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Abstract

Background.——Cerebrospinal fluid sodium concentration ([Na+]csf) increases during 

migraine, but the cause of the increase is not known.

Objective.——Analyze biochemical pathways that influence [Na+]csf to identify mechanisms 

that are consistent with migraine.

Method.——We reviewed sodium physiology and biochemistry publications for links to 

migraine and pain.

Results.——Increased capillary endothelial cell (CEC) Na+, K+, -ATPase transporter (NKAT) 

activity is probably the primary cause of increased [Na+]csf. Physiological fluctuations of all 

NKAT regulators in blood, many known to be involved in migraine, are monitored by receptors on 

the luminal wall of brain CECs; signals are then transduced to their abluminal NKATs that alter 

brain extracellular sodium ([Na+]e) and potassium ([K+]e).
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Conclusions.——We propose a theoretical mechanism for aura and migraine when NKAT 

activity shifts outside normal limits: (1) CEC NKAT activity below a lower limit increases [K+]e, 

facilitates cortical spreading depression, and causes aura; (2) CEC NKAT activity above an upper 

limit elevates [Na+]e, increases neuronal excitability, and causes migraine; (3) migraine-without-

aura may arise from CEC NKAT over-activity without requiring a prior decrease in activity and its 

consequent spreading depression; (4) migraine triggers disturb, and treatments improve, CEC 

NKAT homeostasis; (5) CEC NKAT-induced regulation of neural and vasomotor excitability 

coordinates vascular and neuronal activities, and includes occasional pathology from CEC NKAT-

induced apoptosis or cerebral infarction.
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A major problem in migraine pathophysiology is to understand the basis of symptoms. 

Migraine affects peripheral and central trigeminovascular pathways and central sensitization 

appears responsible for allodynia;1–10 cortical spreading depression (CSD) is associated 

with migraine aura;11–13 CSD can activate trigeminovascular pathways;13 and a large variety 

of medications have benefit in treating acute (and, less effectively, chronic) migraine.14–19 

These findings delineate some of the anatomy, physiology, biochemistry, and pharmacology 

of migraine, but it is not clear what happens in neurons that causes CSD/aura or migraine.

The reason for a decreased CSD threshold among migraineurs is not known, though 

electrolyte changes during CSD include acute changes in [K+]e and [Na+]e.20,21 Some 

insight comes from mutations in 3 different genes identified in the rare familial hemiplegic 

migraine (FHM):22–26 CACNA1A (gain of function of a slow Ca2+ channel gene), ATP1A2 

(loss of function of the α-2 isoform of the Na+, K+ -ATPase transporter [NKAT] gene), and 

SCN1A (gain of function of a voltage-gated Na+ channel gene). Elevation of extracellular 

glutamate and/or potassium has been suggested as a common mechanism for how 2 of these 

distinct genetic loci predispose a person to CSD.27 Alternatively, since these 3 genes have 

not been found mutated in the common forms of migraine to date,28 and since their 

dysfunction will influence potassium/sodium homeostasis, we propose that rather than the 

FHM mutations themselves it is their impact on potassium/sodium homeostasis that may 

reveal the common link in causing their migraine phenotypes.

We are investigating whether episodically increased neuronal excitability in migraine arises 

from a disturbance of brain sodium homeostasis, since we had found that [Na+]csf was 

altered in migraine, whereas Ca2+, K+, and Mg2+ were not.29 [Na+]csf rose significantly 

during the peak of migraine compared with the non-headache state of migraineurs and 

controls. This increase is found only in the cerebrospinal fluid (CSF) and not the plasma 

samples of migraineurs, which argues for a brain source and against a systemic origin. 

Radioactive Na+ distribution studies reveal that though the CSF Na+ composition is 

modified at different points along the neuraxis,30,31 it is reasonable to assume the [Na+]csf 

reflects [Na+]e, since equilibration of [Na+]e with lumbar CSF occurs rapidly,30,32,33 

especially in ambulant people. We expect [Na+]e may be increased even more in specific 
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brain regions in migraine, since the volume of CSF and its dispersion to the lumbar site of 

collection may have diluted the values we measured.

