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Abstract

Stem cell therapy is noted for its clinical effect in the treatment of neuropathic pain. This study 
aimed to investigate the potential anti-apoptotic and anti-inflammatory effects of adipose-derived 
mesenchymal stem cells (AD-MSCs) and fibroblast growth factor 1 gene-transfected adipose-
derived mesenchymal stem cells (AD-MSCs FGF1) on chronic constriction injury (CCI) of the rat’s 
sciatic nerve. The rats that underwent CCI were treated with AD-MSCs and AD-MSCs FGF1. Bax, 
Bcl2, and caspases 3, the major contributors of apoptosis, and inflammatory markers including 
Iba-1, IL1-β, and MMP-2 were evaluated in the lumbar portion (L4-L6) of the spinal cord through 
western bloating at days 3 and 14. The ratio of Bax/Bcl2, cleaved caspases 3, MMP-2, IL-1β, and 
Iba1, was elevated in CCI animals compared to sham-operated animals and decreased following 
treatment with both AD-MSCs and AD-MSCs FGF1. However, the effect of AD-MSCs FGF1 was 
significantly higher than AD-MSCs. These data suggest that the administration of AD-MSCs FGF1 

through modulating apoptosis and neuroinflammation could be considered a promising medicine 
for treating neuropathic pain.

Keywords: Adipose-derived mesenchymal stem cell; Fibroblast growth factor 1; Transfection; 
Neuropathic pain.

Introduction

Nerve injury-induced chronic pain was 
commonly referred to as neuropathic pain. 
Despite the rapid development of neuroscience 

associated with drug discovery, due to a lack 
of precise knowledge of neuropathic pain 
mechanisms, effective drugs to alleviate 
neuropathy symptoms are still lacking (1). 
Evidence suggests that neuropathic pain’s 
underlying  pathophysiology is related to 
apoptosis and inflammation pathways and 
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involves interactions between neurons, 
inflammatory immune, and glial cells (2, 
3). Cell transplantation is a vibrant research 
area in the treatment of neuropathic pain 
(4, 5). Adipose-derived mesenchymal 
stem cells (AD-MSCs) influence relevant 
immune modulation and produce an 
array of neurotrophins and cytokines that 
positively impact cell viability. Newer 
studies demonstrated that the combination 
of growth factors (by genetic manipulation) 
enhances MSCs’ therapeutic potential (6-9). 
FGF1 (fibroblast growth factor 1) displays 
neuroprotective effects (8, 10). It contributes 
to many physiological processes, such as 
angiogenesis, neurogenesis, wound healing, 
and memory functions (10). In the previous 
study, we transfected AD-MSCs with FGF1 
and demonstrated that our ADMSCFGF1 could 
secret FGF1 with proliferative and angiogenic 
properties (11). ADMSCsFGF1 transplantation 
resulted in a significant decrease in mechanical 
and thermal hypersensitivity in a rat model of 
chronic constriction injury (CCI).

Moreover, spinal structural alterations 
and apoptosis were decreased following AD-
MSCs FGF1 administration in CCI rats (12). In 
light of the benefits found with our previous 
study, we conducted further examinations 
on the underlying pathways by which AD-
MSCsFGF1 exert their actions on neuropathic 
pain. In the present study, we plan to examine 
some inflammatory and apoptosis markers’ 
expressions following administration of AD-
MSCs and AD-MSCsFGF1 in the spinal cord of 
the rats submitted to CCI. 

Experimental

Tris-HCl, ethylene diamine tetraacetic acid 
(EDTA), β-glycerol phosphate, bromophenol 
blue, sodium fluoride (NaF), glycerol, tris-
buffered saline with tween 20 (TBST), 
sodium orthovanadate (Na3VO4), sodium 
deoxycholate, complete protease inhibitor 
cocktail (P8340), phenylmethylsulfonyl 
fluoride (PMSF), sodium dodecyl sulfate 
(SDS,) and 2-mercaptoethanol (2-ME) were 
bought from Sigma-Aldrich (St. Louis, MO).

