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INTRODUCTION
Spinal cord injury (SCI) is a catastrophic condition that re-
sults in damage to or loss of autonomic, sensory, and mo-
tor functions that can lead to multiple types of secondary 

complications. Pain is a very common secondary condi-
tion among SCI patients, and its impact on patient quality 
of life and clinical outcomes is profound [1]. Although sev-
eral types of pain occur following SCI, neuropathic pain 
(NP) which occurs in almost one half of people with SCI 
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is most commonly rated as severe [2]. Despite the fact that 
pregabalin and gabapentin have been demonstrated an 
effective treatment in reducing SCI-related NP [3], some 
patients still have refractory NP to currently available 
standard treatments and face the challenge of managing 
lifelong severe chronic pain [4,5]. 

The high level of treatment failure in this pain setting 
has precipitated increased interest in alternative neuro-
modulatory stimulation approaches. Different types of 
invasive and non-invasive brain stimulation have been 
proposed and investigated to treat SCI-related pain. Deep 
brain stimulation can be performed via implantation of 
intracranial electrodes [6], however, its uncertain efficacy 
and the high risk associated with this invasive procedure 
has made this technique uncommon and increased inter-
est in less invasive techniques for brain stimulation [7].

Transcranial direct current stimulation (tDCS) is a non-
invasive clinical tool developed to modulate brain activ-
ity via the use of large electrodes that are attached to the 
scalp, over the area of the brain to be targeted, to deliver a 
mild continuous current [8]. Clinical trials involving tDCS 
have developed over the years to include the management 
of pain. Early studies in humans investigated the use of 
tDCS to treat or modify psychiatric disorders, most notably 
depression [9]. 

tDCS was later introduced as a non-invasive technique 
for modifying cortical activity in humans to alter behav-
ioral, perceptual, and cognitive functions [10], as well as 
memory and learning. tDCS has been proposed for use in 
many conditions including Parkinson’s disease, neuropsy-
chiatric disorders, stroke, migraine headache, and drug 
addiction [11-14], as well as chronic and acute pain [8]. A 
small number of clinical studies have investigated the use 
of tDCS to treat patients with chronic pain associated with 
SCI. A landmark positive sham-controlled study using 
tDCS in SCI-related NP [15] generated significant interest 
given the continued challenge of managing this type of 
pain despite all available treatment options and advance-
ment in SCI medicine. 

The aim of this review was to present what is currently 
known about the evidence specific to the efficacy of tDCS, 
the potential mechanisms of action of tDCS, and the fac-
tors that influence its efficacy for treating SCI-related NP.

MAIN BODY
1. Literature search strategy

Titles and abstracts were identified in the MEDLINE, 
PubMed, and EMBASE databases from inception to De-
cember 2019. The search terms combined the follow-

ing keywords: transcranial direct current stimulation, 
tDCS, transcranial DC stimulation, non-invasive brain 
stimulation, motor cortex stimulation, cerebral cortical 
stimulation, transcranial electrical stimulation, neuro-
stimulation, neuromodulation, spinal cord injury, and 
neuropathic pain. Articles relating to the mechanisms, 
clinical efficacy, and safety of tDCS on SCI-related NP were 
eligible for inclusion. The references of retrieved articles 
were also hand searched to find additional articles that 
may have been missed. 

Experimental studies regarding animals or healthy 
subjects were also included if they were relevant to the 
mechanisms of action and influential factors determin-
ing the effects of tDCS relevant to SCI pain. Non-English 
articles and studies on patients with primary symptoms 
other than pain were excluded. Original clinical trials 
were screened for evidence specific to the efficacy of tDCS 
for treating SCI-related NP and six placebo-controlled tri-
als including five randomized controlled trials and one 
prospective controlled trial were found (Table 1).

2. Evidence specific to the efficacy of tDCS for 
treating SCI-related NP

According to the basic principles of pathophysiology, 
any treatment strategy that can reverse physiological, 
biochemical, and anatomical changes at the spinal and 
supraspinal levels may be of benefit for improvement of a 
pain condition. The observed effects of tDCS on cortical 
excitability led to trials to investigate the efficacy of tDCS 
via its potential central modulation effects for reducing NP 
following SCI.

