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Abstract

Type 1 diabetes (T1D) occurs as a consequence of an autoimmune attack against pancreatic 
β- cells. Due to a lack of a clear understanding of the T1D pathogenesis, the identification of 
effective therapies for T1D is the active area in the research. The study purpose was to prioritize 
potential drugs and targets in T1D via systems biology approach. Gene expression data of 
peripheral blood mononuclear cells (PBMCs) and pancreatic β-cells in T1D were analyzed 
and differential expressed genes were integrated with protein-protein interactions (PPI) data. 
Multiple topological centrality parameters of extracted query-query PPI (QQPPI) networks were 
calculated and the interaction of more central proteins with drugs was investigated. Molecular 
docking was performed to further predict the interactions between drugs and the binding sites 
of targets. Central proteins were identified by the analysis of PBMC (MYC, ERBB2, PSMA1, 
ABL1 and HSP90AA1) and pancreatic β-cells (HSP90AB1, ESR1, RELA, RAC1, NFKB1, 
NFKB2, IKBKE, ARRB2 and SRC) QQPPI networks. Thirteen drugs which targeted eight 
central proteins were identified by further analysis of drug-target interactions. Some drugs 
which investigated for diabetes treatment in the experimental models of T1D were prioritized 
by literature verification, including melatonin, resveratrol, lapatinib, geldanamycin, eugenol and 
fostaminib. Finally, according on molecular docking analysis, lapatinib-ERBB2 and eugenol-
ESR1 exhibited highest and lowest binding energy, respectively. This study presented promising 
results for the prioritization of potential drug-targets which might facilitate T1D targeted therapy 
and its drug discovery process more effectively. 

Keywords: Type 1 diabetes; Systems biology approach; Protein-protein interaction network; 
Topological centrality; Molecular docking.
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Introduction

Type 1 diabetes (T1D) is characterized by 
partial or absolute insulin deficiency as a result 
of chronic immune-mediated destruction of 
pancreatic β-cells, leading to hyperglycemia 
and consequent polyuria, polydipsia, and 
weight loss (1). At first glance, it seems like a 
single autoimmune disease but it presumably 
results from a complex interplay between 
environmental factors and microbiome, 
genome, metabolism, and immune systems 
with individual variations (2). The mainstay 
treatment for T1D is daily injections or 
continuous subcutaneous infusion of insulin 
to control blood sugar (3). Despite advances 
in the production, purification, formulation, 
and insulin delivery methods, it is difficult for 
patients to achieve optimal glucose control. 
Therefore, various adjunctive therapies for 
patients with T1D are available (4). Further, 
the other important aspect of T1D management 
is pancreatic β-cells preservation. In this line, 
numerous clinical trials have uncovered how 
immune modulation can impede the β-cell loss 
either by blocking the autoimmune response 
or by re-establishing immune tolerance (3, 5). 
Despite noticeable improvement in patients’ 
survival and health, especially in the past 25 
years, a treatment for T1D is elusive (6). 

Nowadays, scientific researches show 
noticeable shift to systems-based understanding 
of molecular mechanism underlying biological 
resources, which remarkably affected drug 
discovery studies and represented the necessity 
of movement from traditional pharmacology 
(7). Systems pharmacology applies systems 
biology principles and combines high 
throughput experimental studies with 
computational analysis to study drugs, drug 
targets, and drug effects (8). Network-based 
gene expression profiling constructed by 
integrating multiple factors including disease 
genes, gene expression intensities and proteins 
network provides efficient strategy to discover 
therapeutic signatures. 

Transcriptome analysis of the target organ, 
i.e., pancreatic β-cells, and peripheral blood 
mononuclear cells (PBMCs) are informative 
entities for the investigation of genes 
expression profiles in T1D (9, 10). Till date, 
gene expression profiles have been integrated 

with protein-protein interactions (PPI) data 
to ameliorate their predictive performance 
(11-13). Networks of interacting proteins in 
diseases’ pathways have been analyzed for 
identifying candidate drug targets (14-16). 
Since well-connected proteins in the PPI 
networks have more potential to play crucial 
role in a cellular function, their targeting 
would be more effective rather than ordinary 
proteins.

