
ONCOLOGY LETTERS  21:  413,  2021

Abstract. Non‑small cell lung cancer (NSCLC) is a malig‑
nant tumor with high morbidity and mortality rates, which 
seriously endangers human health. Although treatment 
methods continue to evolve, the emergence of drug resistance 
is inevitable and seriously hinders the treatment of NSCLC. 
The tumor microenvironment (TME) protects tumor cells 
from the effects of chemotherapeutic drugs, which can lead to 
drug resistance. Cancer‑associated fibroblasts (CAFs) are an 
important component of the TME, and various studies have 
demonstrated that CAFs play a crucial role in drug resistance 
in NSCLC. However, the drug resistance mechanism of CAFs 
and whether CAFs can be used as a target to reverse the 
resistance of tumor cells remain unclear. The present review 
discusses this issue and describes the heterogeneity of CAF 
markers, as well as their origins and resident organs, and the 
role and mechanism of this heterogeneity in NSCLC progres‑
sion. Furthermore, the mechanism of CAF‑mediated NSCLC 
resistance to chemotherapy, targeted therapy and immuno‑
therapy is introduced, and strategies to reverse this resistance 
are described.
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1. Introduction

Lung cancer is a malignant disease with high morbidity and 
mortality rates, and non‑small cell lung cancer (NSCLC) 
accounts for 80‑85% of all lung cancer cases. Clinically, only 
a small percentage of patients with NSCLC are diagnosed 
at an early stage (I or II), at which tumors can be surgically 
removed. The majority of patients with NSCLC present with 
locally advanced or metastatic disease at the time of diagnosis, 
leaving chemotherapy, targeted therapy, and immunotherapy 
as the primary treatment strategies  (1). However, primary 
resistance and acquired resistance after long‑term drug 
usage are inevitable problems (2). Previous data suggest that 
the 5‑year survival rate of patients with advanced NSCLC 
is <5% (3). Moreover, the occurrence of drug resistance is a 
major obstacle to successful treatment, which requires urgent 
medical attention (3,4).

Existing therapeutic approaches primarily counter drug 
resistance by targeting tumor cells and sparing those of the 
tumor microenvironment (TME). Since the concept of ‘seed 
and soil’ was proposed, the role of the TME in tumor drug resis‑
tance has received increasing attention. For example, a hypoxic 
microenvironment was found to induce cisplatin resistance in 
NSCLC (5,6). Collagen, a component of the extracellular matrix 
(ECM), induces NSCLC resistance to epidermal growth factor 
receptor tyrosine kinase inhibitors (EGFR‑TKIs) by binding 
to the collagen receptor integrin α11β1 (7). In addition to these 
physical factors, stromal cells that surround the tumor, such as 
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cancer stem cells (CSCs) (8) and stromal fibroblasts (9), can 
induce therapeutic resistance in NSCLC. Cancer‑associated 
fibroblasts  (CAFs) are an important component of the 
TME (10), which serve a primary role in drug resistance. 
Compared with tumor cells, CAFs are considered to be geneti‑
cally stable with few mutations (11), and can influence tumor 
progression through the secretion of ECM proteins, proteases, 
cytokines, chemokines and growth factors (12,13). In addition, 
CAFs are involved in drug resistance in various malignancies, 
such as head and neck (14), breast (15), ovarian (13), gastroin‑
testinal (16), pancreatic (17) and colorectal cancer (18), though 
the underlying mechanisms differ between tumor types. 
Thus, the mechanisms of CAF‑mediated NSCLC resistance 
have gained considerable attention (19). The present review 
describes the functions and mechanisms of CAFs in NSCLC 
drug resistance, as well as potential strategies to reverse this 
effect.

2. Heterogeneity of CAFs

Numerous types of stromal cell, including fibroblasts, are 
present in the TME. Fibroblasts are activated in response to 
cancer cells, after which they are referred to as CAFs or myofi‑
broblasts. CAFs are spindle‑shaped cells of variable size and 
proliferative capacity (20,21). Moreover, CAFs exhibit high 
heterogeneity in terms of origin, surface markers and resident 
organs, which determines their functions in tumor progres‑
sion. During the early stages of tumor development, CAFs 
play an antitumor role by promoting tissue repair. However, as 
the tumor progresses, CAFs promote tumor growth, metastasis 
and drug resistance.

Heterogeneity of CAF origins. Studies have demonstrated 
that cells, including resident tissue fibroblasts, bone marrow 
(BM)‑derived mesenchymal stromal cells (MSCs), epithe‑
lial cells, endothelial cells, CSCs, hematopoietic stem cells 
(HSCs), vascular smooth muscle cells (VSMCs) and pericytes 
may act as the predecessors of CAFs (22‑30). When healthy 
tissue is damaged and malignancy develops, immune cells 
are recruited to the site of injury, and via the release of 
specific mediators, activate the differentiation of resident 
fibroblasts into CAFs  (22). In this manner, human breast 
fibroblasts gradually differentiate into CAFs, promoting 
tumor progression by establishing TGF‑β and stromal‑derived 
factor autocrine signals (23). TGF‑β1 is the primary factor 
that activates the conversion of resident fibroblasts into 
CAFs. Moreover, hypoxia also promotes this process via 
the accumulation of reactive oxygen species (ROS) and the 
activation of the hypoxia‑inducible factor (HIF)‑1α‑mediated 
signaling pathway (24). In addition, VSMCs and pericytes 
can differentiate into CAFs in breast cancer (25). BM‑MSCs 
can also differentiate into CAFs. For example, CAFs with the 
phenotype and functional characteristics identical to those of 
BM‑MSCs were isolated from primary human neuroblastoma 
tumors  (26). In colon tumors, CAFs are generated via the 
activation of native mesenchymal cell populations and the 
recruitment of BM‑MSCs (27). Furthermore, mouse‑induced 
pluripotent stem cells were treated with conditioned media to 
generate CSC‑like cells, which are a heterogeneous population 
surrounded by myofibroblast‑like cells. At the same time, the 