Rabbit polyclonal anti-Bax, rabbit 
polyclonal anti-Bcl2, anti-cleaved caspase 3, 
and rabbit polyclonal anti-β-actin antibodies, 

rabbit horseradish peroxidase-conjugate anti-
rabbit IgG or anti-mouse were bought from 
Cell Signaling Technology (Danvers, MA). 
Rabbit anti- IL-1β, rabbit anti-MMP2, and 
mouse monoclonal anti-Iba-1 were purchased 
from Abcam Technology (Cambridge, UK). 
High glucose Dulbecco’s modified Eagles 
medium (DMEM, 4.5 g/L), penicillin and 
streptomycin, and fetal calf serum (FCS) were 
bought from Gibco (Carlsbad, CA). Ketamine 
and xylazine were bought from Alfasan Co 
(Woerden, Holland). 

Animals
Adult male Wistar rats weighing 220-270 g 

were obtained from the Animal Facility of the 
Faculty of Medicine, Mashhad University of 
Medical Sciences, Iran. The animals were kept 
in a 12 h light-dark cycle environment. Tap 
water and standard food pellets were available 
ad libitum. All Experiments were done 
following the National Institutes of Health 
Guidance for the Care and Use of Laboratory 
Animals, with the approval of the Animal 
Ethics Committee of MUMS (#930511).

Cell cultures
AD-MSCs were established, characterized, 

and successfully transfected by a pCMV6-
Entry vector with Myc-DDK-tagged ORF clone 
of Rattus norvegicus fibroblast growth factor 1 
(rat FGF1), as described previously (11, 13). 
The AD-MSCs were cultured in DMEM with 
10% FBS and 1% antibiotics in a humidified 
atmosphere of 5% CO2, 95% air, 37 °C.

CCI surgery of sciatic nerve
Briefly,  the rats were anesthetized with a 

cocktail containing ketamine (64 mg/kg) and 
xylazine (1.6 mg/kg). The neuropathic pain was 
induced by performing a chronic constriction 
injury model on the left sciatic nerve of 
animals, according to a method  previously 
described by Bennet and Xie (14). The skin of 
the left thigh’s lateral surface was incised, the 
sciatic nerve was exposed, and four ligatures 
of 4-0-gauge chromic catgut were loosely tied 
around the nerve until a slight twitching was 
seen in the ipsilateral hind paw. The muscular 
and skin layer was sutured immediately with 
silk thread, and the animals were kept in a 
warm condition until complete recovery. All 
the surgeries were done by one person.
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Study protocol 
Cell administration was done intravenously 

on the day of nerve injury, once-daily that 
continued for two consecutive days. The 
number of cells and their concentration were 
1 × 106 cells/200 µL PBS, chosen according to 
Forouzanfar et al.(12).

Grouping 
The rats were randomly divided into four 

groups: Sham-operated rats (which were 
subjected to surgical procedure without 
the ligation of the sciatic nerve), CCI rats, 
CCI + AD-MSCs (CCI rats undergoing the 
intravenous delivery of AD-MSCs), and CCI 
+ AD-MSCs FGF1 (CCI rats undergoing the 
intravenous delivery of AD-MSCs FGF1). Sham 
and CCI-operated rats were intravenously 
injected with the same amount of PBS alone at 
the same designated time points. 

Western blot assay 
The rats were decapitated on days 3, and 

14 (n = 6 for each day) and L4-L6 region 
of spinal cord tissues were rapidly isolated 
and homogenized in the lysis buffer (10 
mM 𝛽-glycerophosphate, 0.2% w/v sodium 
deoxycholate, 1 mM PMSF, 2 mM EGTA, 50 
mM Tris-HCl (pH 7.4), 10 mM NaF, 1 mM 
sodium orthovanadate (Na3VO4), 2 mM EDTA, 
and complete protease inhibitor cocktail). 
The homogenates were then centrifuged at 
10,000 g for 10 min at four ℃. The protein 
concentrations were assessed by the Bradford 
assay kit (15). After that, the samples with 
adjusted protein content were mixed 1:1 
with 2 × SDS blue buffer, boiled, aliquoted, 
and kept at -80 °C. One hundred microgram 
of each protein extract was separated on 
12% sodium dodecyl sulfate-polyacrylamide 
gel (SDS-PAGE) by electrophoresis and 
transferred onto PVDF transfer membranes. 
After transferring, the blots were blocked with 
5% skim milk in TBST (20 mM Tris-HCl pH 
7.6, 137 mM NaCl, and 0.05% Tween-20) at 
4 °C overnight. Then the blots were incubated 
with primary rabbit anti- IL-1β, rabbit anti-
MMP2, mouse monoclonal anti-Iba-1, rabbit 
polyclonal anti-Bax, rabbit polyclonal anti-
Bcl2, rabbit anti-cleaved caspase 3, and 
rabbit polyclonal anti-β-actin antibodies with 
an incubation time of about 1-2 h at room 