The main goal of a network analysis is the 
connecting of a network structure to a function. 
For instance, different classes of disease 
genes presented distinction features based on 
their connectivity patterns in the human PPI 
network analysis (17, 18). The topological 
analysis of PPI networks provides a whole 
view of the network and helps to identification 
of the components with a central role in the 
network connectivity (19-21). Investigating 
of the network centrality measures can be a 
source of essential nodes’ discovery in various 
species’ interactomes (22). In this line, Peng 
et al. study explored standard pathways and 
gene expression-based pathways’ information 
and showed how network centrality measures 
have been effective in reorganization of 
potential therapeutic targets. They also alter 
the network topology, which resulted in 
different therapeutic targets discovery and 
introduced tissue-specific data (23). It has 
been also reported that topologically closer 
genes in PPI networks, i.e., having a lower 
shortest path distance in a network, were more 
regulated by structurally similar drugs rather 
than dissimilar drugs (24). 

Here, we integrated gene expression profiles 
with interactome (protein-protein interactions 
at the whole genome level) data to construct 
PPI networks using abnormally expressed 
genes in paired pancreatic β-cells and PBMCs 
in T1D. Topologically central proteins in PPI 
networks were identified. Candidate drugs and 
targets were then prioritized from the analysis 
of central proteins and drugs interactions. 
Docking analysis disclosed the interactions 
between candidate drugs and targets at the 
atomic level.

Exprimental

Gene expression data processing
Gene expression profiles of PBMCs 
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(GSE9006) and pancreatic β-cells (GSE35296) 
were used to determine abnormally expressed 
genes in T1D (19). A total of 43 newly diagnosed 
T1D patients and 24 healthy subjects were 
present in GSE9006 dataset. Gene expression 
profile of pancreatic β-cells was provided 
from human isolated islet samples which 
cultured under normal conditions as well as in 
the presence of cytokines (IL-1B and IFN-γ). 
According to our earlier work, GSE9006 data 
(HG-U133A and HG-U133B) was normalized 
by RMA algorithm in the affy package within 
R software and differentially expressed genes 
were determined by ANOVA test (p < 0.05). 
For each gene, the minimal p-value (between 
HG-U133A and HG-U133B) was chosen. In 
the case of GSE35296, up and downregulated 
genes were extracted by Fisher’s exact test 
and p-values were corrected by the Benjamin–
Hochberg procedure (p < 0.05) (9, 10 and 19).

PPI network construction and centrality 
analysis

Experimentally proved PPI data provided 
by International Molecular Exchange (IMEx) 
consortium were obtained from IntAct 
MINT DIP databases (25-27). Differentially 
expressed genes in PBMCs and pancreatic 
β-cells were separately located on the human 
PPI network to construct Query-Query PPI 
(QQPPI) networks which involved the direct 
interactions among the query proteins as the 
nodes. The QQPPI networks were visualized 
with the yFiles organic layout algorithm 
in Cytoscape software (28). The following 
five more important centrality parameters 
were calculated using CentiBiN software to 
determine biologically significant nodes (29). 
Degree centrality is the number of links to a 
given node. In PPI networks, nodes with a 
higher degree are considered as hubs and they 
are usually located at the center of the network 
(30). Betweenness centrality measures the 
number of shortest paths passing through a 
node within a network. High betweenness 
nodes, named as bottlenecks, monitor the 
flow of information within a network (31). 
Closeness centrality calculates the average 
distance of all the shortest paths between a 
node and every other node within a network. 
High closeness should indicate the proximity 
of a node to all other nodes (31). Eigen vector 

centrality measures the relative significance 
of all nodes in the network. Thereby, a node 
that is connected to highly important nodes 
achieves more weight than a node that is 
connected to low important nodes. Since a 
node with a high eigenvector connects to 
numerous central nodes, it is considered the 
central and influential node (31). Centroid 
value is the most complex node centrality 
index and considers couples of nodes (i, j). 
The centroid value of a node i is the number of 
nodes with minimum shortest path which are 
closer to i than j. The highest centroid node 
has the highest number of neighbors separated 
by the shortest path to it (31). Centrality values 
of nodes were calculated and nodes were 
arranged in ascending order of the centrality 
values. Thirty nodes which had the highest 
values for each centrality parameter were 
identified. More central nodes had at least two 
high centrality parameters.