Elevated [Na+]e is important because it can lead to significant physiological effects by 

increasing neuronal excitability: Hodgkin and Katz34 demonstrated that the action potential 

rose at a rate roughly proportional to the rise of [Na+]e. When a neuron is at rest, the Na+ 

influx through voltage-gated Na+ channels is low, as these channels are usually closed or 

inactivated. However, the channel gate is displaced when [Na+]e increases.35 Higher [Na+]e 

speeded recovery from the inactivation state, enabling an earlier action potential and leading 

to hyperexcitability.35 Higher [Na+]csf caused a sympathetic hyperactivity response 

(increasing blood pressure and heart rate) through increasing ouabain-like substances and 

activating the brain renin-angiotensin-aldosterone system.36,37

We suggest that brain potassium/sodium homeostasis is disturbed in migraine because: (1) 

[K+]e is increased and [Na+]e is reduced during CSD/aura; (2) all 3 mutations in FHM affect 

potassium/sodium regulation; (3) [Na+]csf is increased in migraine; and (4) higher [Na+]e 

increases neuronal excitability. We derive a theory of migraine pathophysiology that may 

explain migraine symptoms resulting from a compromise in brain potassium/sodium 

homeostasis.

INCREASED CEC NKAT ACTIVITY IS THE LIKELY MECHANISM FOR 

INCREASED [Na+]csf

Routes of sodium transport across the cellular membrane include passage through voltage- 

or ligand-gated sodium channels, as well as by means of sodium transporters. We review 

herein the biochemistry of these 3 portals for sodium flux, and deduce that increased CEC 

NKAT activity is the likely cause of the increase in [Na+]csf. Review of NKAT regulators 

reveals that most have been implicated in migraine.

Voltage-Gated Sodium Channels.—

While there are 9 different types of voltage-gated sodium channels, only 5 exist in the 

central nervous system: NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.38 NaV 1.1 function 

is relevant in migraine since SCN1A mutations have been reported in FHM, as described 

above. NaV1.3 has been implicated in the long-term effects of spinal cord injury, which 

leads to altered regulation of the NaV1.3 channel, resulting in hyperexcitability and central 

neuropathic pain.39 Similarly, alteration of sodium channels may be connected to the pain 

associated with migraine headaches.

Ligand-Gated Sodium Permeability.—

Ionotropic receptors are a group of transmembrane ion channels that are regulated by 

neurotransmitters.The ion channels are selective to one or more ions, including Na+, K+, 

Ca2+, or Cl−, so they are also responsible for sodium influx. This category includes 

glutamate (AMPA, kainate, and N-methyl-D-aspartic acid [NMDA]) and 5-HT3 receptors 

that allow sodium influx on receptor binding.
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Sodium Transporters.—

These include (direction of ion flux in relation to the cell):

• The NKAT (3Na+ out, 2K+ in).

• The Na+/Ca2+ exchangers40 (sodium and calcium exchangers [NCXs] and 

NCKXs) (3–4 Na+, 1Ca2+, +/− 1K+, either in or out).

• The Na+/glutamate symporter (3Na+ and 1 glutamate, in).

• The Na+/H+ antiporter (1Na+, 1H+, either in or out).

Clearly, all 4 transporter groups could be involved in altering the [Na+]e, either by gain or 

loss of functions.

We can interpret an increase in [Na+]e during headache in 2 ways:

The first interpretation is that impairment of voltage- or ligand-gated sodium channels in 

migraineurs, or reduction in their density, would decrease sodium influx. Less sodium 

entering the cell would result in increased [Na+]e during migraine relative to the non-

headache state and to controls. Since action potentials do not substantially change external 

ion concentrations, decreased function of voltage- or ligand-gated sodium channels will not 

cause the observed 4 mM increase in [Na+]csf, let alone higher values that may occur at local 

brain regions. Glutamate is known to increase in CSF in migraine41 and a glutamate-gated 

sodium influx would decrease [Na+]e, the opposite effect to that observed during migraine. 

Perhaps more importantly, while reduced ion flux through the Na+ channels might elevate 

[Na+]e, the increased neuronal excitability in migraine requires more, rather than less, ion 

flux through the channels. Thus, we exclude sodium channel block from causing increased 

[Na+]csf and [Na+]e during migraine.

