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Abstract

Significance: Excessive and prolonged proinflammatory responses are associated with oxidative stress, which
is commonly observed during chronic tuberculosis (TB). Such condition favors tissue destruction and conse-
quently bacterial spread. A tissue remodeling program is also triggered in chronically inflamed sites, facilitating
a wide spectrum of clinical manifestations.
Recent Advances: Since persistent and exacerbated oxidative stress responses have been associated with severe
pathology, a number of studies have suggested that the inhibition of this augmented stress response by improv-
ing host antioxidant status may represent a reasonable strategy to ameliorate tissue damage in TB.
Critical Issues: This review summarizes the interplay between oxidative stress, systemic inflammation and
tissue remodeling, and its consequences in promoting TB disease. We emphasize the most important mecha-
nisms associated with stress responses that contribute to the progression of TB. We also point out important host
immune components that may influence the exacerbation of cellular stress and the subsequent tissue injury.
Future Directions: Further research should reveal valuable targets for host-directed therapy of TB, preventing
development of severe immunopathology and disease progression. Antioxid. Redox Signal. 34, 471–485.
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Introduction

Mycobacterium tuberculosis (Mtb), the etiological
agent of tuberculosis (TB), infects approximately a

quarter of the world’s population and persists as a leading
cause of death by a single pathogen (136). A prolonged battle
between host and pathogen emerges once infection is estab-

lished in the lung. From one side, alveolar macrophages
(AMs) encounter Mtb, and trigger inflammatory host re-
sponses to restrict mycobacterial growth and spread to neigh-
boring cells and/or tissue. On the other side, Mtb subverts the
host immune cell activation by modifying its metabolic and
transcriptional activities to thrive (71, 94). The balance be-
tween the host immune response activation against the
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pathogen and Mtb evasion mechanisms results in a wide
spectrum of immunopathology, ranging from asymptomatic
infection to disseminated disease and ultimately patient death
(22, 106, 112).

Over time, Mtb infection triggers formation of immune
cell structures, granulomas, in which different myeloid cells
and lymphocytes are spatially organized to restrict further
mycobacterial growth and dissemination to other tissues
(106). A consequence of the interplay between the host and
invading Mtb is a potent antimicrobial response that gener-
ates release of free radicals as well as production of cyto-
kines. This host response helps the eradication of Mtb,
although it may lead to bystander injury by promoting an
unfettered necroimmunopathology (100). The latter scenario
can be aggravated depending on pathogen virulence, which is
most commonly associated with failure of the host immune
response to prevent ongoing Mtb replication (Fig. 1).

Furthermore, chronic inflammation leads to an imbalance
between antioxidants as well as molecules with antioxidant
properties such as glutathione (GSH), ferritin, coenzyme Q10,
glutathione peroxidases (GPx) and free radical production,
including superoxide (O2�-), hydroxyl radical (�OH), lipid
hydroperoxide, and alkoxyl radicals, with subsequent tissue
destruction and Mtb proliferation (118). This enables airway
dissemination of Mtb through the lung and facilitates trans-
mission to other susceptible hosts via cough. Persistent in-
flammation in response to different Mtb virulence factors
occurs in parallel with resultant tissue remodeling, thereby
leading to a wide spectrum of clinical manifestations.

Understanding how Mtb modulates the host immune re-
sponse to evade host antimycobacterial effector functions is
of critical importance to facilitate development of new
therapies to treat TB. At present, antimycobacterial drugs are
the mainstay of therapy focused on direct mycobactericidal
activity or inhibition of bacterial replication. With the world-
wide emergence of drug-resistant mycobacterial strains,
alternative approaches are urgently needed. Innovative ther-

apies modulating host immune responses may offer a prom-
ising approach to mitigate the necroinflammatory response,
oxidative stress, and tissue remodeling. Novel therapies
targeting unfettered immunopathology may avert the devel-
opment of clinically severe TB and subsequent airborne
transmission.

In this review, we discuss how the interplay between sys-
temic inflammation, oxidative stress, and tissue remodeling
influences Mtb infection and development of active TB.
We also examine the current literature to highlight bio-
chemical pathways and host immune mechanisms that may
be useful as new targets for host-directed therapy of TB.