Drug enrichment analysis
Central nodes in both PBMCs and 

pancreatic β-cells QQPPI networks were 
screened as targets. To find potential drugs, 
central proteins were curated through a 
manual search in DrugBank database (version 
5.4.1). The parameters were set as: FDA 
approved, experimental and investigational. 
This information was subsequently used to 
evaluate the association of drug-targets with 
T1D treatment by literature survey. 

Molecular docking analysis
Molecular docking has been widely used 

to predict the interactions between a small 
molecule and the binding site of the target 
at the atomic level. Docking analysis was 
performed for potential targets and their 
candidate drugs which investigated for 
diabetes treatment in experimental models 
(32-34). The crystallographic structures of 
reference targets (ESR1, ERBB2, RAC1 and 
HSP90AB1) were extracted from RCSB PDB 
(http://www.pdb.org/). The selected PDB IDs 
have following quality parameters. The ESR1 
structure with PDB ID = 3ERT (resolution = 
1.90 Å, R-value and R-free equal to 0.229 and 
0.262, respectively) and the ERBB2 structure 
with PDB ID = 3PP0 (resolution = 2.25 Å, 
R-value and R-free equal to 0.185 and 0.260, 

http://www.pdb.org/
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respectively), the RAC1 structure with PDB 
ID = 3TH5 (resolution = 2.30 Å, R-value and 
R-free equal to 0.229 and 0.264, respectively), 
and the HSP90AB1 structure with PDB ID 
= 1UYM (resolution = 2.45 Å, R-value and 
R-free equal to 0.235 and 0.294, respectively), 
which warranted adequate quality for further 
docking analysis. 

The macromolecule structures were 
separated from the co-crystallized ligands 
and unnecessary water molecules were 
removed using Discovery Studio Visualizer 
4.5. The structures of Lapatinib, Azathioprine, 
Geldanamycin, and Eugenol (PubChem 
CID 208908, 2265, 5288382, and 3314 
respectively) were obtained from PubChem 
(https://pubch em.ncbi.nlm.nih.gov/). The 3D 
structures of the compounds were created by 
Openbabel 2.4.1 and different formats for both 
receptor and ligand molecules were converted 

using this software. Prior to any calculation, 
all 3D structures of ligands were initially 
energy minimized with MMFF94S force field 
using conjugate-gradient algorithm with 5000 
run repetition. AutoDock-4 software in PyRx 
Virtual Screening tool was used to carry out 
molecular docking calculations. The protein 
coordinates were kept rigid, while the ligands 
were flexible and moved on the grid map which 
was set around the co-crystallographic ligands. 
In order to prepare the receptor molecules, 
polar hydrogens and kollman charges were 
added in AutoDock tool. The ligand was 
prepared by adding Gasteiger charges to 
each ligand atom. AutoDock 1.5.6.40 was 
utilized for the molecular docking simulation. 
Lamarckian genetic algorithm (LGA) with 
150 independent runs per ligand was used to 
get best docking conformations. The number 
of individual population was set to 150. The 

 
 

 
Figure 1. A workflow shows a network-based approach to prioritize drug-targets in T1D. 

 

 

 

  

Figure 1. A workflow shows a network-based approach to prioritize drug-targets in T1D.
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max number of energy evaluations was set to 
2,500,000 and the max number of generation 
was set to 27000. The quality of the docking 
has been assessed by removing co-crystallized 
ligands from the active site of each protein 
and re-docking into the binding pocket. A root 
mean square deviation (RMSD) was obtained 
from re-docking of each protein indicating 
that the docking procedure used in the current 
study could be relied upon to be capable of 
reproducing a similar conformation at the 
active site of each protein. Discovery Studio 
4.5 Client was used for the visualization of 
docking results shows the study workflow. 
Figure 1 shows the study workflow.

Results

Identification of differential expressed 
genes

Gene expression analysis was performed 
on PBMCs and pancreatic β-cells samples. 
In the case of PBMCs, 2466 genes were 
determined as differentially expressed ones (p 
< 0.05), of which 1024 were upregulated and 
1442 were downregulated (Supplementary file 
1). For pancreatic β-cells, 3068 genes were 
significantly differential expressed (FDR < 
0.05), of these genes, 1416 were upregulated 
and 1652 were downregulated (9).