expression of fibroblast activation protein (FAP), alpha‑smooth 
muscle actin (α‑SMA), and other key CAF markers was 
significantly increased, and for the first time, CSCs were 
confirmed to be the key origin of CAFs in the TME (28). 
Studies in two different pancreatic cancer mouse models 
also revealed that endothelial‑mesenchymal transition trans‑
forms fibroblasts into CAFs after exposure to TGF‑H1 (29). 
Moreover, fibroblast‑specific protein‑1+fibroblastscan be 
derived from epithelial‑mesenchymal transformation (EMT) 
in the local environment (30). McDonald et al (31) found that 
CAFs derived from HSCs promoted the generation of tumor 
blood vessels. The origins of different CAFs populations are 
listed in Table I.

Heterogeneity of CAF markers. The expression of CAF 
markers can be determined by immunofluorescence and 
immunohistochemical staining, and quantitatively detected 
by western blotting. As a heterogeneous cell population, 
different markers can be used to identify CAFs, the most 
common of which are podoplanin (PDPN), platelet‑derived 
growth factor receptor (PDGF‑R), vimentin, α‑SMA and FAP. 
However, in isolation, none of these markers can specifically 
identify CAFs (32). PDPN+ CAFs are able to promote tumor 
formation (33). The expression of PDPN was detected in the 
CAFs of 177 patients with lung adenocarcinoma, and PDPN+ 
CAFs were found only in invasive rather than non‑invasive 
adenocarcinoma  (34). The expression of PDPN promotes 
platelet aggregation and contributes to cancer cell invasive‑
ness  (34). Therefore, PDPN+ CAFs are closely associated 
with the aggressiveness of various cancer types, including 
lung adenocarcinoma (33,34), breast cancer (35) and squa‑
mous cell carcinoma (36). PDGF‑Rs can be categorized as 
PDGFR A and PDGFR B. PDGFR ligands include the PDGFs 
(PDGF‑aa, PDGF‑bb, PDGF‑ab, PDGF‑cc and PDGF‑dd), 
and their expression is closely related to tumor occurrence 
and CAFs function (37). Vimentin is involved in the formation 
of cytoskeletal networks, especially in mesenchymal‑derived 
cells. Due to their strong mesenchymal phenotype, vimentin 
is highly expressed in all types of fibroblasts, and has there‑
fore been widely used for the identification of CAFs (38‑40). 
Park et al  (41) demonstrated that vimentin promotes lung 
cancer invasion and metastasis by promoting the recruitment 
of CAFs. CAFs are divided into two distinct clusters, namely 
C1‑type and C2‑type CAFs. Notably, the expression of α‑SMA 
is lower in C1‑type compared with the C2‑type CAFs, though 
C1‑type CAFs inhibit the self‑renewal of oral cancer cells 
by releasing bone morphogenetic protein 4 (42). α‑SMA is 
expressed by various cell types, including fibroblasts, making 
it impossible to use alone as a marker for CAF recognition. 
The upregulation of FAP is associated with poor prognosis 
in >90% of epithelial cancer types (43‑45). Due to its high 
expression level in the tumor stroma, FAP has been used as 
a CAF identification marker in numerous studies (46). FAP+ 
CAFs control tumor progression by secreting chemokine 
(C‑X‑C motif) ligand 12 (CXCL12) and binding to its receptor 
chemokine (C‑X‑C motif) receptor 4 (CXCR4). FAP+CAFs 
increase T cell recruitment and promote the antitumor effect 
by mediating CXCL12/CXCR4 axis deletion in pancreatic 
ductal adenocarcinoma (47,48). In addition, FAP‑activated 
prodrugs have been demonstrated as a feasible strategy for 
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treating cancer, such as prostate cancer and breast cancer (49). 
Thapsigargin (TG) is a highly toxic natural plant product; a 
cytotoxic TG analog was coupled to FAP‑selective peptide 
substrates to create inactive prodrugs, and when the prodrugs 
were activated, they led to apoptosis of prostate and breast 
cancer cells, but had no obvious toxicity to host cells (49). 
No single marker can mark all the CAFs, and not all CAFs 
express all potential marker proteins. Therefore, there is still a 
need to investigate CAFs‑specific markers. In addition to the 
common CAFs markers, there are other less commonly used 
markers, such as microfibrillar‑associated protein 5 (MFAP5), 
collagen type XI alpha 1 chain, tenascin‑C, PDPN, integrin 
α11β1, neural/glial antigen, collagen 11‑α1 and asporin (40). 
However, collagen 11‑α1, MFAP5 and asporin are expressed 
only by CAFs, which can improve the specificity of their 
identification (50). Currently, a combination of markers, as 
well as cellular phenotype, is the most reliable method for the 
identification of CAFs.