The second interpretation is that a mechanism exists in migraineurs that causes excess 

sodium to be pumped into the extracellular space. This could result from sustained over-

activation of sodium transporters, which are the only proteins capable of pumping sodium 

against its concentration and electrochemical gradients. The NKAT is the main exporter of 

Na+ and is reported to consume almost half of the brain’s energy.42,43 The other transporters 

consume much less energy and are therefore more likely involved in smaller modulations of 

Na+. For example, we suggest that potassium-dependent sodium and calcium exchanger 

(NCKX) has a role in CSD: the greater rise of [K+]e in ouabain-induced CSD in Ca2+ free 

solution44 is most likely from absence of the reverse mode NCKX that would export Na+ 

from the cell and import K+ and Ca2+ to the cell, if Ca2+ had not been removed.

Increased NKAT activity not only increases [Na+]e, but also decreases [K+]e. Thus, if NKAT 

over-activation contributes to the increased [Na+]e observed during migraine headache, one 

might expect an associated decrease in [K+]e. Our CSF data did not reveal a significant 

decrease in [K+]csf, though the overall [Na+]csf : [K+]csf ratio increased.29 We suggest that, 

during increased NKAT activity, the decrease in [K+]e/csf has been minimized by the strong 

glial regulation system for [K+].45
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The magnitude of the NKAT role in the brain42,43 suggests that its increased activity is the 

most likely cause of the increased [Na+]csf and [Na+]e in migraine, though further studies of 

[Na+]e and [Na+]csf are required. If NKAT is involved in migraine pathophysiology, then the 

structural, functional, regional, and cellular heterogeneity of its 3 α-chain subunits, 3 β-

chain subunits, and 7 γ-chain subunits is important.46 These are summarized in Table 1.

Brain CEC NKAT.—

NKAT activity provides the mechanism for the higher concentration of Na+ and lower 

concentration of K+ in CSF and brain extracellular fluid compared with blood. This is 

achieved because a large excess of blood is delivered to the brain (blood flow is 1000-fold 

greater than interstitial fluid flow), the tight junctions between brain capillary endothelial 

cells separate CSF and extracellular fluid from blood, and NKAT is restricted to the 

abluminal surface of the CECs,47 as illustrated in Figure 1. Brain CECs have 500-fold more 

NKAT than peripheral CECs,48 thus brain CECs will respond with greater sensitivity to 

changes in NKAT regulators than elsewhere. The CEC NKAT-regulated interstitial fluid 

cations are the main source of [Na+]e in brain tissue. Minimal [Na+]e arises from the neurons 

and glial cells, since the [Na+]i is normally only 10–15 mM.

The NKAT on the ventricular/apical surface of the epithelial cells of the choroid plexus49 is 

supplied with its NKAT-rich capillary network, and is considered the primary source of [Na
+]csf, though a significant contribution comes from CECs by way of the interstitial fluid.
50–53 Since choroid and CSF are midline, perhaps the more lateralized tissue CEC NKATs, 

especially those in the cerebral cortex, are better placed to increase the [Na+]e, consistent 

with the common laterality in migraine.

Regulators of NKAT (Table 2).—

The large number of molecular modulators of NKAT (a reflection of its importance in the 

brain) exert their effects by 3 distinct yet integrated mechanisms: genetically (polymorphism 

in NKAT or altered genetic regulation); directly (cations, ATP, membrane lipids, direct 

inhibitors or activators); or indirectly by signal transduction, usually from G-protein coupled 

receptors (GPCRs). Endothelial cell composition and functions are known to differ 

throughout the body and within tissues and are far from fully characterized, but receptors for 

many major NKAT regulators known to be involved in migraine have been demonstrated on 

brain CECs, including those for estrogen,54 serotonin,55 lysophospholipids,56 and GPCRs. 

Table 2 provides a framework of reference (a summary, but not exhaustive) for the extensive 

range of NKAT regulation pathways. We propose that the CEC is in a unique position to 

sense variation in any of these circulating NKAT regulators from blood, and signal changes 

to its abluminal NKAT to alter the brain interstitial fluid [Na+] and [K+]. This alters 

extracellular cations on the brain side of the CEC tight junctions and affects the excitability 

of neurons. The neuronal responses are manifest as aura or migraine.