Mtb Infection Drives Systemic Inflammation

Perturbations in host tissue homeostasis triggered by in-
fectious microorganisms result in activation of immune sur-
veillance mechanisms that promote inflammation. In TB, the
proinflammatory response is thought to play a crucial role in
controlling Mtb infection. However, this antimicrobial host
response may be detrimental when exacerbated, leading to
unfettered inflammation and subsequent severe tissue injury
(118). Systemic inflammation occurs in both pulmonary
and extrapulmonary TB diseases, and is marked by increased
concentrations of inflammatory markers in peripheral blood,
such as acute phase proteins, lipid mediators (e.g., prosta-
glandin E2 [PGE2]), and a number of proinflammatory
cytokines as well as chemokines (132).

This significant production of cytokines/chemokines induces
migration of a large number of activated leukocytes, such as
neutrophils, monocytes, dendritic cells (DCs), and effector
lymphocytes into the affected tissue, thereby favoring estab-
lishment of immunopathology (106). Most of these cells can also
be detected in the blood vasculature, as evidenced by a strong
inflammatory signature in the case of extrapulmonary TB.

When Mtb is inhaled, it lodges in the lower respiratory
tract where it is phagocytosed by AMs and DCs. To evade

FIG. 1. TB-associated tissue necrosis. Upon infection with Mtb, host macrophages undergo potent activation, which
results in excessive production of ROS and several proinflammatory mediators. This response is responsible for some
mycobacterial killing but also induces cell death and collateral tissue damage (immunopathology). The dead cells and
stressed environment result in formation of DAMPs that amplify immune activation signals leading to a chronic cycle of
persistent inflammation and tissue damage, which we call herein a necroinflammatory response. Mtb is thought to take
advantage of this scenario, and disseminate to the lungs and other tissues. DAMPs, damage-associated molecular patterns;
Mtb, Mycobacterium tuberculosis; ROS, reactive oxygen species; TB, tuberculosis.
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the antimicrobial response from those mononuclear cells,
Mtb blocks phagosome fusion with lysosomes by inducing
host expression of coronin-1/TACO, and thus favoring pro-
liferation inside phagosome and continuous secretion of
mycobacterial products, such as 6 kDa early secretory anti-
genic target (ESAT-6) (26, 62, 122). Cytosolic ESAT-6
triggers host sensors recognition of an infection eliciting
proinflammatory response marked by the inflammasome
activation and mature interleukin (IL)-1b generation (6).
Recently, Mtb-infected AMs were shown to migrate into the
lung interstitium and facilitate Mtb dissemination to other
immune cells in the tissue (33).

AM translocation from alveoli into lung parenchyma de-
pends on IL-1 signaling, since IL1R-/- and MyD88-/- mice
display substantial accumulation of AMs in the alveolar
space. Furthermore, Mtb ESX-1 secretion system, which is
required for ESAT-6 release, has been shown to play a role in
AM migration into lung interstitium (33).

Interestingly, other studies have demonstrated that Mtb es-
capes from the phagosome into the cytosol through a mecha-
nism dependent on ESX-1/ESAT-6, resulting in the subsequent
induction of macrophage necrosis (59, 122). The exact mech-
anism by which Mtb escapes from the phagosome into the
cytosol is not yet well understood. One possible mechanism for
Mtb escape is through a pore formation on the phagosomal
membrane mediated by ESAT-6, since this Mtb protein has
been described to exhibit pore-forming capability (74).

The presence of Mtb as well as its ESAT-6 antigen triggers
activation of several molecular pathways, including the
NLRP3-inflammasome assembly required for cleavage of
pro-IL-1b (6), an essential cytokine for host defense against
Mtb (85, 86). These findings suggest a possible role of my-
cobacterial escape into cytosol and IL-1b production by the
NLRP3-inflammasome, promoting AM translocation into
lung parenchyma and further mycobacterial dissemination.

A wide spectrum of individual lesions is formed in the
lungs that vary from a solid structure to necrotic, caseous
tubercles, and ultimately cavitary granulomas. Different
stages of granuloma progression are concurrently apparent
during active TB. Granuloma formation begins with an ag-
gregate and ill-defined mass of immune cells resulting from
cell recruitment to the site of infection, becoming more
organized over time. The granuloma is composed of a
macrophage-enriched center, which later differentiates into
specialized cell types including multinucleated giant cells
and epithelioid macrophages, surrounded by B and T cells,
creating an efficient bacterial containment barrier to prevent
dissemination of infection (22, 100, 106).

Tumor necrosis factor alpha (TNF-a) and IL-12, produced
early in Mtb infection by antigen-presenting cells, play a
critical role in the establishment of a Mtb-specific adaptative
immune response and granuloma formation. Interferon
(IFN)-c, which is initially produced by natural killer cells
during the early stage of infection, is subsequently enhanced
secondary to expansion and activation of a Mtb-specific host
adaptative immune response. IFN-c plays an essential role in
the host defense against Mtb infection by potentiating mac-
rophage ability to phagocytose and kill the pathogen (94).