Most studies assessing the efficacy of tDCS for NP after 
SCI apply anodal stimulation to the primary motor cor-
tex (M1) of the hemisphere contralateral to the pain, with 
cathode placement over the supraorbital region ipsilateral 
to the pain. Stimulation at 2 mA intensity using an elec-
trode of 35 cm2 in size was delivered for 20 minutes per day 
and repeated for 5 to 10 sessions in the majority of studies 
[15-17]. The efficacy of a single session of tDCS was also in-
vestigated in a randomized, double-blind, crossover study 
[18].

The original study by Fregni et al. [15] found that pa-
tients who received active tDCS (2 mA for 20 min for five 
consecutive days) experienced a significant (approximately 
≥ 50%) reduction in pain which was not observed after 
sham stimulation. A significant cumulative analgesic ef-
fect was observed with the peak pain reduction reached 
after the last stimulation session. Patients also had less 
pain compared to baseline in the active tDCS group for 
two weeks after the last session of stimulation. Moreover, 
they found a strong negative relationship between pain 
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duration and pain relief, suggesting patients with shorter 
disease duration had greater pain reduction.

Yoon et al. [19] found a statistically significant reduc-
tion in pain scores after active tDCS treatment involving 
20 sessions within a 2-week period for patients with NP 
after SCI. However, meaningful clinical improvement was 
observed in only 2 (20%) patients, with a decrease in pain 
intensity from baseline of greater than 30%. The results of 
Yoon et al. [19] were less efficacious than Fregni et al. [15] 
who observed a decrease of equal to or greater than 50% in 
the visual analog scale (VAS) for overall pain in more than 
half (63%) of patients with NP following SCI. To explain 
this difference Yoon et al. [19] suggested that evaluation of 
only overall pain (and not specific types of pain, such as 
paroxysmal or continuous pain) in their study could have 
influenced the observed higher rate of pain improvement. 
The pain mitigation effect of tDCS has been reported to 
vary among pain subtypes, including spontaneous pain, 
paroxysmal pain, and continuous pain [16].

A randomized double-blind sham-controlled trial per-
formed by Soler et al. [16] examined the analgesic effect of 
tDCS of the motor cortex combined with a walking visual 
illusion task. That study included thirty-nine patients ran-
domized into four different groups involving: tDCS with 
walking visual illusion, tDCS with control illusion and 
sham stimulation, tDCS with visual illusion or tDCS with 
control illusion. They observed that combined tDCS and 
visual illusion significantly reduced the intensity of NP 
when compared with tDCS or visual illusion alone. The 
combined group demonstrated sustained pain improve-
ment at 3 months, whereas no improvement was observed 
in the other groups. Visual illusion can influence cortico-
spinal excitability, so some synergy has been proposed to 
occur when visual illusion and tDCS are combined. These 
findings raise the possibility that when tDCS is combined 
with other therapeutic modalities, an enhancement of in-
direct stimulation effect may occur [16]. 

An addition randomized double-blind controlled cross-
over study by Ngernyam et al. [18] using a single session of 
2 mA active or sham tDCS treatment for 20 minutes found 
a significant difference in pain intensity between sham 
and active tDCS immediately and at 24 hours after treat-
ment. However, there was no difference in pain intensity 
between groups at 48 hours [18]. 

A recent randomized sham-controlled clinical trial con-
ducted by Thibaut et al. [20] reported delayed NP reduc-
tion following M1 tDCS in patients with SCI. In this study 
33 patients were enrolled in a two-phase tDCS treatment, 
with Phase I consisting of 5 days tDCS with a review at 3 
months, followed by Phase II involving 10 days of tDCS 
with review at 2 months. The results showed a treatment 
effect at 1-week follow-up for Phase I and at 4-week follow-

up for Phase II. However, the effects were not observed 
immediately after the end of the tDCS treatment sessions. 
The sham group had a higher area under curve for average 
VAS score (P = 0.026) and VAS least (P = 0.011), demonstrat-
ing that the overall level of pain was significantly lower for 
the tDCS group compared to the sham group in Phase II 
[20]. 

