellà (2015), Yalçındağ et al. (2016) and Cappanera and Scutellà (2017), which 
is publicly available at http://www.di.unipi.it/optimize/. The original 
data set comes from a real public provider operating in the North of Italy. The data 
set used in these experiments comprises 9 instances generated by original instances 
with 60 patients on a 5-day planning horizon, and 24 instances coming from original 
instances with 100 patients on a 6-day horizon. Each instance is characterized by 2 
types of hierarchical skills, 3 operators, travelling times obtained via Google Maps, a 
service time of 45 minutes for each visit, and Γ = 1 . The percentage of uncertain vis-
its is equal to 20% of all the visits for instances with 60 patients and 20% or 30% for 
instances with 100 patients (12 instances with 20% and 12 with 30%). Instance names 
contain information on the number of patients in the original instance (either 60 or 
100), part of the name of the corresponding original instance (as an example, 0-1 refers 
to instance 1 in group 0), and the fraction of certain visits (either 0.7 or 0.8). Specifi-
cally, consistent robust instances are generated from the nominal ones as follows. For a 
given nominal instance, patients are ordered according to the total number of visits they 
require regardless of the skill. Then, starting from the patients with the highest number 
of visits, at each iteration a patient is randomly selected and part of his requests (a num-
ber randomly generated) are classified as uncertain and assigned to a new patient. The 
generator guarantees that, for each skill, uncertain visits are proportional to the number 
of visits of that skill in the original instance. Notice that patients are either certain or 
uncertain as a result of the procedure above. Also note that due to the procedure used 
to generate the robust instances, the number of patients in the robust instance is greater 
than in the original one while the number of visits is the same. Detailed information on 
the instances is given in Table 1, where average information is also reported for each 
group of instances.
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The experiments, consisting in solving the pattern based matheuristic under the 
pattern generation policies presented in Sect. 5, have been performed on an Intel(R) 
Core(TM) i7-4770 CPU @ 3.40GHz with 4 processors using Cplex 12.6, by impos-
ing a time limit (2 hours) and a memory limit (2 Gbyte). The impact of extending such 

Table 1   Test bed description: 
TV is the number of Total 
Visits—UV is the number of 
Uncertain Visits

Instance Patients TV UV UV/TV(%)

60-0-0-0.8 69 81 17 20.99
60-0-1-0.8 70 81 19 23.46
60-0-2-0.8 70 81 19 23.46
60-1-0-0.8 67 76 11 14.47
60-1-1-0.8 67 76 10 13.16
60-1-2-0.8 67 76 11 14.47
60-2-0-0.8 70 79 16 20.25
60-2-1-0.8 70 79 16 20.25
60-1-2-0.8 70 79 16 20.25
Average 68.89 78.67 15.00 18.97
100-0-0-0.8 121 161 33 20.50
100-0-1-0.8 121 161 33 20.50
100-0-2-0.8 121 161 33 20.50
100-1-0-0.8 117 170 35 20.59
100-1-1-0.8 117 170 35 20.59
100-1-2-0.8 117 170 35 20.59
100-2-0-0.8 117 163 33 20.25
100-2-1-0.8 117 163 33 20.25
100-2-2-0.8 117 163 33 20.25
100-3-0-0.8 112 162 33 20.37
100-3-1-0.8 112 162 33 20.37
100-3-2-0.8 112 162 33 20.37
Average 116.75 164.00 33.50 20.43
100-0-0-0.7 130 161 45 27.95
100-0-1-0.7 130 161 45 27.95
100-0-2-0.7 130 161 45 27.95
100-1-0-0.7 130 170 52 30.59
100-1-1-0.7 130 170 52 30.59
100-1-2-0.7 130 170 52 30.59
100-2-0-0.7 131 163 50 30.67
100-2-1-0.7 131 163 50 30.67
100-2-2-0.7 131 163 50 30.67
100-3-0-0.7 123 162 47 29.01
100-3-1-0.7 123 162 47 29.01
100-3-2-0.7 123 162 47 29.01
Average 128.50 164.00 48.50 29.56
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limits has been evaluated for the biggest instances in the test bed, i.e. for a subset of the 
instances with 100 patients.