THE CEC NKAT HOMEOSTASIS THEORY, AURA, AND MIGRAINE

We propose a potassium/sodium homeostasis theory for migraine pathophysiology based on 

the need to unify the known change in [K+]e and [Na+]e reported during CSD20,21 (that we 
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assume also occurs during migraine aura), the observed increase in [Na+]csf during the peak 

of acute migraine pain29 (that we assume is accompanied by increased [Na+]e), that all 3 

FHM mutations effect [K+]e and [Na+]e, and that increased [Na+]e increases neuronal 

excitability.

We hypothesize that NKAT regulators in the blood arrive at their receptors on the luminal 

side of CECs and transduce signals to NKATs on the abluminal CEC wall (Fig. 1). These 

altered CEC NKATs modify brain interstitial cations, causing symptoms:

Well State (Fig. 2).—

NKATs change the interstitial [Na+] and [K+] surrounding neurons and vary their 

excitability within normal homeostatic limits.

In migraine, the excitability shifts outside normal limits.

Aura (Fig. 2).—

When CEC NKAT activity falls below its normal lower limit, interstitial [K+]e rises, 

depolarizing the neuron, facilitating CSD that manifests clinically as aura. Reduced neuronal 

and glial NKAT activity along with potassium leak from cells may also contribute to the 

increased [K+]e at the start of CSD, since they have high [K+]i. Interestingly, decreased brain 

energy favors CSD57 and, because NKAT consumes a large amount of energy, this adds 

additional support to a role for NKAT in CSD. During CSD, extreme ion shifts occur at the 

neuron: [K+]e increases from 2.3 to 35 mM and [Na+]e decreases to 75 mM.20,21 Increases 

of [K+]e could induce persistent Na+ current (INap).58 Computer simulation demonstrates 

that INap and/or NMDA current could cause CSD-like depolarization.59 The elevated [K+]e 

induced depolarization could reverse NCX and NCKX, resulting in Ca2+ overloading, thus 

leading to apoptosis or excitotoxicity60 in neurons. CEC-induced vasoconstriction may also 

cause ischemia by 2 mechanisms: CEC NKATs change vasomotor tone by regulating the [K
+] in interstitial fluid where it can alter excitability of local vascular smooth muscles.61–63 

CECs may thus exert effects humorally by releasing mediators that include calcitonin G 

related peptide (CGRP), serotonin, and endothelin, which are altered in the blood during 

acute migraine.

We propose that repetitive and/or prolonged inhibition of CEC NKAT activity with 

prolonged increase of [K+]e may cause apoptosis of neurons and micro-infarction from 

vasoconstriction. We suggest that these neuronal and vasomotor effects are the basis for the 

increased frequency of hyperintense MRI signals and stroke observed in migraineurs with 

aura. This could be tested in an animal model by repeated and prolonged CEC NKAT 

inhibition with MRI and pathological evaluation.

In response to CSD and to avoid apoptosis and cerebral infarction, glial K+ re-uptake and 

increased NKAT activity rapidly restore the normal low [K+]e. Sustaining NKAT inhibition 

in cultured astrocytes with ouabain increases NKAT activity and leads to NKAT over-

expression,64 and elevated [Na+]i has been shown to increase NKAT activity.65 We propose 

that if compensation is perfect, the aura ends without migraine. This is uncommon (see Aura 

Followed by Migraine, below).
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The CSD moves at 3–6 mm per minute. Recovery of evoked potentials takes 15–30 minutes 

and ion redistribution takes at least 30 minutes.66 Leão initially described vascular changes 

in addition to the neuronal depression of CSD67 and the propagation of the CSD effect on 

cortical surface arterioles was recently reported to be separate from that in the brain 

parenchyma.68 The mechanism for propagation of either vascular or neuronal changes is not 

well understood. Based on the theory that decreased CEC NKAT induces CSD by increasing 

[K+]e in the interstitial fluid, we hypothesize that the “spreading” may be governed by the 

flow rates of K+ in the interstitial fluid.

Aura Followed by Migraine (Fig. 2).—

We propose that a more typical CEC NKAT response to the inhibition that caused aura is 

over-activation. This causes NKAT activity to exceed its normal upper limit, analogous to 

the cellular responses to NKAT inhibition,64,65 elevating [Na+]e and decreasing [K+]e. The 

high [Na+]e causes increased neuronal excitability, manifest clinically as migraine (Fig. 2).