Heterogeneity of CAF resident organs. Though CAFs lack 
specific markers, literature reports that CAF markers may 
possess organs heterogeneity, and that CAFs expressing the 
same marker may possess different functions in different 
organs. For example, in ovarian cancer, PDGF‑R+ CAFs 
promote tumor progression by remodeling the ECM  (51). 
However, CAFs expressing PDGF increase the levels of the 
Puma in myofibroblasts, which subsequently activates Bak, 
a pro‑apoptotic protein that induce cholangiocarcinoma cell 
apoptosis (52). Similarly, CAFs may express different markers in 
different organs. PDGF‑R is expressed by a variety of different 
CAFs; however, those originating from BM‑MSCs do not 
express PDGF‑Rα in breast tumors and lung metastases (53). 
At present, CD200 is only known to be highly expressed in 
CAFs derived from NSCLC and can promote the sensitivity 
of NSCLC to EGFR‑TKIs (54). Su et al (8) demonstrated that 
CD10+/GPR77+CAFs continually promote p65 phosphoryla‑
tion and acetylation by binding GPR77 receptor C5a, thereby 
promoting the self‑renewal of tumor stem cells and enhancing 
drug resistance in patients with lung and breast cancer.

Role of CAF heterogeneity in NSCLC. Heterogeneity between 
origins, markers and resident organs determines the different 

functions of CAFs. Genetically engineered mouse models and 
clinical studies have demonstrated that at least two types of 
CAFs with different functions exist, namely pro‑cancer CAFs 
(pCAF) and anticancer CAFs (rCAF) (55). CAFs also exhibit 
different functions in tumor progression. In NSCLC, the 
functional heterogeneity of CAFs primarily results from differ‑
ences in expression markers, and there are few studies on the 
functional differences caused by the heterogeneity of origins. 
CAFs that exert pro‑tumor effects include α‑SMA+PDPN+, 
FAP+, CD34+ and CD10+/GPR77+CAFs. CAFs with anti‑
tumor properties include CD200+ and CD99+CAFs. The 
pro/anti‑tumor effect of CAFs in NSCLC progression are 
summarized in Table II.

Pro‑tumor effect of CAFs. CAFs promote tumor growth 
and metastasis, as well as tumor cell drug resistance. 
Tissue analysis revealed a high mortality rate among 
220  patients with NSCLC and high α‑SMA expression, 
indicating that α‑SMA is associated with poor survival 
time  (56). Immunohistochemical analysis of 304 patients 
with pTNM stage I‑III NSCLC revealed that CAF‑associated 
CD34 expression was an independent prognostic factor for 
stage I‑III NSCLC, and that SMA+CAFs were associated with 
higher tumor stages and promoted tumor progression (57). 
The 28 patients with NSCLC were divided into two CAF 
subgroups, the high desmoplastic CAFs (HD‑CAFs) and low 
desmoplastic CAFs (LD‑CAFs), according to the obtained 
scores and classification based on desmoplasia. Compared 
with LD‑CAFs, HD‑CAFs exhibited a higher collagen matrix 
remodeling rate and promoted tumor invasion and growth (58). 
The immunohistochemical analysis of tumor samples from 
536 patients with NSCLC indicated that CAFs expressing 
FAP‑1 were associated with poor patient prognosis, which has 
also been demonstrated in patients with pancreatic cancer. 
In addition, FAP+CAFs have been associated with reduced 
survival time (59,60). Yoshida et al (61) demonstrated that 
compared with the control group, lung adenocarcinoma cells 
co‑cultured with PDPN+ CAFs possessed greater drug resis‑
tance properties. In patients with postoperative recurrence, 
compared with the PDPN‑CAF group, the PDPN+ group 
showed a lower treatment response to EGFR‑TKIs. These 
results suggest that PDPN+ CAFs are involved in primary 

Table I. Origins of CAFs.

First author, year	 Origin of CAFs	 Cancer type	 (Refs.)

Foster et al, 2018; 	 Resident tissue fibroblasts	 Breast cancer	 (22,23)
Kojima et al, 2010
Borriello et al, 2017	 Marrow‑derived mesenchymal stem cells	 Neuroblastoma	 (26)
Koliaraki et al, 2017	 Marrow‑derived mesenchymal stem cells	 Colon cancer	 (27)
Zeisberg et al, 2007	 Endothelial cells	 Pancreatic cancer	 (29)
Nair et al, 2017	 Cancer stem cells	 Breast cancer	 (28)
McDonald et al, 2015	 Hematopoietic stem cells	 Breast cancer	 (31)
An et al, 2020	 Vascular smooth muscle cells	 Breast cancer	 (25)
An et al, 2020	 Pericytes	 Breast cancer	 (25)	

CAFs, cancer‑associated fibroblasts.
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drug resistance to these compounds. Using the collagen 
invasion assay model of co‑culture between cancer cells and 
CAFs, CAFs were found to invade local tissues through ECM 
remodeling, followed by subsequent cancer cell invasion. 
Furthermore, the down regulation of CAF‑associated PDPN 
reduced the invasiveness of CAFs and cancer cells (62). In 
addition, CD10+/GPR77+CAFs maintain the stemness of 
CSCs and promote drug resistance in patients with lung 
cancer (8). Therefore, it is undeniable that heterogeneity of 
origin is an important influencing factor of CAF function, 
which is a valuable future research direction.

Anti‑tumor effect of CAFs. In addition to their tumor‑promoting 
functions, CAFs also possess antitumor properties. For 
example, CD200+ CAFs enhanced the sensitivity of lung 
cancer to gefitinib. Moreover, individuals with CD200+ CAFs 
exhibit longer progression‑free survival after gefitinib treat‑
ment following post‑surgical relapse. The binding of CD200 
to its receptor CD200R1, which is expressed by immune 
cells, triggers an immunosuppressive response, leading to an 
antitumor effect (54). In addition, CD99 is a newly discovered 
CAF marker, the overexpression of which may inhibit tumor 
progression (63). However, the tumor‑suppressive mechanism 
of CAFs remains unclear, and requires further investigation.