6.2 � The 60‑patient instances

In this section, we report separately computational results on consistency-unaware 
policies and on the consistency-aware ones respectively in Sects. 6.2.1 and 6.2.2. A 
comparison between the two kinds of policies concludes the section (Sect. 6.2.3).

0
1
2
3
4
5
6
7
8
9

10
Number of possible realiza�ons (uncertain visits)

Reg SprU Bal BalU

Fig. 2   Realizations of uncertain visits: 60 patients - consistency-unaware
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Fig. 3   Operator utilization factor: 60 patients - consistency-unaware
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6.2.1 � Consistency‑unaware policies

Figures 2, 3 and 4 show respectively the number of possible realizations of the 
uncertain visits, the measure of the workload balance ΔUF , and the optimality gap 
for the four consistency-unaware pattern generation policies described in Sects. 
5.1.1 and 5.1.2, i.e. SprU, Reg, Bal, and BalU.

Solution quality On this set of instances, the average maximum theoretical num-
ber of uncertain visits that can be realized is 15, and Fig. 2 clearly shows that SprU 
is particularly effective in scheduling the uncertain visits giving almost everywhere 
the maximum number of uncertainty realizations among the four policies. By com-
paring the two policies taking into account a balancing criterion, i.e. Bal and BalU, 
we can observe that generally, incorporating uncertainty in designing pattern, i.e. 
using BalU, is a plus.

In regards to the workload distribution among the caregivers, Fig. 3 reveals that, 
as expected, the two policies based on a balancing criterion allow to better control 
the workload unbalance among the caregivers and to obtain very small values for 
ΔUF . On the contrary, the policies Reg and SprU may generate solutions with an 
unsatisfying value of ΔUF , which reaches the maximum value of 18.67 when policy 
Reg is used.

Computational efficiency In regards to computational efficiency, Fig.  4 shows 
that, as for the workload balance, the policies based on a balancing criterion give 
better results.

As an overview, we report some aggregate information on computational effi-
ciency: regardless of the policy adopted, the average computational time is 3173.45 
seconds and the average optimality gap is 8.94 with a peak of 24.85 on one instance. 
On the 36 runs obtained solving the 4 policies on the 9 instances, we report that 30 
runs terminate for memory limit and 6 for time limit. Thus, the optimality of the 
solution is never certified on this set of experiments. The prevalence of termina-
tions due to memory limit over those due to time limit (30 over 6) reveals that the 
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Fig. 4   Optimality gap: 60 patients - consistency-unaware
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enumeration tree in the branch and bound algorithm grows really fast. This fact thus 
highlights that the efficiency of the algorithm would not benefit from an increase of 
computational time. Indeed, as it will be shown for a subset of the bigger instances 
in the test bed, the performance of the algorithm does not seem to benefit from either 
an increase in time or memory. Rather, the definition of ad hoc methods that allow 
to control the explosion of memory represents an interesting line of future research.
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Fig. 5   Realizations of uncertain visits: 60 patients - consistency-aware
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Fig. 6   Operator utilization factor: 60 patients—consistency-aware
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6.2.2 � Consistency‑aware policies

We now evaluate the impact of introducing consistency in pattern generation. 
Similarly to what done for the consistency-unaware policies, Figs. 5, 6 and 7 show 
respectively the number of uncertainty realizations, the measure of the workload 
balance ΔUF , and the optimality gap for the four consistency-aware pattern gener-
ation policies described in Sects. 5.1.1 and 5.1.2, i.e. C-Reg, C-SprU, C-Bal, and 
C-BalU.

Solution quality All of the policies seem to be quite effective in scheduling 
uncertain visits, with policies C-Reg or C-BalU giving better results than the 
others but on two instances where the best performance is obtained by C-Bal. As 
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Fig. 7   Optimality gap: 60 patients—consistency-aware
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Fig. 8   Consistency vs not consistency in pattern generation for 60 patients: impact on the number of pos-
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for the consistency-unaware policies, the best results in terms of workload bal-
ance are given by the policies which incorporate a balancing criterion, as Figs. 6 
clearly reveals.