PPI network construction and topological 
centrality analysis  

To investigate the interactions among the 
differential expressed genes in T1D at the 
protein level, two QQPPI networks were 
established using the three IMEx databases. 
The QQPPI networks which included 949 
proteins and 1776 interactions in PBMCs 
and 1358 proteins and 3505 interactions 
in pancreatic β-cells were used for further 
analysis. Five centrality parameters were 
measured for all the nodes presented in the 
QQPPI networks. MYC, YBX1, SRPK1, 
ERBB2, PSMA1, ABL1, HSP90AA1 and 
XRCC6 were more central nodes in PBMC 
QQPPI network. HSP90AB1, ESR1, CDC5L, 
RELA, RAC1, NFKB1, NFKB2, IKBKE, 
ARRB2, TP53, SRC, CFTR, HSP90AA1, 
PIK3R1 and PPP1CA were more central 
nodes in pancreatic β-cells QQPPI network. 
The list of nodes’ centrality values in PBMCs 
and pancreatic β-cells QQPPI networks were 

provided in Supplementary file 2 and 3, 
respectively. More central nodes of PBMCs 
and β-cells QQPPI networks are illustrated 
in (Figures 2A and Figure 2B), respectively. 
Besides, centrality parameters of fourteen 
more central proteins which identified as drug 
targets are provided in (Table 1).

Prioritization of potential drugs and targets
Twenty-three and thirty proteins in the 

high-confidence PBMCs and pancreatic β-cells 
QQPPI networks were curated for identifying 
of related drugs, respectively, using DrugBank 
database. At first screening, twenty-one drugs 
which targeted fourteen proteins obtained by 
this approach. Potential drugs and their protein 
targets are presented in Table 2; they were 
then verified if their associations with diabetes 
treatment were reported by the retrieved 
literatures (Table 2). The results showed that 
one drug, glyburide, was approved for the 
treatment of  type 2 diabetes (T2D) and three 
drugs are being explored in several clinical 
trials for T1D (imatinib) and pre-diabetes or 
T2D (resveratrol and melatonin) treatment. 
In this line, the association of resveratrol and 
melatonin were studied in the experimental 
models of T1D. Azathioprine was earlier 
investigated by some clinical trials for T1D 
treatment. Both imatinib and azathioprine 
were immunosuppressive drugs. Lumacaftor/
Ivafactor is being studied for glycemic control 
in cystic fibrosis related  diabetes by clinical 
trials. Further, the association of six drugs with 
hyperglycemic or other diabetic condition 
has been reported in the experimental 
models of T1D or T2D, including, lapatinib, 
geldanamycin, eugenol, fostaminib, dasatinib 
and forskolin. Finally, four drug-target 
interactions (lapatinib-ERBB2, geldanamycin-
HSP90AB1, azathioprine-RAC1 and eugenol-
ESR1) were selected for further investigation 
by docking analysis.  

Molecular docking and binding energy 
analysis

Single molecular docking was carried out 
to explore the characteristics of the binding 
conformation and the interacting residues 
of four targets and candidate drugs related 
to diabetes. Autodock-4 was used in this 
study to repeatedly dock each ligand to the 
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binding pocket of the target. The docking 
analysis resulted in 150 conformations for all 
4 complexes, and the docked conformation 
corresponding to the lowest binding energy 
for each receptor-ligand complex was selected 
as the most probable binding conformation. 
The ligands were embedded within the active 
site of proper target protein individually. The 
formation of hydrogen bonds was observed 
in order to analyze the establishment of the 
active site of the target protein. The analysis of 
binding site residues lying within 4 Å distance 
of the ligand for each complex indicated 
that the drugs were surrounded by both 
hydrophobic and hydrophilic residues (Table 
3). The binding pocket of all targets was 
generally surrounded by both hydrophobic 
and hydrophilic residues.