Migraine Without Aura (Fig. 2).—

Independent of CSD, we propose that NKAT up-regulators cause CEC NKAT activity to rise 

above the normal upper limit, elevating [Na+]e and decreasing [K+]e. This causes varying 

degrees of increased neuronal excitability, manifest clinically as migraine (Fig. 2). It is 

possible that CSD may occur without obvious symptoms in patients who have migraine-

without-aura, in the form of a silent aura.69 Genetic analysis may help to separate aura and 

headache.70

Deviation from NKAT Homeostasis.—

Homeostasis is disturbed enough to cause aura or migraine when any regulator (Table 2) or 

NKAT itself alters CEC NKAT activity outside normal levels. Mechanisms that may alter 

these regulators include mutations/polymorphisms, variations from the environment (such as 

diet, medications, exercise, or stress), or alterations in their transport, synthesis, signaling, 

metabolism, or clearance. The multiple redundancy of this system is understandable to 

regulate such an important enzyme.

Many molecular circuits known to be involved in the pathophysiology of migraine are 

regulators of NKAT (Table 2), including serotonin, CGRP, dopamine, estrogens, glutamate, 

cannabinoids, nitric oxide, noradrenaline, or caffeine. The CECs are known to have 

serotonin, estrogen, and phospholipid receptors, and GPCRs.54–56 This theory adds to the 

understanding of migraine pathophysiology by offering a mechanism for excessive 

fluctuations of neuronal excitability resulting from deviations in CEC NKAT activity caused 

by changes in its many regulatory inputs.

THE CEC NKAT HOMEOSTASIS THEORY AND GENERAL MIGRAINE 

FEATURES

Increased neuronal excitation in trigeminal neurons from increased [Na+]e could cause pain 

without an external stimulus and release of Substance P and CGRP.71 CEC NKAT 

disturbance is not limited to the trigeminal pathway, and when [Na+]e is elevated in any 
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neural pathway, hyperexcitability would be manifest with pathway-specific symptoms. Each 

hyperexcitable pathway would have its own manifestation, consistent with the many 

symptoms during migraine. For instance, hyperexcitability of the vestibular pathway would 

cause nausea and/or ataxia, hyperexcitability of the auditory or visual pathways would cause 

phonophobia or photophobia, and hyperexcitability of the locus coeruleus would increase 

vigilance and alarm. Hyperexcitability of neurons that have inhibitory neurotransmission 

will further add to the variety of functional consequences. The range of possible symptoms 

are only limited by the neuronal circuits that can be affected by changes in the interstitial 

[Na+] and [K+]e.

We propose that deviation of CEC NKAT activity in migraine from normal limits can be 

short-lived or extended. As the [K+]e increases beyond tolerable levels during aura, glial re-

uptake of [K+]e and increased NKAT activity is required to reduce [K+]e and avoid 

apoptosis. If there are sufficient intracellular stores of NKAT available for translocation to 

the cell membrane, this process can be rapid, within seconds. However, if not locally 

available, the transcription, translation, and translocation of new NKAT protein can take 30–

60 minutes.73,74 Increased expression of CEC NKAT will restore the normal balance of [Na
+]e and [K+]e and terminate the CSD. At this time, the migraineur returns to neuronal 

homeostasis and feels normal. If the required NKAT levels are perfectly attained, then there 

is no migraine. More often, there is widespread over-expression of the CEC NKAT and [Na
+]e increases above the upper normal limits. Diffusely increased [Na+]e causes neuronal 

excitation that produces symptoms depending on the specific molecular isoforms and the 

location of the involved CECs, neurons, and vascular smooth muscles. These neuronal and 

vasomotor effects in migraine rapidly invoke many other cellular reactions, including 

activation of lipid mediators of inflammation and pain, disruption of oxidation control, etc. It 

may take hours to return these NKAT-derived activities to normal, a duration conforming to 

typical migraine.