Mice deficient in IFN-c production are extremely suscep-
tible to mycobacterial infection (103). Recently, the pro-
duction of this protective cytokine has shown to be regulated
by adenosine receptors (A1, A2a, A2b, and A3), as a result of

extracellular ATP degradation by ectonucleotidases that are
enhanced during massive lung destruction caused by hyper-
virulent mycobacterial strains (5). The optimal generation of
IFN-c will determine the course of TB pathogenesis, in which
either low or inappropriately high production of this cytokine
is detrimental for the host (13, 14).

Interestingly, a study combining human disease and ex-
perimental models with nonhuman primates reported that
the heterogeneity of granulomas may impact the extent of
immune response and efficiency in controlling Mtb infec-
tion (130). A recent study has demonstrated that the im-
mune response against Mtb varies in anatomically distinct
compartments within granulomas through sophisticated
high-resolution imaging and mass spectrometry imaging.

Proinflammatory enzymes responsible for the generation
of lipid-derived inflammatory factors, such as eicosanoids,
are highly expressed both in necrotic centers and in cells
bordering the caseum. Moreover, high concentrations of ei-
cosanoid precursors were found within the granuloma when
compared with normal lung tissue, with marked accumula-
tion of these mediators at the border of the caseum. Enhanced
expression of leukotriene A4 hydrolase and lipoxygenases
has also been observed at the caseous granuloma when
compared with solid granulomas, suggesting increased gen-
eration of inflammatory eicosanoids, such as leukotriene B4
and lipoxins (81). In the following section, we discuss the
implications of inflammatory eicosanoids and their generation/
modulation on TB pathogenesis.

Eicosanoids are lipid mediators derived from the enzymatic
or nonenzymatic oxidation of arachidonic acid, including
prostaglandins, resolvins, lipoxins, and leukotrienes, which play
an important role in regulating the immune response (116).

Two groups of enzymes, cyclooxygenases (COXs) and li-
poxygenases, compete with each other for arachidonic acid
generating prostaglandins, lipoxins, and leukotrienes. The latter
two are bioproducts exclusively resulting from lipoxygenase
activity. Mice deficient in 5-lipoxygenase are more resistant to
Mtb infection, whereas prostaglandin E synthase-deficient mice
display high susceptibility to infection (12, 29, 40). It is possible
that lipid mediators may differentially regulate host protection
against Mtb by interfering directly or indirectly with the regu-
lation of programmed cell death in infected macrophages, but
this issue is still not fully understood (15, 85, 128).

In infected macrophages, lipoxin A4 (LXA4) has a dele-
terious effect on host Mtb containment, promoting macro-
phage necrosis and Mtb dissemination into adjacent cells.
Conversely, PGE2 appears to prevent cell necrosis and si-
multaneously stimulate apoptosis in Mtb-infected macro-
phages, thereby containing mycobacteria and reducing
bacillary burden through a process called efferocytosis, in
which apoptotic bodies are engulfed and removed from the
milieu by neighboring tissue cells. Efferocytosis of Mtb
trapped within an apoptotic body delivers it to the lysosomal
compartment, where the pathogen will be killed (12, 29, 64,
83, 87, 97, 132, 138).

Mycobacterial virulence factors were shown to signifi-
cantly influence the generation of different lipid mediators, in
which LXA4 is provoked by virulent Mtb strains, whereas
PGE2 was revealed to be triggered by avirulent strains (40).
Interestingly, Mtb-infected mice genetically lacking IL-1
receptor signaling have been shown to display a profound
reduction of PGE2 generation along with increased levels of
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LXA4 and LTB4 (both products of 5-LO) in the bronch-
oalveolar lavage fluid (BALF) (85).

In humans, plasma levels of prostaglandins and lipoxins are
both higher in patients with active TB than in uninfected indi-
viduals (97, 132). Besides the role of PGE2 in inducing apo-
ptosis of Mtb-infected macrophages, this lipid mediator has
been reported to trigger several tissue remodeling enzymes such
as the extracellular matrix (ECM) metalloproteinase-1 (MMP-
1), highlighting the role of PGE2 in tissue repair during TB (49).

Leukocytes generate reactive oxygen species (ROS) such as
hydrogen peroxides and nitric oxide to control Mtb growth in the
hyperinflammatory environment of the granuloma (81, 118). To
prevent collateral cellular damage from excessive ROS, infected
and activated cells concurrently induce production of antioxi-
dants and transcription of antioxidant enzymes.