 Before docking the drug to a receptor 
structure, the docking protocol was validated 
by docking of the co-crystallized ligand 
into the binding pocket to obtain the docked 
pose. The RMSD in the range of 2–3 Å 
indicated appropriate docking, and as shown 
in the Supplementary file 4, overall docking 
conformations produced by Autodock-4 were 
within 0.5-1.5 Å of RMSD; this was showed 
the enough quality of  the parameters for 
docking simulation in reproducing of the 
X-ray crystal structures. 

Hydrogen bonds play a role in stabilizing the 
protein-ligand complex. The best conformation 
of each inhibitor at properly biological target 
formed great number of interactions with the 
main residues in the active site of the target. 

Table 1. Centrality parameters of targets extracted form PBMCs and pancreatic β-cells QQPPI networks. 

 

  
Name Degree 

Betweenness 

Centrality 

Closeness 

Centrality 
Centroid value Eigen 

vector 

PBMCs 

ABL1 27 0.0627 0.2917 -378 0.0605 

ERBB2 32 0.0762 0.2942 -333 0.0758 

MYC 117 0.3630 0.3584 319 0.6041 

Pancreatic β-cells 

FN1 86 0.0985 0.3439 -203 0.1258 

CFTR 35 0.0289 0.3007 -793 0.0499 

IKBKE 69 0.0498 0.3276 -439 0.1760 

NFKB1 35 0.0197 0.3329 -376 0.1219 

NFKB2 55 0.0291 0.3495 -192 0.2166 

PIK3R1 55 0.0292 0.3275 -356 0.0873 

RAC1 36 0.0337 0.3162 -435 0.0362 

RELA 74 0.0620 0.3525 -160 0.2143 

SRC 46 0.0309 0.3195 -456 0.0772 

HSP90AB1 112 0.1418 0.3686 64 0.2870 

ESR1 98 0.1150 0.3600 -84 0.2335 

Table 1. Centrality parameters of targets extracted form PBMCs and pancreatic β-cells QQPPI networks.
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As shown in (Table 4), lapatinib was oriented 
inside the active site of ERBB2 in a way that 
formed hydrogen bond with residues LEU-785 
(3.160Å) and MET-801 (3.149Å) of the loop 
region. Furthermore, the analysis of docked 
complex of lapatinib- ERBB2 showed binding 
energy of -10.59 kcal/mol (RMSD 1.16 Å), 
(Figure.3A). Lapatinib-ERBB2 complex 
showed highest binding energy among four 
complexes in this study. The analysis of 
docking complex of azathioprine-RAC1 
revealed the binding energy of -9.32 kcal/mol 
(RMSD 2.0 Å), respectively and exhibited 
two binding interactions with GLY-15 (2.991 

Å) and THR-17 (3.172 Å) residue of the loop 
region, (Table 4 and Figure 3B). The docked 
complex of geldanamycin-HSP90AB1showed 
binding affinities of -8.83 kcal/mol (RMSD 
1.93 Å)  which is bound with alpha helix 
residues such as GLY-137 (3.105 Å) and PHE-
138 (3.06537 Å), (Table 4 and Figure 3C). 
In case of eugenol-ESR1, the complex has 
binding energy of -5.23 kcal/mol (RMSD 1.21 
Å) and formed tow hydrogen bond with GLU-
353 (1.791 Å) and ARG-394 (2.885 Å), (Table 
4 and Figure.3D). Eugenol-ESR1 complex 
showed the lowest binding energy in compare 
to other complexes. 

 

 

 

 

Figure 2. (A) PBMCs QQPPI network and (B) pancreatic β-cells QQPPI network. Protein-protein interaction (PPI) networks of differentially 

expressed genes which involved the first neighbors of central nodes. Nodes with high centrality measures are illustrated by bigger size and different 

colors than others. The interaction of drugs with targets is shown in each QQPPI network. Up-regulated and down-regulated genes are colored by 

light green and dark green, respectively in (A), and light blue and dark blue in (B). 
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differentially expressed genes which involved the first neighbors of central nodes. Nodes with high centrality measures are illustrated 
by bigger size and different colors than others. The interaction of drugs with targets is shown in each QQPPI network. Up-regulated 
and down-regulated genes are colored by light green and dark green, respectively in (A), and light blue and dark blue in (B).
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Gene name DrugBank ID Drug name Actions Drug group 