However, not all studies have demonstrated beneficial 
effects from tDCS for SCI-related NP. Wrigley et al. [17] in-
vestigated the efficacy of tDCS in patients with SCI-related 
NP in a randomised blinded sham-controlled crossover 
study. They evaluated the immediate and longer-term ef-
fects of 5 daily sessions of tDCS on pain, unpleasantness, 
and mood up to 6 months. They found tDCS positioned 
over M1 was not associated with pain relief at any time 
point. When compared to the subjects in Fregni et al. [15] 
the average injury duration was much longer. Wrigley et al. 
[17] raised the possibility that once consolidation of central 
changes caused by an SCI occurs, tDCS may be no longer 
able to modulate central pain-related circuits, however, 
further research was needed to establish this [17]. Of note, 
in a follow-up study (Soler et al. [16], discussed above) by 
the same group involved with the Fregni et al. [15] paper 
tDCS alone did not result in a significant reduction in on-
going pain except when combined with visual imagery.

Overall, the scientific evidence relating to the efficacy of 
tDCS for treating NP after SCI is limited and conflicting, 
limiting our ability to reach definitive conclusions. Many 
factors including patient factors (e.g., SCI duration, vari-
ability of SCI types, central NP subtypes), technical fac-
tors in tDCS delivery (e.g., current density and direction, 
intensity and duration of stimulation, number of sessions) 
and study design (e.g., blinding, randomization, and sub-
ject numbers) influence the assessment of tDCS efficacy. 
A European expert panel recently issued a Level C (pos-
sible efficacy) recommendation for anodal tDCS of the left 
M1 (or contralateral to pain side with a right orbitofrontal 
cathode) in patients with chronic NP of the lower limbs 
secondary to SCI [21]. 

3. Mechanisms of action of tDCS

The potential analgesic mechanisms involved with tDCS 
have not been conclusively established; however, several 
mechanisms have been suggested. The most widely pro-
posed mechanism is that tDCS modulates spontaneous 
cortical neuronal activity by polarizing the resting mem-
brane which may last up to 90 minutes [22]. tDCS does not 
trigger action potentials but affects the spike timing of 
individual neurons receiving suprathreshold inputs [23]. 
The effects of tDCS on cortical excitability are polarity-de-
pendent. The anode depolarizes the neuronal membrane 
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and increases cortical excitability whereas the cathode 
hyperpolarizes the neuronal membrane and decreases 
cortical excitability [24]. Anodal tDCS of the motor cor-
tex, resulting in activation of thalamic and subthalamic 
nuclei, influences several pain-related structures such as 
the anterior cingulate, the periaqueductal gray, and even-
tually modulates both pain perception and the affective-
emotional component of the pain experience [25]. Several-
minute stimulation of the transcranial electric current 
results in a polarity-dependent induction of glutamatergic 
calcium-dependent neuroplasticity, which are thought 
to be the result of modification of N-methyl-D-aspartate 
(NMDA) receptor activation [26,27]. 

NMDA receptors have been widely investigated regard-
ing their function in excitatory synaptic transmission dur-
ing chronic pain development and induction of synaptic 
plasticity leading to a modification of synaptic strength 
[28]. Suppression of both cathodal and anodal after-effects 
by the NMDA-receptor antagonist dextromethorphan, 
suggested that the induction of synaptic plasticity rather 
than glutamatergic excitatory signal transmission may 
represent the relevant contribution of NMDA receptors to 
the after-effects of tDCS [24]. Moreover, the modulating 
effect of the partial NMDA receptor agonist, d-cycloserine, 
increases anodal tDCS-induced excitability and enhances 
the after-effects of stimulation [29]. Therefore, anodal 
tDCS probably induces neuroplasticity by increasing corti-
cal NMDA-receptor activity, which is a dependent mecha-
nism for the after-effects of tDCS. 

Moreover, administration of lorazepam, which is a gam-
ma-aminobutyric acid A (GABAA) receptor agonist, can 
cause early-inhibition and late-enhancement of tDCS-in-
duced plasticity [30]. Also, the measurement of changes in 
neurotransmitter concentrations by magnetic resonance 
spectroscopy suggested that anodal tDCS significantly 
decreased cortical GABAergic activity [31]. Other neuro-
chemical changes in the cortex have also been proposed 
during anodal tDCS with increased cortical myoinositol 
beneath the stimulating electrode. Myoinositol, as an es-
sential component of the phosphoinositide pathway, can 
influence the basis of neuronal signal transmission and 
brain plasticity. However, no change in another neuronal 
marker, N-acetyl-aspartate, was observed in this study [32].