We propose that when migraineurs are stressed and NKAT activity is close to the upper limit 

of normal, a single aggravating trigger such as sensory input (eg, sound, light, smell) can 

unmask the precarious CEC NKAT activity, with increased [Na+]e rapidly causing neuronal 

hyperexcitability and onset of migraine. In chronic migraine, we propose that chronically 

elevated CEC NKAT activity and the many reactive consequences of altered neuronal 

excitability fail to stabilize, and the high [Na+]e sustains neuronal hyperexcitability.

Aging.—

Migraine lessens with age, as do a number of NKAT parameters: NKAT activity and the 

neuronal resting membrane potential decrease with age in mice in a ouabain-dependent 

manner, considered to be due to lipid changes in the membrane.75,76 The mRNA levels of 

the NKAT α−3 isoform in neurons are reduced in normal aging77–79 (considered to increase 

the risk of Alzheimer’s disease with age80). NKAT activity is reduced with aging in 

synaptosome preparations from female rat brains.81 In a proteomic study of aging transgenic 

mice, NKAT levels dropped dramatically with aging.82 We propose that these multiple, 

independent studies of reduced NKAT activity with age are consistent with changes in 

migraine: (1) Inhibition of an already lowered NKAT activity will make it easier to drop 
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below the lower activity limit, increasing [K+]e and causing spreading depression, consistent 

with observations that auras by themselves are more common in the elderly; (2) Less NKAT 

activity will make older people less capable of increasing [Na+]e to levels that cause 

migraine. This reduced NKAT activity may not be beneficial when faster reactions or 

cognition are desired from physiological increases in neuronal excitability, but it has the 

advantage of less migraine.

Diurnal Timing.—

Several studies have suggested that migraine has a circadian rhythm, with the time of onset 

either in the early morning or afternoon.83–86 Experimentally, R192Q migraine mice lack 

the physiological retardation in circadian adaption to phase-advance shifts.87 The NKAT 

theory is consistent with these observations, since its biochemistry has similar rhythms; 2 

studies report a diurnal rhythm for NKAT expression that match the migraine onset times, 

consistent with predisposing migraineurs to attacks starting at these times: NKAT activity in 

the ventral suprachiasmatic nucleus neurons is diurnally regulated, with activity increasing 

during the day and decreasing at night.88 Inhibition by the NKAT inhibitor strophanthidin 

decreases at night.88 While other analytes also exhibit periodic rhythms, these clinical and 

NKAT diurnal correlates are consistent with, and may be responsible for, migraine 

chronovariations.

In humans, one can evaluate whether [Na+]csf has chronobiological variation similar to that 

of the time of onset of migraine and the diurnal NKAT variation. We found [Na+]csf does 

have such a rhythm in CSF sampled every 10 minutes for 24 hours from non-headache 

suffering controls.89 To extend this research, it is necessary to obtain less invasive samples 

than CSF; however, blood taken at the same time as CSF did not reveal changes in [Na+]. In 

searching for an alternative sample source with sodium regulation similar to that in the brain, 

salivary glands may be informative because they have significant origin from neuro-

ectoderm.90 We are currently evaluating whether migraineurs have chronobiological 

variation in saliva [Na+] that is similar to the changes in [Na+]csf.

Known chronobiological variations in migraine time of onset, [Na+]csf, and NKAT suggest 

that chrono-pharmaceutical approaches may help. Specifically, timing of drug administration 

may be more effective if optimized to coincide with the circadian variations in [Na+]csf and 

NKAT, with particular attention to the higher risk times in early morning and mid-afternoon.

Triggers.—

Dehydration and over-hydration are both known migraine triggers. Such extreme ionic 

challenges will directly influence CEC NKAT activity and may lead to migraine. Salt intake 

is largely controlled by kidney NKAT, and blood plasma [Na+] varies much more than in 

brain or CSF, yet equilibration between plasma and brain/CSF is rapid (minutes).30,32,33 

Thus, it is not surprising that salt intake can trigger headaches.91 Notably the elevated [Na
+]csf we found was not reflected in blood plasma,29 perhaps emphasizing the substantial 

regulation (at CEC NKATs) that differentiates these body compartments.