3. Roles and mechanisms of CAFs in NSCLC drug 
resistance

CAFs influence tumor formation by promoting drug resistance, 
though the associated underlying mechanisms remain unclear. 
Clarifying these mechanisms may help to prevent the occur‑
rence of drug resistance in NSCLC. Next, the mechanisms 
by which CAFs mediate the resistance of NSCLC to chemo‑
therapy, targeted therapy and immunotherapy, are explored. 
Fig. 1 illustrates the mechanisms by which CAFs regulate drug 
resistance in NSCLC.

Roles and mechanisms of CAF‑associated chemotherapeutic 
resistance. CAFs promote the resistance of NSCLC to 
chemotherapy primarily by mediating EMT (19), remodeling 
the ECM (7,11), maintaining the stemness of CSCs (8) and 
promoting metabolic reprogramming (64‑66).

EMT. EMT is an important developmental process that is 
closely associated with drug resistance (67,68). During EMT, 
epithelial cell markers, such as N‑and E‑cadherin, are down‑
regulated, while mesenchymal cell markers, such as vimentin 
and fibronectin, are upregulated. Previous studies have reported 
that EMT is associated with drug resistance in pancreatic (69), 
bladder (70), breast (71) and colorectal cancer (72). Compared 
with the control group, the expression of E‑cadherin in the 
indirect CAF co‑culture group was reduced, the expression 
of vimentin was enhanced, and migration and invasion ability 
were correspondingly augmented (20). Therefore, CAFs are 
among the factors mediating EMT. Studies have shown that 
CAFs regulate EMT and promote drug resistance by secreting 
IL‑6 and hepatocyte growth factor (HGF) (73). For example, 
CAFs significantly increased TGF‑β1‑induced EMT in cancer 
cells by secreting IL‑6, thereby contributing to cisplatin 
resistance in NSCLC (74). This process involves the expres‑
sion of TGF‑β1, and silencing TGF‑β1 reverses EMT and thus 
increases the sensitivity of NSCLC to cisplatin (74). HGF, also 
known as scatter factor, is a member of the fibrinogen family 
that which functions to activate EMT (75). Ying et al  (19) 
investigated the functions of HGF in the paclitaxel resistance 
of NSCLC by constructing a three‑dimensional microfluidic 
chip. The high levels of HGF secreted by CAFs enhanced the 
phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) 
activation, as well as the expression of GRP78, and promoted 
the resistance of NSCLC to paclitaxel. CAFs were also 
found to induce EMT in NSCLC cells, inducing resistance to 
chemotherapy. Therefore, targeting CAFs may enhance the 
therapeutic effect of drugs towards NSCLC.

CSCs. Studies have reported the presence of white blood cells 
with stem cell‑like properties in patients with acute myeloid 
leukemia, which are designated as CSCs (76,77). CSCs are a 
subgroup of tumor cells that exhibit strong resistance to chemo‑
therapy (77,78), of which there are two primary underlying 
mechanisms. The first outlines that in a hypoxic microenvi‑
ronment, CSCs remain quiescent in a non‑permanent dormant 
state, and that chemotherapeutic drugs primarily target rapidly 
dividing cancer cells, allowing quiescent stem cells to survive 
and regenerate to form tumors at a later point in time (79). 
Another mechanism is the use of ATP‑binding box (ABC) 

Table II. Pro‑ and antitumor effects of CAFs in non‑small cell lung cancer progression.

First author, year	 CAF markers	 Samples, n	 Pro/antitumor effect	 (Refs.)

Alcaraz et al, 2019	 α‑SMA	 220	 Pro	 (56)
Yoshida et al, 2015;	 Podoplanin	 177	 Pro	 (61,62)
Neri et al, 2015
Kilvaer et al, 2015; 	 FAP	 536	 Pro	 (59,60)
Cohen et al, 2008
Schulze et al, 2020	 CD34	 304	 Pro	 (57)
Su et al, 2018	 CD10+/GPR77+		  Pro	 (8)
Ishibashi et al, 2017	 CD200		  Anti 	 (54)
Edlund et al, 2012	 CD99		  Anti 	 (63)

CAF, cancer‑associated fibroblast; α‑SMA: α‑smooth muscle actin; FAP, fibroblast activation protein.
 



ONCOLOGY LETTERS  21:  413,  2021 5

transporters to expel chemotherapeutic drugs, resulting in 
drug resistance (80). CAFs primarily promote NSCLC drug 
resistance by maintaining the stemness of CSCs, and stimu‑
lating their self‑renewal. When CAFs are co‑cultured with 
CSCs, CAF‑associated insulin‑like growth factor‑II (IGF‑II) 
activates the insulin‑like growth factor 1 receptor (IGF1R) 
on CSCs, thereby activating the IGF‑II/IGF1R/Nanog 
signaling pathway to maintain CSCs stemness, both in vivo 
and in vitro. In turn, CSCs promote CAF‑associated IGF‑II 
secretion via cytokines such as basic fibroblast growth factor. 
The IGF‑II/IGF1R axis promotes the expression of Nanog in 
cancer cells, and blocking the IGF‑II/IGF1R/Nanog pathway 
reduces the stemness of CSCs (12). CAFs exhibit high CD44 
expression in tumor hypoxic and avascular areas, and CAF 
CD44 expression is significantly increased following treat‑
ment with an angiogenesis inhibitor. Through co‑cultures and 
tumor sphere formation assays, CAFs were found to maintain 
the stemness of CSCs and enhance the resistance of tumor 
cells to anticancer drugs, properties that were not exhibited by 
CD44‑deficient CAFs (81). In addition, CD10+/GPR77+CAFs 

can maintain the stemness of CSCs by secreting IL‑6 and 
IL‑8, thereby promoting drug resistance in patients with lung 
cancer (8). According to these studies, CAFs can promote the 
chemotherapeutic drug resistance of NSCLC by regulating 
CSCs.