Computational efficiency Similarly, the best results in terms of computational 
efficiency are given by the policies guided by a balancing criterion, see Fig. 7.

6.2.3 � Consistency‑unaware vs consistency‑aware policies

The direct comparison between the consistency-unaware policies and the consist-
ency-aware ones, shows that the latter policies allow to satisfy a greater number of 
uncertain visits almost everywhere, as reported in Fig. 8. In addition, introducing 
consistency allows to obtain a considerable improvement also from the computa-
tional efficiency point of view. Indeed, as an overview of aggregate information, 
for the consistency-aware policies we have that the average computational time is 
3199.23 seconds, and the average optimality gap is decreased to 3.92 when com-
pared with the 8.94 value obtained on average with the consistency-unaware poli-
cies. On the 36 runs, we report that 23 runs terminate for memory limit, 8 terminate 
for time limit and 5 are solved to optimality. Importantly, the number of runs pre-
maturely interrupted due to the memory limit diminishes remarkably from 30 to 23, 
even if this implies a slight increase of the average computational time.

Summarizing, we can conclude that on the 60-patient instances, all of the poli-
cies, i.e. both the consistency-aware and the consistency-unaware ones, are able to 
find solutions of good quality to the Consistent Robust Home Care problem. How-
ever, introducing consistency allows to satisfy a greater number of uncertain visits 
with respect to the consistency-unaware counterparts and to gain in computational 
efficiency.

6.3 � The 100‑patient instances

In this section, we report separately computational results obtained on instances 
characterized by a percentage of uncertain visits equal to 20% (Sect. 6.3.1) and 30% 
(Sect. 6.3.2) respectively.

Remarkably, we observe that on the 100-patient instances the consistency-aware 
policies play a preeminent role in gaining feasibility. Indeed, computational results 
obtained on the instances with a percentage of uncertain visits equal to 20%, show 
that the consistency-unaware policies are able to find a feasible solution within the 
memory and time limits imposed only on 12 over 48 runs, where the number of runs 
is given by the number of policies (4) times the number of instances (12). Thus, they 
are able to determine a feasible solution in 25% of the cases. On the contrary, the 
consistency-aware policies always determine a feasible solution, independently of 
the specific policy adopted. For this reason, in the following, we only report compu-
tational results for the consistency-aware policies.
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6.3.1 � The 100‑0.8 instances

Figures 9, 10 and 11 show respectively the number of uncertainty realizations, the 
measure of the workload balance ΔUF , and the optimality gap for the consistency-
aware pattern generation policies described in 5.1.1 and 5.1.2, i.e. C-Reg, C-SprU, 
C-Bal, and C-BalU.

Solution quality On this set of instances, the average maximum theoretical num-
ber of uncertain visits that can be realized is 33, and Fig. 9 shows that the two poli-
cies driven by a balancing criterion, i.e. C-Bal, and C-BalU, are well able to satisfy 
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Fig. 9   Realizations of uncertain visits: 100 patients, 20% uncertain visits—consistency-aware
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Fig. 10   Operator utilization factor: 100 patients, 20% uncertain visits—consistency-aware
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the greatest number of uncertain visits. C-Bal and C-BalU are also effective in con-
taining the workload imbalance, as Fig. 10 shows.

Computational efficiency As shown by Fig.  11, C-Bal and C-BalU can also be 
solved more efficiently than the others.

As an overview of aggregate information, we have that the average computational 
time is 4478.11 seconds and the average optimality gap is 5.75 with a peak of 12.65 
obtained by policy C-Reg on one instance. On the 48 runs, we report that 30 runs 
terminate for memory limit and 18 terminate for time limit.