temperature. After washing in TBST buffer, 
the blots were incubated by rabbit horseradish 
peroxidase-conjugated anti-rabbit IgG or 
anti-mouse IgG secondary antibody one h at 
37 °C. Enhanced chemiluminescence (Pierce, 
USA) was used to visualize the peroxidase-
coated bands and visualized using Alliance 
4.7 Gel Doc (UK). Densitometric analysis 
for specific protein bands was done using 
NIHe Image J software. The protein levels 
of each band were normalized against the 
corresponding B-actin band (12). 

Statistical analysis
All behavioral data are expressed as 

mean ± SEM (standard error of the mean) 
and analyzed by one-way ANOVA, followed 
by Tukey-Kramer post-hoc test for multiple 
comparisons. The values of p < 0.05 were 
considered significant.

Results

AD-MSC and AD-MSCsFGF1 decreased 
cleaved Caspase-3 and Bax/Bcl-2 expressions 
in CCI rats’ spinal cord on day 3.

As indicated in (Figures 1A-C), CCI led 
to a substantial increase in the expression of 
cleaved Caspase-3 (1.9-fold) and Bax/Bcl-2 
ratio (1.7-fold), as compared with the sham 
group (p < 0.001). On the contrary, AD-MSCs 
and AD-MSCsFGF1 were able to diminish the 
Caspase-3 expression to 1.6 (p < 0.05) and 
1.1 (p < 0.001) fold in CCI rats, respectively. 
This corrective effect was more significant 
in the CCI + AD-MSCsFGF1 group (p < 0.01 
compared to the CCI + AD-MSCs group).

Also, AD-MSCs and AD-MSCsFGF1 
administration resulted in a decrement of Bax/
Bcl-2 expression to 1.4 (p < 0.05) and 1 (p < 
0.001) fold in CCI rats, respectively. The CCI 
+ AD-MSCsFGF1 group exhibited a significantly 
lower expression than the CCI + AD-MSCs 
group (P < 0.05).

AD-MSC and AD-MSCsFGF1 decreased IL-
1β expression in the spinal cord of CCI rats 
on day 14

As shown in (Figure 2), there was a 
significantly higher relative density of IL-1β 
expression in CCI rats (1.5 fold of control), in 
comparison to the sham-operated animals (p 
< 0.001). On the other hand, AD-MSCs and 
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AD-MSCsFGF1 were able to decrease the IL-1β 
expression to 1.3 (p < 0.05) and 1.1 (p < 0.001) 
fold in CCI rats, respectively. Furthermore, 

the effect was more significant in the CCI + 
AD-MSCsFGF1 group (p < 0.05 compared to the 
CCI + AD-MSCs group).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 1. Effects of AD-MSCs and AD-MSCs FGF1 on apoptosis-related protein expressions in L4-L6 dorsal horn of spinal cord of 
CCI rats on day 3. (A) Representative images of pro-apoptotic (Cleaved Caspase-3 and Bax) and anti-apoptotic (Bcl-2) by western 
blotting. (B, C) the bar graphs show the relative protein expressions of cleaved caspase-3 and Bax/Bcl-2 ratio, respectively. 𝛽-actin 
is the loading protein control. Each value represents the mean ± SEM. *p < 0.05, ***p < 0.001 vs. CCI group; #p < 0.05, ##p < 0.01 
vs. AD-MSCs group. (n = 6).
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AD-MSC and AD-MSCFGF1 decreased Iba-
1 expression in the spinal cord of CCI rats on 
day 14.