ECM remodeling. Under normal physiological conditions, the 
ECM supports the proliferation and migration of surrounding 
cells. Cancer tissue is generally stiffer than normal tissue. The 
stiffness of the ECM is primarily attributed to the accumula‑
tion of hyaluronic acid (HA) at its core, which can withstand 
the compressive stress of the tumor, while the accumulation of 
collagen and fibronectin in the periphery promotes resistance 
to tensile stress. ECM stiffness functions as a barrier to tumor 
cell drug absorption (82). CAFs promote tumor resistance by 
increasing matrix stiffness through the enhancement of ECM 
components such as HA and collagen. Collagen is resistant to 
tensile stress, as it becomes harder on stretching (11). HA is also 
resistant to stress. Integrin α11β1 is a specific collagen receptor 
associated with increased collagen stiffness. CAFs can affect 

Figure 1. Mechanism of CAFs in NSCLC drug resistance. CD10+/GPR77+CAFs can maintain the stemness of CSCs by secreting IL‑6 and IL‑8, thereby 
promoting drug resistance in patients with NSCLC. CAFs promote NSCLC resistance mainly through the following pathways: HGF/PI3K/AKT, 
IGF‑II/IGF1R/Nanog, IGF‑II/IGF‑1R/AKT/Sox2/ABCB1 and IGF1/IGF1R/ERK/MAPK. CAFs increase TGF‑β1‑induced EMT in NSCLC by secreting 
IL‑6. CAFs promote NSCLC drug resistance by regulating the hypoxic microenvironment through high expression of HIF‑1α. CAFs deliver Snail to lung 
cancer cells through exosomes, which induce EMT in these cells and promote drug resistance. CAFs increase the stiffness of the matrix by enhancing ECM 
components (such as HA, fibroblasts and collagen), thereby preventing the binding of immune checkpoint inhibitors to their receptors, and prevent the infiltra‑
tion and migration of immune cells, thereby promoting immune escape. In addition, ECM stiffness functions as a barrier to tumor cell drug absorption. CAF, 
cancer‑associated fibroblast; NSCLC, non‑small cell lung cancer; CSCs, cancer stem cells; IL, interleukin; HGF, hepatocyte growth factor; PI3K, phosphati‑
dylinositol 3 kinase; AKT, protein kinase B; IGF‑II, insulin‑like growth factor‑II; IGF1R, insulin‑like growth factor 1 receptor; ABCB1, ATP‑binding cassette 
sub‑family B member 1; ERK, extracellular signal‑regulated kinases; MAPK, mitogen‑activated protein kinase; TGF‑β1, transforming growth factor‑β1; 
HIF‑1α, hypoxia‑inducible factor‑1α; EMT, epithelial‑mesenchymal transition; ECM, extracellular matrix; HA, hyaluronic acid.
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the stiffness of interstitial collagen by expressing high levels 
of integrin α11, which promotes the progression of NSCLC 
tumors  (7). NSCLC cells cultured on a semi‑solid growth 
substrate (to simulate the stiffness of the matrix in the TME) 
can promote the resistance of NSCLC to chemotherapeutic 
drugs (83). In lung adenocarcinoma, PDPN+ CAFs physically 
remodel the ECM (62). Therefore, CAFs can promote NSCLC 
resistance to chemotherapy via ECM remodeling.

Metabolic reprogramming. Due to mitochondrial defects, 
cancer cell metabolism is altered, the ability to oxidize glucose 
to CO2 is inhibited, and the propensity to convert glucose into 
lactic acid increases. These phenomena are collectively known 
as the Warburg effect (64,84), which is mediated by pyruvate 
kinase M2 (PKM2). PKM2 is upregulated in NSCLC cell lines 
and can promote NSCLC resistance to cisplatin (65). Under 
hypoxic conditions, cisplatin‑resistant cells secrete exosomes 
containing high concentrations of PKM2, which are absorbed 
by cisplatin‑sensitive cells. Exosomal PKM2 also regulates 
glycolysis in treatment‑sensitive cells, promoting cell survival 
and inhibiting apoptosis. Secondly, in the tumor microenviron‑
ment, exosomes secreted by the cisplatin‑resistant cells deliver 
PKM2 to CAFs, and the metabolically reprogrammed CAFs 
release pyruvate and lactate, promoting chemotherapeutic 
resistance (66). In addition, CAF autophagy releases lactic 
acid, ketone bodies and glutamine to create a nutrient‑rich 
microenvironment that supports tumor growth (64).

Roles and mechanisms of CAFs in the resistance to targeted 
therapy. CAFs mainly promote tumor EMT (85‑92) and create 
a hypoxic microenvironment (93‑96) to render NSCLC cells 
resistant to targeted therapy.