To better understand the impact of imposing time and memory limits on the 
performance of the algorithm, we run an additional set of tests. Since for both the 

Fig. 11   Optimality gap: 100 patients, 20% uncertain visits - consistency-aware

Fig. 12   Effects of extending time and memory limits on efficiency
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60-patient instances and the 100-0.8 ones the terminations due to memory limit pre-
vail over those due to time limit, increasing the computational time alone would not 
lead to improvements. For this reason we increased both limits at the same time. 
We have therefore run again the algorithm on the 100-0.8 instances progressively 
increasing the time to 4 and 8 hours and the memory to 4 Gbyte. Figure 12 shows, 
for each policy, the average gap obtained on the 12 instances of the group 100-0.8 
for each combination of values used as time and memory limits. The figure clearly 
shows that the computational efficiency of the algorithm does not improve signifi-
cantly as time and memory availability increases. Setting the time limit to 2 hours 
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Fig. 13   Realizations of uncertain visits: 100 patients, 30% uncertain visits - consistency-aware

Fig. 14   Operator utilization factor: 100 patients, 30% uncertain visits - consistency-aware
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and the memory limit to 2 Gbyte seems therefore a reasonable choice and this set-
ting of the parameters will be used also for the following experiments.

6.3.2 � The 100‑0.7 instances

Figures 13, 14 and 15 show respectively the number of uncertainty realizations, the 
measure of the workload balance ΔUF , and the optimality gap for the consistency-
aware pattern generation policies C-Reg, C-SprU, C-Bal, and C-BalU.

Solution quality All of the policies seem to be quite effective in covering 
uncertain visits, with policy C-BalU usually obtaining the highest number of 

Fig. 15   Optimality gap: 100 patients, 30% uncertain visits—consistency-aware

Fig. 16   Realizations of uncertain visits: average results—consistency-aware
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possible realizations. In regards to the workload balance, all of the policies are 
very effective in guaranteeing an equal distribution of the workload among the 
caregivers with the only exception of policy C-SprU, which gets a ΔUF worse than 
that obtained by the other policies and in one case exhibits a workload unbalance 
greater that 14%.

Computational efficiency The optimality gap is very low for all the policies 
except C-SprU, which obtains the worst performance.

As an overview, we report some aggregate information on computational 
efficiency: regardless of the policy adopted, the average computational time is 
4156.33 seconds and the average optimality gap is 5.49. On the 36 runs obtained 

Fig. 17   Operator utilization factor: average results—consistency-aware

Fig. 18   Optimality gap: average results—consistency-aware
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solving the 4 policies on the 9 instances, we report that 33 runs terminate for 
memory limit and 15 for time limit.

Interestingly, when compared with the 100-0.8 instances, the performances 
obtained on the 100-0.7 instances seem to be more stable across the four policies 
that show quite similar behaviours.

6.4 � Results in brief

In order to provide an overview of the results reported so far, we give in this section 
average results obtained with the four consistency-aware policies on the three groups 
of instances. Specifically, Figs. 16, 17, and 18 show respectively the average number 
of uncertainty realizations, the average measure of the workload balance ΔUF , and 
the average optimality gap. These aggregate results allow to confirm the trend dis-
cussed separately for each group of instances, i.e.: (i) all the policies are effective in 
covering possible realizations of uncertain visits; (ii) as desirable, the two policies 
incorporating balancing issues (C-Bal and C-BalU) are well able to provide very 
good value of ΔUF , and also (iii) limited optimality gaps.

We conclude the section with a brief discussion of the main achievements 
obtained. The computational results show that the decomposition approach pro-
posed in this paper, at least on the tested set of instances, is a viable tool to success-
fully address the challenging Consistent Robust Home Care problem. In fact, the 
four consistency-aware policies are able to achieve good quality solutions. In par-
ticular: (i) introducing consistency in pattern generation policies is an effective tool 
both to increase the number of uncertainty realizations (see the 60-patient instances) 
and to increase remarkably the number of instances for which a feasible solution is 
found (see the 100-patient instances); (ii) incorporating a balancing criterion in pat-
tern generation policies positively impacts both on reducing the workload imbalance 
among the caregivers - and this is a quite expected result, and to increase computa-
tional efficiency - and this is a less expected result. Indeed, the pattern generation 
policies that consider the workload balance seem to take the “right” scheduling deci-
sions in the first phase of the decomposition approach, especially when taking into 
account also consistency and uncertainty; the resulting model solved in the second 
phase is thus guided efficiently towards good quality solutions. The algorithm based 
on patterns generated via the policy C-BalU seems thus to be particularly appealing 
in computing consistent solutions also characterized by a high degree of robustness 
and a very good workload balance. Such an algorithm could be a valuable tool for 
providers interested in efficiently addressing uncertainty and pursuing consistency 