With persistence of infection, when excessive or sustained
ROS production overwhelms the available antioxidant defense
systems, key molecules are denatured, with subsequent
dampening of immune cellular functions, leading to cell dam-
age and death (Fig. 2) (11, 118, 133). This inefficient control of
excessive ROS-mediated toxicity occurs due to reduced ac-
tivity of endogenous antioxidative enzymes and reduced intake
or absorption of antioxidants usually obtained from the diet
(104). Mtb thrives in this proinflammatory environment and
increases its metabolic activity leading to unrestrained prolif-
eration and augmentation of mycobacterial burden.

We have recently shown that increased Mtb replication in
macrophages is associated with intracellular iron overload
and cell death that facilitates Mtb dissemination (Fig. 3) (4).

Moreover, when ferrostatin-1, a drug known to prevent lipid
peroxidation (41), is used to treat both macrophages in vitro
and Mtb-infected mice in vivo it is possible to detect a drastic
suppression in macrophage death, tissue necrosis, and re-
duced Mtb loads in lungs of infected mice (4). Interestingly,
several reports have associated vitamin E deficiency, an an-
tioxidant that dampens lipid ROS (41), with increased host
susceptibility and disease severity, supporting the idea that
the loss of antioxidant response and excessive ROS genera-
tion are both detrimental to the host (2, 38, 70, 75, 96, 131).

Thus, manipulation of oxidative stress may potentially
serve as an adjunct therapy for TB, when added to conven-
tional long-term treatment. In support of this approach, a
body of clinical studies has shown that patients given vitamin
E (a major fat-soluble antioxidant that scavenges peroxyl
radicals and dismisses the oxidation of polyunsaturated fatty
acids [PUFAs]), selenium [a micronutrient important for the
function of some antioxidant enzymes, such as Gpx4 (61)],
and/or N-acetylcysteine [a precursor of GSH, an important
antioxidant (3)] as adjunct to Mtb antibiotics demonstrated
improved treatment outcomes when compared with those
receiving placebo, which was coincident with an improved
immune response against Mtb (23, 25, 55, 60, 65, 76, 117).

Along with the detrimental effect of excessive ROS pro-
duction, type I IFNs (IFN-a and IFN-b) have been shown to
promote Mtb infection. In addition to well-characterized
antiviral effects, type I IFN response generates proinflam-
matory immune signatures in the context of active TB in-
fection (17). Type I IFN response promotes unrestrained

FIG. 2. Excessive cellular stress in Mtb-infected macrophages. In conditions of low mycobacterial loads, infected
macrophages fully preserve its effector functions, such as production of ROS and inflammatory mediators, and the capacity to
present antigen to T cells via MHC class II. This scenario is associated with restrain of mycobacterial growth and induction
of the Mtb metabolic dormancy. With increasing mycobacterial replication, excessive activation leads to oxidative stress of
infected cells, affecting key molecules that account for cellular integrity. With defective effector functions, the infected
macrophage now becomes unable to restrain Mtb growth, leading to cell death and pathogen replication and dissemination.
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inflammation-driven tissue damage in mice and patients with
more severe forms of TB (97, 115, 132). Absence of type I
IFN signaling in ifnar-deficient mice results in increased
PGE2 and IL-1b production in BALF, suggesting that type I
IFNs antagonize the protective effect of the IL-1 pathway
during Mtb infection (84).

We have recently demonstrated that the overall disturbances
in cytokine plasma levels are heavily influenced by IFN-a, the
signal of which has been found elevated in blood from TB
patients (97). These findings argue that type I IFNs act to
downregulate protective host immune functions against Mtb.

IL-1 has an important role in host resistance against Mtb
through an inflammatory cascade that stimulates PGE2 pro-
duction via a pathway requiring COX-2, as described previ-
ously (85). Aberrant levels of this cytokine, however, may be
detrimental to host defense control of Mtb infection by in-
creasing tissue damage (90). Specifically, elevated produc-
tion of IL-1b is associated with more extensive radiographic
disease (27, 134) as well as with larger cavitary lesions (7, 32,
120, 129). Furthermore, IL-1 is involved in fibroblast acti-
vation (19) and recruitment of neutrophils, which has been in
turn shown to augment tissue damage, promoting loss of
pulmonary function and host death (16, 17, 51, 72, 89, 123).