EMT. EMT is a reversible process regulated by several 
EMT‑related transcription factors (EMT‑TFs), such as Snail, 
Slug, Twist and zinc finger E‑box‑binding homeobox 1 (ZEB1). 
EMT enhances the migration and invasiveness, as well as the 
resistance of cancer cells to targeted therapy (85). For example, 
the A549 lung cancer cell line developed drug resistance after 
long‑term treatment with gefitinib. These gefitinib‑resistant 
cells showed reduced expression of E‑cadherin and vimentin, 
indicating the occurrence of EMT  (86). Moreover, the 
expression of the EMT regulator ZEB1 was increased in the 
HCC4006ER erlotinib‑resistant cell line. HCC4006ER cells 
acquired an EMT phenotype and were able to activate the 
TGF‑β1/SMAD pathway (87). Snail, a key transcription factor 
for EMT, is closely associated with chemotherapy resistance. 
CAFs deliver Snail to lung cancer cells through exosomes, 
which induce EMT in these cells and promote drug resis‑
tance (88). However, whether CAFs can also promote NSCLC 
drug resistance by regulating other EMT‑TFs remains to be 
elucidated. EMT is associated with NSCLC‑targeted drug 
resistance, which is primarily achieved through extracellular 
signal‑regulated kinases/mitogen‑activated protein kinase 
(ERK/MAPK), Hedgehog (Hh) and other related signaling 
pathways. CAFs can activate corresponding receptors in 
NSCLC through the upregulation of growth factors such as HGF 
and IGF‑1, and also regulate EMT and gefitinib resistance in a 
paracrine manner (89). IGF1R induces EMT in NSCLC cells 
and increases their resistance to EGFR‑TKIs by enhancing the 

ERK/MAPK signaling pathway, small interfering (si)RNAs 
targeting IGF1R reversed the EMT phenotype and resistance 
to EGFR‑TKIs (90). Choe et al (91) reported that co‑culturing 
CAFs with NSCLC stimulated CAFs to induce EMT by acti‑
vating the Hh signaling pathway, making PC9 cells resistant to 
erlotinib. A combination of the cell surface molecules Patched 
and Smoothened with the ligands sonic hedgehog, Indian 
hedgehog and desert hedgehog activates the transcription 
factor GLI1, thereby activating the Hh pathway and mediating 
tumor cell resistance to EGFR‑TKIs by inducing EMT (92). In 
summary, CAFs can promote NSCLC resistance to targeted 
therapy by regulating EMT‑TFs, and by activating multiple 
pathways, which also indicates that CAFs play an important 
role in the resistance of NSCLC to targeted therapy.

Hypoxic microenvironment. Hypoxia is a hallmark feature 
of the TME, and is considered to be one of the key factors 
for drug resistance in tumors (97). Cancer cells are often in a 
state of hypoxia that promotes tumor growth (98). In rapidly 
growing tumors, the distance between cells and blood vessels 
increases, which in turn impedes drug absorption into the 
tumor, especially in a hypoxic environment (99). For example, 
EGFR‑mutated NSCLC cell lines exposed to high concen‑
trations of gefitinib under low oxygen conditions acquired 
drug‑resistant cells, known as gefitinib‑resistant persistent 
cells (GRPs). Moreover, stem cell‑associated genes are highly 
expressed in GRPs. This process is primarily mediated by 
an upregulation in IGF1 expression by HIF1, which in turn 
activates IGF1R on GRPs, thereby promoting NSCLC resis‑
tance to gefitinib and increasing CSCs numbers  (93). The 
expression level of HIF‑1α is upregulated in CAFs (94), indi‑
cating that these cells may promote NSCLC drug resistance 
by regulating the hypoxic microenvironment. In addition, 
HIF‑1 can promote NSCLC drug resistance by inducing the 
expression of ABC transporters (99). EBC‑1R is an NSCLC 
cell line resistant to the EMT inhibitors PHA‑665752 and 
crizotinib, which possesses the characteristics of CSCs, and 
forms spheres (95) in which the expression of ATP‑binding 
cassette sub‑family B member 1  (ABCB1) is upregulated. 
Drug resistance is reversed following treatment with the 
ABCB1 inhibitor elacridar  (95). IGF‑II is an insulin‑like 
hormone that plays an important role in regulating cellular 
proliferation, differentiation, senescence and drug resistance. 
CAFs regulate NSCLC cell drug resistance by secreting IGF‑II 
and binding to the membrane receptor IGF‑1R, in addition to 
activating the IGF‑II/IGF‑1R/AKT/Sox2/ABCB1 pathway 
in cancer cells, which in turn upregulates the expression of 
P‑glycoprotein (96).

Roles and mechanisms of CAFs in immunotherapeutic 
resistance. Over the past few years, immune checkpoint 
inhibitors have played an important role in clinical trials, 
and have been approved as the standard therapy for advanced 
NSCLC (100). For instance, nivolumab and pembrolizumab 
targeting programmed cell death protein 1 (PD‑1), atezoli‑
zumab targeting programmed cell death ligand 1 (PD‑L1), 
and tremelimumab targeting cytotoxic T‑lymphocyte antigen 
4 have been approved by the United States Food and Drug 
Administration for NSCLC treatment (101). However, only 
15‑25% of patients with NSCLC respond to immune checkpoint 
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inhibitors, the majority of which experience primary drug 
resistance (102). At present, only a limited number of studies 
have reported CAF‑mediated NSCLC resistance to immune 
checkpoint inhibitors, although this has also been reported 
for other tumor species. In NSCLC, CAFs primarily prevent 
the infiltration and migration of immune cells by remodeling 
the ECM and preventing the binding of immune checkpoint 
inhibitors to their receptors, thus prompting immune escape. 
The density and direction of the ECM influence the behavior 
and migration of T cells in human lung cancer. T cells gener‑
ally accumulate in areas with loose stromal fibers (103), and a 
dense ECM serves as a contact barrier between T cells and the 
tumor cells (104). It also prevents T cells from binding PD‑1 
inhibitors, and thus promotes the resistance of tumor cells 
to immune checkpoint inhibitors (103). The ECM includes 
collagen, laminin and fibronectin. Lysyl oxidase crosslinks 
collagen molecules into fibers to form a dense ECM, which 
inhibits the migration of T cells and reduces the effect of 
PD‑1 inhibitors (104). In a xenograft model of NSCLC, CAFs 
overexpressing lysyl oxidase like‑1 were found to remodel the 
collagen matrix in vivo (105), suggesting that CAFs promote 
NSCLC resistance to immunotherapeutic drugs through the 
ECM. CAFs are the primary producers of TGF‑β (106) and 
can influence T cell infiltration via TGF‑β. TGF‑β signaling 
was demonstrated to inhibit T cell infiltration in breast mouse 
tumor models (104). CAFs specifically inhibit CD8+ T cell 
infiltration, thereby promoting tumor resistance to different 
immunosuppressive agents  (107). In addition, CAFs can 
function as antigen‑presenting cells and induce T‑cell death 
in an antigen‑dependent manner via PD‑L2 and FASL (108). 
Compared with patients with PD‑L1‑CAFs, those with 
PD‑L1+ CAFs exhibited significantly prolonged relapse‑free 
survival, and the expression of PD‑L1 in CAFS was affected 
by IFN‑γ (109). At present, literature reporting the correlation 
between CAFs and immune checkpoint inhibitors is limited. 
The correlation between CAF‑associated surface markers and 
immune markers was studied in 536 patients with NSCLC, 
and the results indicated that CAFs had little effect on immune 
cell infiltration in NSCLC (110). Therefore, whether CAFs also 
promote the drug resistance of tumor cells by inhibiting T cell 
infiltration requires investigated further.