PBMCs 

ABL1 DB00619 Imatinib inhibitor Approved 

 DB01254 Dasatinib multitarget approved, investigational 

 DB04868 Nilotinib inhibitor approved, investigational 

 DB12010 Fostamatinib inhibitor approved, investigational 

ERBB2 DB01259 Lapatinib inhibitor approved, investigational 

 DB12010 Fostamatinib inhibitor approved, investigational 

MYC DB08813 Nadroparin inhibitor approved, investigational 

Pancreatic β-cells 

FN1 DB08888 Ocriplasmin cleavage Approved 

CFTR DB01016 Glyburide antagonist Approved 

 DB00887 Bumetanide antagonist Approved 

 DB08820 Ivacaftor potentiator Approved 

 DB09280 Lumacaftor modulator Approved 

 DB02587 Colforsin- Forskolin inhibitor experimental, investigational 

IKBKE DB12010 Fostamatinib inhibitor approved, investigational 

NFKB1 DB08814 Triflusal antagonist approved, investigational 

NFKB2 DB01296 Glucosamine antagonist approved, investigational 

PIK3R1 DB01064 Isoprenaline agonist approved, investigational 

RAC1 DB00993 Azathioprine - Approved 

RELA DB08908 Dimethyl fumarate - approved, investigational 

SRC DB01254 Dasatinib multitarget approved, investigational 

 DB12010 Fostamatinib inhibitor approved, investigational 

HSP90AB1 DB02424 Geldanamycin - experimental, investigational 

ESR1 DB09086 Eugenol - Approved 

 DB02709 Resveratrol - approved, experimental, 
investigational 

 DB01065 Melatonin antagonist Approved 

Table 2. The list of potential drugs and their targets extracted from PBMCs and pancreatic β-cells QQPPI networks.
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Figure 3. (A) Lapatinib-ERBB2 (B) Azathioprine-RAC1 (C) Geldanamycin-HSP90AB1 (D) Eugenol-ESR1. Molecular docking complexes. Drugs 

are shown in green stick model. H-bonds formed between residues and drugs are shown as yellow lines. 

 

 

Figure 3. (A) Lapatinib-ERBB2 (B) Azathioprine-RAC1 (C) Geldanamycin-HSP90AB1 (D) Eugenol-ESR1. Molecular docking 
complexes. Drugs are shown in green stick model. H-bonds formed between residues and drugs are shown as yellow lines.

Table 3. The list of residues presented around the 4 Å distances of each ligand in a specific receptor after docking. 

 

 

  

Drug Receptor Residues 

Lapatinib ERBB2 
LEU-726,VAL-734,TYR-735,ALA751,ILE752,LYS-753,ILE-767,GLU-770,ALA-771,MET-

774,SER-783,ARG-784,LEU-796,THR-798-PRO-802,CYC-805,ASP-863,PHE-864 

Azathioprine RAC1 
GLY-10,ASP-11,GLY-12,ALA-13,VAL-14,GLY-15,LYS-16,THR-17,CYS-18,LEU-19,PHE-

28,GLY-30,GLU-31,TYR-32,ILE-33,PRO-34,THR-35 

Geldanamycin HSP90AB1 
GLE-47,LEU-48,ASN-51SER-52,ASP-54,ALA-55,LEU-56,LYS-58,ILE-96,GLY-97,MET-

98,THR-98,ASP-102,ASN-106,PHE-134,GLY-135,VAL-136,GLY-137,HIS-154 

Eugenol ESR1 
MET-342,LEY-345,LEU346,THR-347,ASN-348,ALA-350,ILE-386,LEU-387,GLY-

390,VAL-392,ARG-394,PHE-404,MET-421,ILE-424,MET-517,LEU-525 

Table 3. The list of residues presented around the 4 Å distances of each ligand in a specific receptor after docking.
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Table 4. Binding free energy of ligand-receptor complexes and their corresponding interaction energies.

 

Table 4. Binding free energy of ligand-receptor complexes and their corresponding interaction energies. 