Other mechanisms potentially involved in the effect 
of tDCS have been suggested. For example, tDCS altered 
spontaneous neuronal oscillations by increasing slow 
electroencephalogram (EEG) activities [33]. Several stud-
ies have employed positron emission tomography (PET) 
or functional magnetic resonance imaging (fMRI) to as-
sess tDCS-influenced changes in brain activity. A study 
in healthy subjects using PET found that tDCS resulted in 
sustained and disseminated changes in regional neuronal 

activity and regional cerebral blood flow [34]. DosSantos 
et al. [35] used carfentanil, a μ-opioid receptor selective 
radiotracer, in a PET study to visualize the availability of 
μ-opioid receptors during tDCS in a subject with chronic 
pain of the temporomandibular joint. They found that a 
single active tDCS session decreased μ-opioid receptor 
non-displaceable binding potential levels in subcortical 
pain matrix structures compared to a sham, including the 
anterior cingulate cortex, nucleus accumbens, insula, and 
most notably in the posterior thalamus, all of which sug-
gests that the reduced pain experienced during and after 
tDCS may be due to enhanced endogenous opioid release 
[35]. 

Another study using PET with 18F-fluorodeoxyglucose 
to evaluate the effect of tDCS on pain found an increased 
metabolism in the insula, subgenual anterior cingulate 
cortex, and medulla [19]. It also reported a reduced metab-
olism in the left dorsolateral prefrontal cortex during tDCS 
when compared with a sham. Changes in these areas were 
felt relevant to the pain mitigation effects of tDCS.

Changes in a number of neurotransmitters in the cen-
tral nervous system have been shown to alter the effect of 
tDCS. Serotoninergic activation by citalopram, a serotonin 
reuptake inhibitor, has been shown to enhance and pro-
long the neuroplastic excitability accomplished by anodal 
tDCS, known as anodal tDCS-induced facilitatory plastic-
ity, and to convert cathodal tDCS-induced inhibitory plas-
ticity into facilitation [36]. In contrast, administration of L-
dopa transforms anodal tDCS-induced cortical excitability 
into inhibition, and prolongs the diminution of cathodal 
tDCS-induced excitability [37]. A recent experimental NP 
study conducted in an animal model was the first to report 
the involvement of the cannabinoid receptors 1 and 2 (CB1 
and CB2) in tDCS-induced pain reduction [38].

Taken together, the aforementioned findings suggest 
that tDCS influences several physiological processes in the 
central nervous system and the peripheral nervous system 
(Fig. 1) that may be responsible for its effects. However, a 
more definitive understanding of the mechanism of action 
of tDCS is needed to unlock the true potential of tDCS for 
treating pain [39].

4. Factors determining the efficacy of tDCS

Several factors, including current density, stimulation du-
ration, and current direction can influence the efficacy of 
tDCS [11]. 

Current density, which is determined by current inten-
sity and electrode size, is the factor that most greatly af-
fects the degree of cortical excitability [40]. The greater the 
current density that is delivered, the greater the effect of 
tDCS. However, increases in current density can increase 
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cutaneous pain and may affect more deeply located corti-
cal neurons. 

Stimulation duration was reported to be a factor that in-
fluenced the duration of after-effects following tDCS [22]. 
Moreover, it has been suggested that daily tDCS sessions 
are needed to achieve continuation of after-effects for days 
or weeks. 

The orientation of the electric field is determined by the 
size, position, and polarity of the electrode. It is necessary 
to correctly position the electrodes to facilitate current 
flow from anode to cathode. Anodal electrode stimula-
tion generally enhances motor cortex excitability, whereas 
cathodal electrode stimulation yields the opposite effect. 
Uncontrolled interference with ongoing cortical activity 
during tDCS should be avoided. tDCS-induced excitability 
is highly dependent on the state of the stimulated motor 
cortex of the patient during stimulation. Massive motor 
exercise can nullify the cortical excitability effects of tDCS 
[41]. 

The conductivity of the electrical current can be en-
hanced by swabbing the skin and scalp with alcohol to 
remove oil and debris. This will result in reduced imped-
ance and improved homogeneity of the electric field under 
the electrodes. The electrode sponge should be moistened 
with water, sodium chloride solution, or electrode gel to 
reduce the resistance and enhance current flow.