As illustrated in (Figure 3), Iba-1 
expression was increased in CCI rats (1.6 fold) 
as compared with the sham-operated animals 
(p < 0.001). On the contrary, AD-MSCs and 
AD-MSCsFGF1 administration resulted in 
a decrement of Iba-1 expression to 1.4 (p < 
0.05) and 1.2 (p < 0.001) fold in CCI rats, 
respectively. The CCI + AD-MSCsFGF1 group 
showed a significantly lower expression than 
the CCI + AD-MSCs group (p < 0.05).

AD-MSC and AD-MSCsFGF1 decreased 
MMP-2 expression in the spinal cord of CCI 
rats on day 14.

As shown in (Figure 4), western blot 
analysis in the CCI group revealed a significant 
increase in the MMP-2 expression (1.7 fold) in 
comparison to the sham-operated animals (p < 
0.001). On the other hand, AD-MSCs and AD-
MSCsFGF1 were able to decrease the MMP-2 
expression to 1.4 (p < 0.01) and 1.2 (p < 0.001) 
fold in CCI rats, respectively. The effect was 
more significant in the CCI + AD-MSCsFGF1 

group (p < 0.05 compared to the CCI + AD-
MSCs group). 
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loading of protein control. Each value represents the mean ± SEM. *p < 0.05, ***p < 0.001 vs. CCI group; #p < 0.05 vs. AD-MSCs group. (n = 

6). 

  
Figure 2. Effects of AD-MSCs and AD-MSCs FGF1 on expressions of IL-1β protein in L4-L6 dorsal horn spinal cord of CCI rats on 
day 14. (A) Representative images of IL-1β by western blotting. (B) Tthe bar graphs show the relative protein band expressions of 
IL-1β. 𝛽-actin is the loading of protein control. Each value represents the mean ± SEM. *p < 0.05, ***p < 0.001 vs. CCI group; #p < 
0.05 vs. AD-MSCs group. (n = 6).



156

Forouzanfar F et al. / IJPR (2020), 19 (4): 151-159

 

 

Figure 3. Effects of AD-MSCs and AD-MSCs FGF1 on expressions of Iba-1 protein in L4-L6 dorsal horn spinal cord of CCI rats on day 14. (A) 

Representative images of Iba-1 by western blotting. (B) The bar graphs show the relative protein band expressions of Iba-1. 𝛽𝛽-actin is the loading 

of protein control. Each value represents the mean ± SEM. *p < 0.05, ***p < 0.001 vs. CCI group; #p < 0.05 vs. AD-MSCs group. (n = 6). 

  

 

 

Figure 4. Effects of AD-MSCs and AD-MSCs FGF1 on expressions of MMP-2 protein in L4-L6 dorsal horn spinal cord of CCI rats on day 14. (A) 

Representative images of MMP-2 by western blotting. (B) The bar graphs show the relative protein band expressions of MMP-2 (B). 𝛽𝛽-actin is 

the loading of protein control. Each value represents the mean ± SEM. **p < 0.01, ***p < 0.001 vs. CCI group; #p < 0.05 vs. AD-MSCs group. 
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Discussion

In the present study, we demonstrated 
that the intravenous administration of AD-
MSCs FGF1 effectively diminishes apoptosis 
and inflammation of neuropathic pain 
that originates from a peripheral lesion. 
Following the peripheral nerve injury, a 
cascade  of  neuroinflammation-related events 
occurs in pain generation (3, 16). Microglia are 
one of the first spinal cord cell types activated 
within the first hours of peripheral nerve injury, 
which continues for at least numerous months 
in experimental neuropathies. Microglial 
activation is characterized by the expression 
of Iba1 (3). The release of IL-1β from spinal 
cells was enhanced following the responses to 
pathophysiological changes during neuropathic 
pain (17). More pertinently in spinal cord 
neurons, IL-1β enhanced excitatory AMPA and 
NMDA-induced currents whilst suppressed 
GABA- and glycine-induced inhibitory 
currents (18). Previous studies suggested that 
IL-1β induction of NMDA-currents may be via 
PK-C that phosphorylates NMDA subunits, 
NR1 and NR2B (19). The inhibition of IL-
1β signaling prevented transcriptional up-
regulation of the COX-2 gene, which resulted 
in the reduction of mechanical hyperalgesia 
and normalization of pain sensitivity (20). 
Matrix metalloproteinases (MMPs)  are  zinc-
dependent proteins, have imperative roles 
in numerous proteolytic reactions, and are 
associated with different neurodegenerative 
disorders (21). They degrade structural proteins 
of the extracellular and increase the amount of 
pro-inflammatory cytokines such as IL-1β (22). 
In the context of neuropathic pain, elevated 
MMP-2 contributes to the development of 
neuropathic pain (23). In accordance with 
previous literature (21, 24), Iba1, IL-1β, and 
MMP-2 upregulation were seen on day 14 
post-CCI. Administration of AD-MSCs and 
AD-MSCs FGF1 significantly attenuated the 
contents of Iba1, IL-1β, and MMP-2, in the 
spinal cord of animals subjected to nerve 
injury. The corrective effect was greater in 
the AD-MSCs FGF1 group. AD-MSCs are 
known to provide anti-inflammatory and anti-
apoptotic by producing many growth factors, 
cytokines, and chemokines (25). In a study 
by Sacerdote’s et al., AD-MSc administration 