 

 

 

Drug Receptor 
AutoDock-4 

(Kcal/mole) 
RMSD in Å 

 Hydrogen bonding interactions 

 Interacting Residues Distance (Å) Angle (Degree) 

Lapatinib ERBB2 -10.59 1.16 
 LEU-785 3.160 87.979 

 MET-801 3.149 113.787 

Azathioprine RAC1 -9.32 2.0 
 GLY-15 2.991 105.258 

 THR-17 3.172 95.738 

Geldanamycin HSP90AB1 -8.83 1.93 
 GLY-137 3.105 - 

 PHE-138 3.065 - 

Eugenol ESR1 -5.23 1.21 
 GLU-353 1.791 148.321 

 ARG-394 2.885 - 

Discussion

Systems biology approach gives us 
a comprehensive view to improve our 
understanding of disease mechanisms and 
introduce new way for a discovery of novel 
drugs and repurposing of existing drugs 
(35). In this study, differentially expressed 
genes of PBMCs and pancreatic β-cells in 
T1D integrated with PPI data. Five centrality 
parameters, degree, betweenness, closeness, 
centroid value and eigenvector were measured 
for nodes in PBMCs and pancreatic β-cells 
QQPPI networks to find central proteins. A 
protein is considered a key molecule only if it 
is selected in at least two centrality measures. 
By analysis of central proteins and drugs 
interactions, several candidate drugs and 
targets were prioritized for T1D. Furthermore, 
some predicted drug-targets with a relevant 
to diabetes were used as an input for docking 
analysis which can calculate the probability of 
a physical interaction with the given drug and 
candidate targets. 

In the current study, fourteen targets and 
twenty-one candidate drugs were identified. 
By literature review, thirteen drugs which 
targeted eight key proteins showed association 
with diabetes. Some of them such glyburide 
has been approved for T2D and some ones like 
imatinib, resveratrol and melatonin are being 

evaluated in the clinical trials in patients with 
diabetes. Glyburide targets CFTR gene and 
it is second-generation sulfonylureas which 
approved for diabetes management. Glyburide 
is an antagonist of CFTR. The results of a study 
revealed a role of CFTR in glucose-induced 
electrical activities and insulin secretion in 
β-cells (36).  Grishman et al. study proposed 
a glyburide as one of the potential therapies to 
decrease the progression of T1D due its ability 
to decrease IL1β levels (37). Imatinib targets 
ABL gene. Endoplasmic reticulum stress in 
β-cell was increased in the NOD mouse as a 
result of the c-Abl tyrosine kinase activity. 
Consequently, the unfolded protein response 
was promoted that ultimately leading to β-cell 
death; this process might be affected via 
inhibition of c-Abl by imatinib (38). Moreover, 
insulin response was ameliorated in the 
experimental model of T1D by imatinib. Now, 
phase II clinical trial of imatinib treatment 
is ongoing in early-onset patients with T1D 
(39). Resveratrol targets ESR1 gene and is 
being evaluated in the clinical trials in patients 
with insulin resistance and T2D. Resveratrol 
binds to estrogen receptors which might be 
linked to the anti-diabetic effect in diabetes 
(40). It is well established that resveratrol 
diminish blood glucose levels in animals with 
experimental T1D (41). In this line, the results 



131

Potential Drug-Targets in Type 1 Diabetes

of a study demonstrated that resveratrol or 
17β-estradiol apparently protected against 
STZ-induced diabetes in OVX mice; they 
probably improve antioxidant activities and 
islet function, promote muscle glucose uptake 
and prohibit the expression of p-ERK (42). 
Melatonin also targets ESR1 gene; it is being 
assessed in the clinical trials in patients with 
T2D. Melatonin interferes with estrogen-
signaling pathways (43). The increased level 
of melatonin synthesis was reported in an 
animal model of STZ-induced T1D (44). The 
improvement of immune response and the 
anti-inflammatory effect were mentioned as 
the consequence of melatonin, which might 
inhibit the disease onset or ameliorate the 
survival of islet grafts transplanted for T1D 
therapy (45). 