Other factors, including the presence of depression-
related symptoms, duration of pain, and concurrent drug 
therapy, may influence the ability of the tDCS effect. A 
recent systematic review and meta-analysis found that 
studies that excluded depressed patients observed signifi-

cantly better tDCS-related pain relief; however, studies 
that enrolled patients with depressive symptoms did not 
observe a similar significant effect. Moreover, studies that 
included subjects with a duration of NP of less than 5 years 
demonstrated a higher likelihood of reporting a decrease 
in pain intensity compared to studies that enrolled pa-
tients with a duration of pain lasting longer than 5 years 
[42]. It has also been reported that several classes of medi-
cations, including calcium and sodium channel blockers, 
and agents that impact various neurotransmitter systems 
(e.g., dopamine, GABA, and serotonin) may inf luence 
tDCS after-effects [43].

Even with strict adherence to the treatment protocol, 
outcomes can vary significantly among patients. Factors 
that have been proposed to explain these different out-
comes include patient age [44] and the time of day that the 
treatment was administered [45]. Genetic factors are also 
likely to significantly influence treatment. Brain-derived 
neurotrophic factor gene (BDNF) polymorphism has been 
proposed to play a significant role in a patient’s suscep-
tibility to plasticity induced by tDCS [46]. However, the 
inter-individual differences still need to be investigated 
and understood, similar to most treatment modalities in 
pain management.

5. Adverse effects of tDCS

One of the appealing characteristics of tDCS is its non-
invasive nature. Moreover, almost all of the side effects of 
tDCS are transient and well-tolerated. The possible side 
effects of tDCS include nausea, headache, discomfort, 
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Fig. 1. Summary of neurophysiological 
mechanisms of transcranial direct current 
stimulation. CB1: cannabinoid receptor 
1, CB2: cannabinoid receptor 2, GABA: 
gamma-aminobutyric acid, NMDAR: N-
methyl-D-aspartate receptor.
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dizziness, itching, pain, tingling, blurred vision, burning 
sensation, fatigue, and skin irritation under the electrodes 
[47]. A recent review found that the most common adverse 
effects of tDCS for chronic pain during or after the tDCS 
protocol, included primarily tingling at the site of stimula-
tion (active tDCS – 44%, sham tDCS – 47%) and fatigue or 
sleepiness (after active tDCS – 31%, after sham tDCS – 21%) 
[48]. One pain therapy study observed electrode-induced 
skin burn in 3 patients; however, all burns healed within 
a few days, but one patient was left with a small scar [49]. 
Accordingly, patients should be interviewed and evalu-
ated for the presence of skin diseases and conditions of the 
skin under the electrodes before and after tDCS. Mild red-
ness is commonly observed under the electrodes following 
treatment; however, this mild discoloration rapidly fades. 

Patients with pacemakers or other electrical/metallic 
implants located near the electrodes are normally contra-
indicated for tDCS. Though the incidence of seizure has 
not been shown to increase in normal healthy subjects, 
there is no data in patients with epilepsy. As a result, pa-
tients with a history of seizure should not be treated with 
tDCS. Although the majority of the adverse effects that 
have been reported are relatively minor, most of those 
studies used tDCS with low current intensity (≤ 2 mA) [11]. 
Therefore, future studies that employ tDCS with greater 
levels of electrical current intensity should carefully moni-
tor their patients for additional adverse effects.

CONCLUSIONS
tDCS is a well-tolerated, non-invasive, and potentially 
easy-to-use non-invasive brain stimulation modality that 
has been proposed as a treatment option in the manage-
ment of pain. However, evidence supporting the efficacy 
of tDCS for relief of chronic NP after SCI remains limited. 
Moreover, the mechanisms of action of tDCS are complex 
and not fully understood.

Additional and stronger evidence is needed to confirm 
the efficacy and duration of the effect of tDCS for treating 
SCI-related NP. This may be assisted by the availability 
of home-based tDCS units however the safety of these 
devices would need to be carefully monitored. Consen-
sus on the optimal trial protocol to limit the variability of 
stimulation parameters would enable better comparison 
between trials and an increasing in the strength of the evi-
dence.
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