4. Therapeutic strategies

The strategy for reversing NSCLC drug resistance is displayed 
in Table III.

Targeting CAFs. There are currently two available strategies 
for reversing drug resistance by targeting CAFs, one of which 
is to inhibit the production of CAFs, while the other is to block 
the pathways downstream of them.

Fibroblast to CAFs transformation relies on the expression 
of TGF‑β. Treatment with TGF‑β rapidly activates the TGF‑β 
signaling pathway, resulting in the transformation of fibroblasts 
into myofibroblast phenotype. Myofibroblast transdifferen‑
tiation requires the production of ROS, and the expression 
of NAD(P)H Oxidase‑4 (NOX4) is associated with the CAF 
marker α‑SMA. A NOX4 inhibitor (GKT137831) or targeted 
NOX4‑knockout (short hairpin RNA and siRNA) reduced 
the accumulation of CAFs. Therefore, CAF generation can be 
inhibited by decreasing NOX4 expression, which may reduce 
the occurrence of NSCLC drug resistance (111). Pirfenidone is 
a pyridine compound that inhibits fibroblast proliferation and 
CAF differentiation and activation (112). FAP is expressed by 
the majority of CAFs, and T cells can be genetically modi‑
fied to express FAP‑specific chimeric antigen receptors. 
These FAP‑specific T cells recognize and destroy FAP+CAFs 
with subsequent antitumor effects (113). Some CAFs possess 
myofibroblast characteristics and express α‑SMA, which can 
significantly promote NSCLC resistance to chemotherapy via 
the expression of high levels of inflammatory cytokines and 
chemokines (114). Plasminogen activator inhibitor‑1 (PAI‑1) 
can promote the MF characteristics of CAFs, and the expres‑
sion of PAI‑1 in CAFs is correlated with the expression of 
α‑SMA (114). PAI‑1 inhibitors also decrease the expression 
levels of α‑SMA and inhibit the MF characteristics of CAFs, 
improving chemotherapeutic efficacy in NSCLC (114). Thus 
inhibiting the MF properties of CAFs may be a novel thera‑
peutic strategy for the treatment of chemotherapy‑resistant 
NSCLC (114).

Currently, the primary methods of reversing NSCLC 
drug resistance are via the inhibition CAF downstream path‑
ways. According to literature, resistance can be reversed by 

Table III. Strategies to reverse non‑small cell lung cancer drug resistance.

First author, year	 Factor	 Mechanisms	 Resistant to	 Inhibitor of	 (Refs.)

Shien et al, 2017	 IL‑6	 OSMRs/JAK1/STAT3	 Chemotherapy	 JAK1	 (119)
Rotow et al, 2017	 HGF	 HGF/ERK	 Targeted therapy	 HGF	 (2)
Tao et al, 2016	 IL‑11	 IL‑11R/STAT3	 Chemotherapy	 STAT3	 (118)
Zhang et al, 2018	 IGF	 IGF1R/AKT/Sox2/P‑GP	 Chemotherapy	 IGF2	 (96)
Wang et al, 2019	 ANXA3	 ANXA3/JNK	 Chemotherapy	 JNK	 (116)
Wei et al, 2020	 GGT5		  Chemotherapy	 GGT5	 (117)
Najafi et al, 2019; 	 MMPs	 Degradation of the ECM	 Chemotherapy/ 		  (82,121)
Rebelo et al, 2018 			   immunotherapy