reduced the pro-inflammatory cytokine IL-1β. 
It increased the anti-inflammatory cytokine 
IL-10 in the injured nerve of the CCI rats. 
Besides, AD-MSc administration decreased 
the expression of inducible nitric oxide 
synthase in CCI animals’ spinal cord (26). In a 
study conducted by Siniscalco et al., injection 
of human MSCs to neuropathic mice led to 
decreased NP-like behaviors, mRNA levels of 
the pro-inflammatory interleukin IL-1β mouse 
gene, as well as astrocytic and microglial 
cell activations (27). FGF1 induced the 
expression of T helper type 2 (Th2) cytokine 
IL-4 and sequential upregulation of arginase-I 
(Arg I) (28). Arg I enhances the synthesis of 
polyamines that promote axonal regeneration 
and prevent cell death after injury (29). 
Subsequently, the upregulation of Arg I leads to 
a decrement of the inflammatory response and 
neuropathic pain occurrence (30). In a study 
conducted by Lin et al., following cervical 
root transection, intercostal nerve grafts and  
FGF1 resulted in a decrement of microglial 
and IL-1β-positive astrocyte reactions in the 
spinal cord, along with a significant increase 
in arginase I expression (30). The apoptotic 
processes appear and develop during the 
first few days after the induction of CCI. 
Subsequently, increased expression of anti-
apoptotic Bcl-2 family genes may inhibit 
more neuronal loss. It could be associated with 
the own neuroprotection mechanisms of the 
nervous system (31, 32). The results presented 
here show a significant elevation in the Bax/
Bcl2 ratio and cleaved caspases 3 in CCI 
animals on day three post-surgery. Treatment 
with AD-MSCs and AD-MSCs FGF1 leads to 
correction of the expressions of these factors. 
Again, the corrective effect was greater in the 
AD-MSCs FGF1 group. Previously, we also 
showed that FGF1 therapy, along with stem 
cell transplantation, markedly diminished 
the CCI-induced DNA fragmentation and 
apoptosis in the spinal cord of CCI rats (12). 
FGF1 is a differentiation and survival factor 
with multiple biological effects, such as 
angiogenesis, mitogenesis, and repair. It is 
highly expressed in the central and peripheral 
nervous systems (33, 34). FGF1 is a repressed 
target gene of p53. The overexpression of 
FGF1 via increasing MDM2 (mouse double 
minute 2) expression leads to a decrement of 
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pro-apoptotic and the anti-proliferative effects 
of p53 and Bax, a pro-apoptotic protein (35). In 
the presence of DNA damages, FGF1 leads to 
a decrement in p53 stability activities and p53-
dependent transactivation of the pro-apoptotic 
genes, such as puma, noxa, and caspases 3 (34). 
In conclusion, the present study demonstrated 
that intravenous administration of AD-MSCs, 
transfected with the FGF1 gene, resulted in 
significant improvements in the spinal cord’s 
apoptosis and inflammation in a rat model of 
CCI, with greater efficacy than non-modified 
AD-MSCs and has vast potential for future 
studies.
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