Table 2   Impact of consistency on solution quality

Instance Group %CC violation %TC violation Solved Solved (policy-wise)

C-Reg, C-SprU, C-Bal, C-BalU

60 31.79 62.07 36/36 9 9 9 9
100-0.8 34.94 59.70 11/48 5 1 2 3
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of the patient schedules while balancing the caregiver workload, so achieving a good 
trade-off between patient-centered and caregiver-centered perspectives. The value of 
consistency on the patient perspective will be better emphasized next.

7 � The value of consistency on patient perspective

In this section, we report computational results showing the importance of con-
sidering consistency in pursuing a patient-centered perspective. Specifically, we 
solved two groups of instances, both the 60-patient and the 100-0.8 instances, with-
out imposing any kind of consistency, and we measured the average (over all the 
instances in a group) percentage of patients for whom a violation of care continuity 
(%CC violation in Table 2) or time consistency (%TC violation in Table 2) occurs. 
When care continuity is disregarded, constraints (6) are relaxed, thus allowing that 
a patient is visited each time by a different caregiver. When time consistency is 
neglected, the pattern associated with each patient in the first phase comes without 
any information on the session (morning or afternoon) in which visits will occur.

More in detail, to measure the value of adding consistency to the model, we run a 
set of additional experiments in which we disregard both types of consistency at the 
same time as described above. Starting from the same patterns and under the same 
time and memory limits, the quality of the solutions obtained when consistency is 
neglected is evaluated against solution quality when consistency is addressed. In 
both cases, the four consistency-aware policies are used in the first phase to generate 
patterns.

Table 2, separately for each group of instances, reports the average percentage of 
patients for whom a violation of care continuity occurs (column %CC violation), the 
average percentage of patients for whom a violation of time consistency occurs (col-
umn %TC violation), the total number of instances for which a feasible solution is 
obtained within the time and memory limits imposed (column Solved), and finally, 
in the last four columns, the same type of information on the capability of a policy 
to provide feasible solutions, separately for each policy.

The computational results show that not considering time consistency has a 
greater (negative) impact on solution quality than not considering care continuity. 
Specifically, about the 30% of patients with more than one visit is visited by more 
than one operator. Thus, not assuring person-oriented consistency compromises 
solution quality from the patient perspective, but not addressing time consistency 
deteriorates solution quality even more. In fact, about the 60% of patients with more 
than one visit is visited both in the morning and in the afternoon during the planning 
horizon. Interestingly, the two groups of instances exhibit similar trends. The two 
groups of instances, instead, are quite different in terms of capability of the poli-
cies to find feasible solutions. While on the 60-patient instances a feasible solution 
is found for each of the 9 instances and for each of the four alternative policies (36 
runs), on the 100-0.8 instances only 11 over 48 (12 instances and 4 policies) runs 
led to feasible solutions. On such instances, policy C-Reg seems to be more effective 
than the others obtaining the maximum number of successful runs. Note that, when 
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consistency is assured, both for the 60-patient instances and for the 100-patient ones, 
all of the four alternative policies always determine a feasible solution.

We can thus conclude that addressing consistency has undoubtedly a beneficial 
effect on the solution quality from a patient-centered perspective. In addition, it also 
affects positively the computational efficiency. This could appear quite surprising, 
but is indeed in accordance with what shown in Sect. 6. Even if in the decomposi-
tion approach proposed to solve the problem the information on the session is fixed, 
in fact, the approach is able to find feasible solutions in a greater number of runs 
with respect to the case in which consistency is not addressed, thus confirming that 
the consistency-aware policies are effective in guiding the search towards good qual-
ity solutions.