OSMRs, oncostatin‑M; JAK1, Janus kinase1; STAT3, signal transducer and activator of transcription 3; HGF, hepatocyte growth factor; 
IGF, insulin‑like growth factor; IGF1R, insulin‑like growth factor receptor‑1; P‑GP, P‑glycoprotein; ANXA3, Annexin A3; GGT5, γ‑glutamyl 
transferase 5; MMP, matrix metalloproteinase; ECM, extracellular matrix.
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targeted inhibition of the cytokines secreted by CAFs, such as 
IL‑6 (115), IGFII (96), HGF (2), Annexin A3 (ANXA3) (116) 
and γ‑glutamyl transferase 5 (GGT5) (117). CAFs express IL‑6 
to upregulate Bcl‑2 and Mcl‑1, reduce the sensitivity of NSCLC 
to cisplatin, and protect NSCLC cells from apoptosis (115). A 
combination of IL‑6‑targeted inhibitors and cisplatin can either 
reduce or inhibit the cisplatin resistance in NSCLC (115). CAFs 
regulate NSCLC cell drug resistance through the secretion of 
IGF2 and by binding IGF‑1R, activating the AKT/Sox2/P‑GP 
pathway in cancer cells. Traditional chemotherapeutic regimes, 
combined with IGF2‑targeted inhibitors, may serve as an 
innovative therapeutic strategy for NSCLC (96). CAFs activate 
ERK by secreting HGF, which contributes to the resistance of 
NSCLC cells to EGFR‑TKIs, and combination therapy with 
HGF‑targeted drugs restores the sensitivity of cancer cells 
to EGFR‑TKIs (2). In addition, the expression of ANXA3 is 
higher in CAFs than in normal fibroblasts (NFs). Furthermore, 
the overexpression of ANXA3 increased the cisplatin resis‑
tance of lung cancer cells. The underlying mechanism was that 
CAFs enhanced chemotherapeutic resistance by activating the 
ANXA3/JNK signaling pathway to inhibit cisplatin‑induced 
apoptosis. The resistance of cancer cells to cisplatin can also 
be decelerated using JNK‑targeting inhibitors (116). GGT5 
is a member of the γ‑glutamyl transpeptidase family that is 
abundantly expressed by CAFs, promoting NSCLC resistance 
to paclitaxel and cisplatin. NSCLC regains its sensitivity to 
chemotherapy drugs when GGT5 is blocked (117). Furthermore, 
CAFs secrete IL‑11, which activates the IL‑11R/STAT3 
anti‑apoptotic signaling pathway by binding to IL‑11R, thereby 
promoting the chemotherapeutic resistance of NSCLC. STAT3 
inhibitors can obstruct this process and reverse drug resis‑
tance (118). With further understanding of the roles of CAFs 
in NSCLC drug resistance, targeted inhibition of CAFs and 
their secreted cytokines can serve as suitable candidates for the 
treatment of drug resistance.

Targeting EMT. CAFs secrete several types of cytokines, such 
as Snail and IL‑6, to remodel the EMT (73,88). The secretion of 
IL‑6 by CAFs induces EMT and promotes cisplatin resistance 
in NSCLC cells (73). Co‑culturing of NSCLC with CAFs results 
in the secretion of IL‑6 and oncostatin‑M (OSM) from CAFs, 
which in turn activates STAT3. The activated OSM receptors 
(OSMR)/JAK1/STAT3 pathway contributes to NSCLC cell 
resistance to chemotherapy drugs. However, this process can 
be effectively blocked by the JAK1 inhibitor filgotinib (119). In 
addition, CAFs deliver Snai1 to cancer cells through exosomes 
to induce cancer cell EMT. However, CAFs can also inhibit 
EMT when treated with the exosome release inhibitor GW4869, 
restoring NSCLC drug sensitivity (88). CAFs also promote EMT 
by secreting TGF‑β, indicating that the ability of the TEM to 
support tumor cells can be reduced by inhibiting TGF‑β (120).

Targeting the ECM. According to the aforementioned findings, 
T cell migration, and the efficacy of anti‑PD‑1 blockers, can be 
improved by reducing ECM content and matrix stiffness, which 
can improve the sensitivity of NSCLC cells to chemotherapy 
and immunotherapy. Matrix metalloproteinases  (MMPs), 
ERK1/2, JNK, and HIF‑1 have been proven to promote ECM 
degradation (82). However, CAFs primarily degrade the ECM 
by secreting MMPs, and CAFs co‑cultured with NSCLC cells 

promote the expression of MMP1 and MMP9 (121), effectively 
reversing drug resistance.

Targeting CSCs. CAFs can facilitate CSC‑induced drug resis‑
tance in NSCLC in various ways. Therefore, targeting CSCs 
can improve the therapeutic effect on tumors. For example, 
CD10+/GPR77+CAFs can promote the self‑renewal of CSCs 
and enhance drug resistance in patients with lung cancer. 
According to these findings, GPR77 monoclonal antibody 
therapy may destroy the ecological niche of CSCs, thus 
retarding the formation of tumors and reversing chemothera‑
peutic resistance (8). In addition, as aforementioned, CAFs 
maintain the stemness of CSCs and promote NSCLC drug 
resistance through the IGF‑II/IGF1R/Akt/Nanog signaling 
pathway. However, the inhibition of this pathway reverses drug 
resistance to NSCLC (12).

5. Conclusions

CAFs can promote NSCLC drug resistance by inducing EMT, 
increasing CSC stiffness, remodeling the ECM, and creating a 
hypoxic microenvironment. These functions are crucial for the 
role of CAFs in NSCLC drug resistance. The heterogeneity of 
CAFs is an important factor in the failure of cancer treatment. 
The lack of reliable markers to identify CAF cell populations 
has further hindered our understanding of the relationship 
between CAFs and therapeutic resistance. Therefore, iden‑
tifying CAF‑specific surface markers is key for the future 
direction of this research field. Due to the heterogeneity of 
CAFs, targeted inhibitors have yet to be discovered. However 
drug resistance can be reversed by reducing the accumulation 
of CAFs, as well as targeted inhibition of their downstream 
pathways. In addition, the drug sensitivity of NSCLC can 
be restored by inhibiting EMT, degrading the ECM and 
destroying the ecological niche of CSCs.
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