Sleep disturbance, a known migraine trigger, is associated with NKAT dysfunction: Sleep 

deprivation induces overexpression of NKAT in rat brain synaptosomal preparations, and in 
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the locus coeruleus, laterodorsal tegmentum, pedunculo pontine tegmentum, and medial 

preoptic area.92 Rapid eye movement sleep deprivation led to an increased ouabain binding 

Kd for NKAT in cultured fetal rat telencephalon neurons, which might contribute to the 

increased excitability in these rats.93 Migraine triggers of stress (eg, by noradrenergic 

receptors) and anoxia directly affect NKAT function by signal transduction pathways (Table 

2).

Diet can trigger migraine in some migraineurs. We propose that any dietary component may 

influence the NKAT regulators (Table 2) and we single out lipids for specific comment. A 

reduction in polyunsaturated fatty acids (PUFAs) or increase in saturated fatty acids in 

membranes inhibit NKAT activity; we suggest that counteracting this inhibition with PUFA 

supplements may be the basis for the improved migraine symptoms reported from one open 

and one blinded trial,94,95 though another double-blinded trial failed to show that PUFA 

supplements prevented migraine.96

Hormonal changes, especially peri-menstrually, are known to trigger more frequent and 

severe migraine. We propose that 2 mechanisms from the NKAT theory may be responsible: 

Estrogens activate NKAT by signal transduction (Table 2); and, similar to cholesterol, 

estrogens influence membrane fluidity-based changes in NKAT activity.

Alterations of many if not all the pathways in Table 2 have been reported in migraine, 

adding further support for this theory. The fact that NKAT has different expression levels 

and isoforms in different brain regions would allow for almost endless specific variation in 

symptoms. This would be consistent with the endless unique aspects of each migraine 

between and within sufferers that are superimposed on the most characteristic symptoms 

(pulsatile, unilateral, headache, with nausea, photophobia, and phonophobia).

Treatments.—

We propose that existing or future medication will be successful when treatment re-

establishes sodium homeostasis either directly or via signal transduction pathways of CEC 

NKATs. Non-pharmaceutical treatments, such as stress reduction, sleep hygiene, and 

avoiding dehydration or over-hydration may benefit by reducing NKAT perturbation. Since 

the gateway cell is the CEC, blood borne modifiers can affect CEC NKATs via their luminal 

receptors, thus removing the necessity for passage across the blood-brain-barrier. This may 

explain the central effects from well-established migraine medications that are known to 

have poor barrier penetrance, including triptans.

Cohen suggested that prophylactic drugs used to treat migraine do so through their affects on 

sodium regulation.97 Drug mechanisms in vivo are very complex but, based on the NKAT 

homeostasis theory, we can propose that blocking sodium channels may reduce the neuronal 

excitability that would otherwise result from excessively high [Na+]e. Prophylaxis takes 

many weeks before benefit, perhaps consistent with the time required to adjust all NKAT 

regulatory inputs for optimal balance and to stabilize (not flatten!) the interstitial fluid 

circulation of fluctuating [Na+]e and [K+]e.
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The NKAT homeostasis theory affords useful directions to both evaluate and conceive of 

new treatment approaches. First, new medications can be evaluated on cell cultures, brain 

slices, CECs, and small blood vessels, or in vivo for their effect on CEC NKATs and 

sodium/potassium homeostasis. Second, we may help to personalize medical therapy by 

defining the most disruptive NKAT regulators (Table 2) in an individual. This could be 

evaluated by screening endothelial or lymph cells from an individual to identify regulators 

(Table 2) that most perturb their NKATs (NKAT changes in lymphocytes have been found in 

migraineurs98 and endothelial cell precursors have been identified in peripheral blood99). 

Third, in status migrainosis or severe chronic migraine, perhaps invasive efforts to correct 

the high [Na+]e and low [K+]e by blood plasma or CSF exchange may be worth considering. 

Finally, on a precautionary note, we predict the possibility of cellular apoptosis or stroke 

during aura if potassium homeostasis is not corrected quickly; aggressive efforts are 

therefore justified to lessen aura severity.