8 � Conclusions

We have introduced and studied a new problem in Home Care, i.e. the Consistent 
Robust Home Care problem, where arrival time consistency, person-oriented con-
sistency and demand uncertainty are addressed while jointly optimizing assignment, 
scheduling and routing decisions over a multiple-day time horizon.

We have presented a mathematical model to formulate the problem and a pat-
tern based algorithmic framework to solve it. The framework is obtained from the 
proposed mathematical model via decomposition, i.e. suitably fixing the schedul-
ing decisions through the concept of pattern. Some alternative pattern genera-
tion policies, based on multicommodity flow formulations on an auxiliary graph, 
and explicitly taking into account the consistency requirements in addition to the 
demand uncertainty, have been proposed as a tool to derive alternative algorithmic 
approaches from the general pattern-based framework. The wide computational 
experience has shown that some of the proposed consistent algorithms are able to 
compute very good quality solutions, both in terms of robustness and in terms of 
balancing of the caregiver workload. This verifies mainly when using pattern gen-
eration policies which explicitly take into account consistency, uncertainty and bal-
ancing issues. In addition, the proposed approaches are computationally efficient, 
by considering the hardness of the Home Care aspects which are jointly optimized. 
Also, a comparison with an approach in which arrival time consistency and person-
oriented consistency are not imposed, shows that considering consistency has a ben-
eficial effect on the solution quality from a patient-centered perspective, with a posi-
tive impact on the efficiency of the approach.

We plan to computationally compare our approach, which realizes the arrival 
time consistency by selecting a daily time slot per patient during the optimization 
process, with a less flexible approach based on time windows, by investigating the 
impact of the number of considered time slots on efficiency and flexibility. Further-
more, we plan to further extend the studied Home Care Problem by incorporating 
other kinds of constraints reflecting a patient-centered perspective, and considering 
also decisions relative to special equipments or devices (Cappanera et  al. (2020)) 
which might be required to service patients.
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We believe that the proposed algorithm, suitably integrated with IoT tools, can be 
the engine of a decision support system to assist Home Care service providers. The 
importance of such tools is more evident today than ever: an optimized management 
of Home Care services is essential both in the emergency, to manage the exponen-
tial growth in demand due to the SARS-COV-2 pandemic we are experiencing, and 
in the long term to increase the quality of service according to a patient-centered 
perspective.

Appendix: the complete mathematical model

Here we present the complete mathematical formulation to the Consistent Robust 
Home Care Problem. The model is based on the following notation:

Moreover, it makes use of the following families of variables:

Using the notation and the families of variables introduced above, the feasible set of 
the Consistent Robust Home Care Problem can be modeled as follows. Notice that 

W planning horizon

A set of arcs in the logistic network

O set of skilled caregivers

Od ⊆ O set of caregivers available on day d, for each d ∈ W

T daily time slots

𝜔t copy of caregiver𝜔 for t ∈ T

K set of skills

s𝜔 ∈ K skill of caregiver𝜔,𝜔 ∈ O

D𝜔 workday length of caregiver𝜔,𝜔 ∈ O

N̄ = {1,… , n} set of certain copies of patients

Ñ = {n + 1,… , 2n} set of uncertain copies of patients

r̄jk number of certain visits required by j in W for skill k, j ∈ N̄, k ∈ K

r̃jk number of uncertain visits required by j in W for skill k, j ∈ Ñ, k ∈ K

aj service (or assistance) time at patient j, j ∈ N̄ ∪ Ñ

tij traveling time from node i to node j, (i, j) ∈ A

H maximum number of caregivers who can visit each patient inW

Pj set of patterns for j, j ∈ N̄ ∪ Ñ

P overall set of patterns.

zjp =

{
1 if pattern p is assigned to j

0 otherwise
j ∈ N̄ ∪ Ñ, p ∈ Pj

u𝜔j =

{
1 if caregiver 𝜔 is assigned to j

0 otherwise
𝜔 ∈ O, j ∈ N̄

x𝜔d
ij

=

{
1 if caregiver 𝜔 travels along (i, j) on day d

0 otherwise
(i, j) ∈ A, d ∈ W,𝜔 ∈ Od

yd
ij
≥ 0 the number of nodes visited after i by a caregiver moving along (i, j) on day d, d ∈ W

Consjt =

{
1 if all visits to patient j are scheduled in time slot t

0 otherwise.
j ∈ N̄, t ∈ T
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the continuity of care constraints and the arrival time constraints are referred to by 
the same numbering used in Sect. 4.