 Moreover, four targets and their candidate 
drugs that their associations have been proved 
in the experimental models of diabetes were 
also prioritized. First, geldanamycin targets 
HSP90AB1 gene. Geldanamycin is specific 
HSP90 inhibitor. HSP90 inhibitors such as 
geldanamycin and its derivatives target HSP90 
N terminus and block its ATPase activity; they 
have been identified as potential treatment 
strategy in cancer and promising drugs for 
immune and inflammatory diseases, including 
diabetes (46). The result of a study presented 
that heat shock proteins as well as treatment 
with geldanamycin noticeably improve 
diabetic macrophages activation, resulting 
in compromising mounting of inflammatory 
and immune responses (47). Besides, 
hyperglycemia was reversed by chronic 
dosing of HSP90 inhibitors in the diabetic db/
db mouse model, and insulin sensitivity was 
made better in the diet-induced obese mouse 
model of insulin resistance (32). The second, 
eugnol targets ESR1. Eugenol is an estrogen 
receptor antagonist. Several medicinal 
applications were reported for the eugenol 
treatment such as antibacterial, antiviral, 
antioxidant, anti-inflamatory agent (48). The 
result of Al-Trad et al. study showed significant 
anti-oxidative and anti-inflammatory effect of 
eugenol in HFD/STZ-induced diabetic rats. 
Moreover, insulin sensitivity was improved 
by eugenol and skeletal muscle glucose uptake 
was stimulated via activation of the GLUT4-
AMPK signaling pathway (33). The third, 

lapatinib targets ErbB2 gene. Lapatinib is a 
member of tyrosin kinase inhibitors (TKIs) 
which can target tyrosine kinase enzymes 
and interfere with downstream intracellular 
messaging pathways (49). Numerous studies 
represented the glucose-lowering potential of 
TKIs, which suggest careful attention to apply 
these drugs to patients with diabetes (50). 
Lapatinib is a dual inhibitor of EGFR and 
ErbB2 receptor tyrosine kinases, by which 
high glucose-induced apoptosis and vascular 
dysfunction were refined via resistance to 
signaling changes influenced by diabetes in the 
experimental T1D models (34, 51). The last, 
azathioprine targets Rac1 gene. Azathioprine 
suppresses both T and B-lymphocyte function 
(52). Tiede et al. reported that azathioprine 
induces immunosuppression by prohibition of 
Rac1 activation in T cells, which may clarify 
the beneficial immunosuppressive effects 
of azathioprine. Therefore, it might help to 
design the novel specific therapies for organ 
transplantation and autoimmune diseases 
(53).  Furthermore, Veluthakal et al. identified 
a known inhibitor of Rac1, NSC23766, which 
remarkably suppresses reactive oxygen 
species (ROS) generation in pancreatic islet 
β-cells in in-vitro, and significantly inhibits 
the development of spontaneous diabetes 
in the NOD mice (54). Different trials were 
earlier conducted using azathioprine as an 
immunosuppressive drug to treat children 
newly diagnosed with T1D (52, 55). Although 
there were partly successful in improving 
metabolic outcomes in diabetic patients, 
the reported side effects made it unpopular. 
However, recently Geliebter et al. showed the 
first recent case reports exhibiting the possible 
positive effect of azathioprine in tertiary 
prevention of T1D (56). 

Conclusion

This study showed that the investigation 
of interactions between targets with drugs 
at the system-level as well as in the context 
of biological and disease networks could 
resulted in drugs and targets prioritization. 
By integrative systems biology approach, we 
identified thirteen drugs which targeted eight 
central proteins in PBMCs and pancreatic 
β-cells QQPPI networks and represented 
significant associations with diabetes. One 



132

Soofi A et al. / IJPR (2020), 19 (4): 121-134

drug (imatinib) is being explored in clinical 
trial for T1D, which shown the robustness 
of our strategy. Moreover, we prioritized 
drug-targets such as melatonin, resveratrol, 
eugenol, lapatinib, geldanamycin and 
azathioprine which interacted with ESR1, 
ERBB2, HSP90AB1 and RAC1, respectively 
and shown associations in diabetes treatment 
in experimental models of T1D. Lastly, the 
interaction of some drug-targets was predicted 
by molecular docking analysis. After further 
validation, these prioritized targets and drugs 
could be a potential candidate for the targeted 
therapy and facilitate the drug discovery for 
patients with T1D. 
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