CAVEATS

There is a paucity of direct data at this stage on migraine sodium/potassium homeostasis, 

and much of this theory is deduced from basic science knowledge of NKAT biochemistry 

and functions. We propose that the principal caveats are due to the limited knowledge of 

brain molecular pathophysiology. There has only been our single study to report elevated 

CSF [Na+] and nothing is known about regional differences in brain or CSF [Na+]. Details 

of all molecules involved in migraine, including their isoform and cell distribution, amount 

and duration of change, and circadian variations are, as yet, poorly defined. As an example, 

the Allen Mouse Brain Atlas reveals the ubiquitous presence of transcripts of all NKAT 

isoforms in the brain, but does not reveal specific differential cellular details. We have 

tabulated many modulators of NKAT, but have not discussed many consequences that result 

from altered NKAT activity (eg,46,100–105). Defining the mechanisms of neuronal 

excitability with regard to sodium/potassium homeostasis requires further research, 

especially in neurons, glial cells, smooth muscle cells, and CECs. Defining vasomotor 

effects from altered [K+]e and NKAT-induced humoral vasoactive compounds requires 

further research. The effects of NKAT disturbance in neuron-to-neuron connections, 

excitatory vs inhibitory neurotransmission, and the interactions between altered NKAT 

activity in different brain regions and in surrounding non-neuronal cells are beyond the 

scope of this analysis.

CONCLUSIONS

To explain the increased [Na+]csf reported in migraine, we propose a theory based on 

deviations from CEC NKAT homeostasis. Migraineurs have genetic or environmental 

variations of the myriad regulators of NKATs that predispose them to disturbances in their 

homeostasis, specifically in CECs. Fluctuations of NKAT activity outside normal limits lead 

to neuronal and vasomotor effects. Activity below the normal limit increases [K+]e, 

depolarizes neurons, causing aura.Activity above the normal limit elevates [Na+]e, increases 

neuronal excitability, causing migraine. The same ionic disturbance from CEC NKATs also 

affects vasomotor tone by direct or humoral effects on smooth muscles.
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This theory is consistent with the known events of migraine. We propose that deviation from 

normal CEC NKAT is a common pathway in the genesis of the distinct components of aura 

and migraine. There is much CEC NKAT regulation to define, but testing described herein, 

both in migraineurs and model systems, will help elucidate NKAT involvement in migraine, 

and help evaluate whether CEC NKAT modulation could more successfully manage 

migraine.
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Abbreviations:

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CEC capillary endothelial cell

CGRP calcitonin G related peptide

CSD cortical spreading depression

CSF cerebrospinal fluid

FHM familial hemiplegic migraine

GPCR G-protein coupled receptor

IGF1 insulin growth factor 1

INap persistent Na+ current

[Na+]csf or [K+]csf sodium or potassium ion concentration in CSF

[Na+]e or [K+]e brain tissue extracellular sodium or potassium ion 

concentration

[Na+]i or [K+]i intracellular sodium or potassium ion concentration

NCX sodium and calcium exchanger

NCKX potassium-dependent sodium and calcium exchanger

NKAT Na+, K+ -ATPase transporter

NMDA N-methyl-D-aspartic acid

PKA C, G protein kinase A, C, G

PUFA polyunsaturated fatty acid

SD spreading depression
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Fig 1.—. 
Illustration of brain capillary endothelium, luminal Na+, K+ -ATPase transporter (NKAT) 

regulator receptors, tight junctions, and the differences in flow and [Na+]e and [K+]e 

between blood and cerebrospinal fluid (CSF). Capillary endothelial cells (CECs) are 

exposed to circulating NKAT regulators on the blood luminal side, and if they detect a 

change, they signal to their abluminal NKATs to alter interstitial fluid [Na+]e and [K+]e that 

modulate neuronal and vasomotor excitability. Not shown in the figure (for simplicity) are 

the glial cell end-feet that wrap around the CECs and form part of the blood-brain-barrier, 

and the choroid plexus with its epithelial, abluminal NKAT that produces the majority of the 

[Na+]csf.
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Fig 2.—. 
This schema represents the principal differences in [Na+]e and [K+]e predicted to occur at 

neurons for migraineurs in the Well State, during Aura, or during Migraine, based on the 

capillary endothelial cell Na+, K+ -ATPase transporter (CEC NKAT) theory. The boxed 

regions above each axon illustrate the effects from the Na+ changes on neuronal excitability: 

Normal action potentials in the Well State; cortical spreading depression (CSD) in Aura; 

increased action potential firing frequency in Migraine.
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