(21)

∑
(i,j)∈A

∑
𝜔∈Od

x𝜔d
ij

≤
∑

p ∈ Pj ∶

p(d) ≥ 1

zjp ∀j ∈ N̄ ∪ Ñ,∀d ∈ W

(22)
∑
(i,j)∈A

∑
𝜔∈Od∶s𝜔≥k

x𝜔d
ij

≥
∑

p∈Pj∶p(d)=k

zjp ∀j ∈ N̄ ∪ Ñ,∀d ∈ W,∀k ∈ K

(23)
∑
p∈Pj

zjp = 1 ∀j ∈ N̄ ∪ Ñ

(24)u𝜔j ≤
∑
(i,j)∈A

∑
d∈W

x𝜔d
ij

+
∑

(i,j+n)∈A

∑
d∈W

x𝜔d
i,j+n

∀j ∈ N̄,∀𝜔 ∈ O

(25)
∑
(i,j)∈A

x𝜔d
ij

=
∑
(j,i)∈A

x𝜔d
ji

∀j ∈ N̄ ∪ Ñ,∀d ∈ W,∀𝜔 ∈ Od

(26)
∑

(0,j)∈A

yd
0j
=
∑
j∈N

∑
p∈Pj∶p(d)≥1

zjp ∀d ∈ W

(27)
∑
(i,j)∈A

yd
ij
−

∑
(j,i)∈A

yd
ji
=

∑
p∈Pj∶p(d)≥1

zjp ∀j ∈ N̄ ∪ Ñ, d ∈ W

(28)yd
ij
≤ 2n

∑
�∈Od

x�d
ij

∀(i, j) ∈ A, d ∈ W

(1)
∑
𝜔∈Od

( ∑
(i,j)∈A

x𝜔d
ij

+
∑

(i,j+n)∈A

x𝜔d
i(j+n)

)
≤ 1 ∀j ∈ N̄,∀d ∈ W

(2)Consjt ≤ 1 −

( ∑
𝜔t̃∈O,t̃≠t

u𝜔t̃ j
∕H

)
∀j ∈ N̄, t ∈ T

(3)Consjt ≥
∑
𝜔t∈O

u𝜔t j
∕H ∀j ∈ N̄, t ∈ T

(4)x𝜔d
ij

≤ u𝜔j ∀j ∈ N̄,∀(i, j) ∈ A,∀d ∈ W,∀𝜔 ∈ Od
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Constraints (21) state that at most one caregiver per day can visit j, if a visit has been 
scheduled on that day for node j. Constraints (22) guarantee that, on day d, for each 
skill k exactly one caregiver, of adequate skill, must visit j if a service of that skill 
has been scheduled for j on day d. In particular, if two skill levels are considered, 
caregivers of skill 1 can perform only visits of skill 1, whereas caregivers of skill 2 
can perform both types of visits. Constraints (23) ensure that exactly one pattern is 
assigned to each patient. Notice that a pattern is assigned to each patient and also to 
its uncertain copy, in order to schedule all the certain and all the uncertain requests 
of each patient. The design variables x�d

ij
 thus model a set of tours including all the 

certain and all the uncertain requests. Constraints (24) fix the caregiver-patient 
assignment variable u�j to zero if caregiver � does not visit neither the certain copy 
of patient j nor its uncertain copy ( j + n ) in the planning horizon. Constraints (25) 
are the classical flow conservation constraints on the routing variables. Constraints 
(26) and (27) are the flow conservation constraints on the auxiliary y variables, 
which are introduced to avoid subtours. They also guarantee the correct linking 
between scheduling and flow variables. Constraints (28) link together routing and 
flow variables. Constraints (1) impose that, on each day and for each patient j, at 
most one caregiver can visit patient j (either node j or node j + n ). Constraints (2)-
(3) model the consistency requirements. That is, they guarantee that all the caregiv-
ers assigned to a patient are related to the same daily time slot. Together with (2)-
(3), constraints (4)-(6) express the care continuity requirement: (4) and (5) guarantee 
that a caregiver can visit a patient (precisely, the certain or the uncertain copy of a 
patient) only if assigned to that patient (linking between routing and caregiver 
assignment variables), while (6) bound the number of caregivers that can visit each 
patient during the time horizon. As an enhancement, constraints (24) force u�j to 
zero if caregiver � never visits patient j during the week.

Finally, constraints (7) guarantee that the length of each sequence-preserving Γ
-tour does not exceed the workday length of the assigned caregiver. More precisely, 
for each day d and each caregiver � ∈ Od , R�d

SΓ
 represents the maximum length 

amongst all the sequence-preserving Γ-tours generated by the tour of � on day d, say 
� . By imposing that such a maximum length cannot exceed the workday duration 
of � , we ensure that all the sequence-preserving Γ-tours generated by � satisfy the 
length of �.

As in Cappanera et al. (2018), the length of each sequence-preserving Γ-tour is 
upper approximated by means of the following inner problem which makes use of 
the decision variables v�d

j
 , ∀j ∈ Ñ , d ∈ W , � ∈ Od . Variable v�d

j
 takes on value 1 if 

the uncertain node j ∈ Ñ is visited on day d by caregiver � (i.e. j belongs to a 

(5)x𝜔d
i,j+n

≤ u𝜔j ∀j ∈ N̄,∀(i, j + n) ∈ A,∀d ∈ W,∀𝜔 ∈ Od

(6)
∑
𝜔∈O

u𝜔j ≤ H ∀j ∈ N̄

(7)R�d
SΓ

≤ D� ∀d ∈ W,∀� ∈ Od
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sequence-preserving Γ-tour of � on day d), 0 otherwise. Precisely, for each day d 
and each caregiver � ∈ Od , R�d

SΓ
 is approximated by R̄𝜔d

SΓ
 , which is defined by the fol-

lowing model:

where N̄+ denotes the set of certain patients plus the depot node. Given a complete 
tour � , modelled by the x�d

ij
 , and a sequence-preserving Γ-tour � generated from it, 

whose uncertain selected nodes are defined by (30)-(31), the objective function in 
(29) estimates the length of � by considering exactly the contribution due to the arcs 
linking certain nodes as well as the depot (first summation in (29)), and also the con-
tribution of the arcs linking certain nodes and depot to selected uncertain copy 
nodes, i.e. to nodes j ∈ Ñ such that v�d

j
= 1 (third and fourth summation in (29)). In 

addition, for the arcs (i,  j) not in the tour and for those connecting two selected 
uncertain nodes, the traveling time of (i, j) is estimated from above via tmax

j
 , where 

tmax
j

= max(i,j)∈A{tij} is the maximum travel time amongst all arcs entering j, for each 
node j. Therefore, problem (29)-(31) looks for a maximum length sequence-preserv-
ing Γ-tour based on the just stated over-estimation of the tour length. The correct-
ness of the upper approximation derives from Proposition 1 in Cappanera et  al. 
(2018). Then, the inner problem can be dualized and inserted in the complete model 
via standard techniques used in Robust Optimization (Bertsimas and Sim (2004)).

The presented formulation to the Consistent Robust Home Care Problem has been 
experimented by using a social equity criterion, aiming at balancing the caregiver 
workloads. This kind of criterion was also investigated in Cappanera and Scutellà 
(2015), Yalçındağ et al. (2016) and Cappanera et al. (2018). Precisely, we minimize 
the maximum caregiver utilization factor, where the caregiver utilization factor is 
expressed as the total workload of the caregiver during the planning horizon in the 
worst scenario, over his maximum possible workload.

Funding  Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE 
Agreement.
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