As a major modulator of inflammation, IL-10 is a potent
cytokine in modulating exaggerated antimycobacterial im-
mune responses. The induction of IL-10 production during
infection inhibits macrophage functions and suppresses
proinflammatory cytokine production including TNF-a,
another cytokine required for optimal granuloma formation
(1, 94). Interestingly, TNF-a blockade has been shown to
facilitate granuloma disintegration and thus promote Mtb
dissemination (28, 44, 56, 121). IL-10 production occurs
within the granuloma and may also facilitate mycobacterial
persistence by preventing Mtb-phagosome maturation in

macrophages (35). In contrast, production of IL-10 by B cells
may aid counterbalancing of chronic inflammation in the
lungs of those with more advanced stages of TB disease
characterized by intense production of ROS (108).

The complex interplay between cytokines, chemokines,
and lipid mediators promotes loss of optimal regulation of the
inflammatory cascade. This chronic process leads to cell
stress, inducing deregulation in the redox reactions (imbal-
ance of oxidant and antioxidant products) affecting tissue
remodeling response, thereby culminating in the destruction
of pulmonary parenchyma.

Tissue Remodeling in Pulmonary TB

TB initially triggers an intense inflammatory response that
in most cases is followed by a chronic process of inflammation
mediated by numerous cell types, proinflammatory cytokines,
and chemokines. This inflammatory response results in sig-
nificant tissue remodeling of the ECM with destruction of
pulmonary parenchyma leading to bronchiectasis, restrictive
and obstructive lung disease (109). How Mtb promotes de-
velopment of cavitary lesions is not completely understood.
Mycobacterial virulence factors are directly responsible for
significant tissue remodeling, reinforcing the perception that
Mtb needs to promote ECM disruption to disseminate.

Tissue remodeling is a physiological process initiated after
cellular damage that aims to restore tissue function. In-
tracellular components released into the extracellular milieu
trigger immune responses promoting the recruitment of cell
types such as neutrophils and macrophages into the tissue
parenchyma. After the initial stage, a nonspecific type of
collagen is deposited in the tissue being repaired, which is
replaced later by tissue-specific collagen in a slow and
gradual process, involving the organization of collagen

FIG. 3. Mtb infection leads to death of infected macrophages via ferroptosis. With progression of infection inside
macrophages, Mtb leads to significant ROS production. The consequences of such ROS accumulation are several: (i)
excessive ROS lead to induction of HO-1, an enzyme that catabolizes heme and releases free iron inside the cell; (ii) there is
a substantial accumulation of intracellular free iron, which further increases the oxidative stress; and (iii) a decrease in GSH
and GPX4 is observed, which possibly dampens the capacity of the infected cell to fight against ROS accumulation. Iron is
highly reactive and amplifies the oxidative stress via Fenton’s reaction. Excessive ROS cause rupture of the plasma
membrane through lipid peroxidation, leading cells to die through and iron-dependent cell death named ferroptosis. GPX4,
glutathione peroxidase 4; GSH, glutathione; HO-1, heme oxygenase-1.
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fibers. This process is necessary for repairing damaged ECM
in response to innumerable infectious and noninfectious
pulmonary diseases, including pneumonia, chronic obstruc-
tive pulmonary disease, sarcoidosis, and acute respiratory
distress syndrome (49).

Through immune evasion mechanisms, Mtb begins its strug-
gle to survive in the midst of the host immune system resulting
in dysregulated production of cytokines, chemokines, and lipid
mediators. Chronic persistence of Mtb leads to a host response
that increases bystander tissue destruction involving MMPs,
cathepsins, and kallikreins, which outpaces collagen deposition,
TIMPs (metalloproteinase inhibitors), and other protease in-
hibitors, resulting in tissue remodeling. Elucidation of this pro-
cess is crucial to understanding TB immunopathology and may
highlight novel adjunctive treatment of pulmonary TB (46).

In particular, cathepsins play an important role in bone,
cartilage, and collagen processing, with cathepsin K being
the most studied. Cathepsin K has the capacity to cleave
collagen triple helix, and its activity differs from MMPs.
Generally, pathological collagen degradation is associated
with high levels of cathepsin K (66, 139). Other cathepsins
such as cathepsins B, L, H, and S have been identified
as potential targets for tissue remodeling based on in vitro
studies (135), although there is no evidence of involvement of
these cathepsins in tissue remodeling in animal models of TB.

In the lungs, cathepsin K is highly expressed by pulmonary
epithelial cells as well as AMs, playing an important role in
remodeling the ECM (20, 21). This finding is supported by
studies that found cathepsin B and K upregulation in serum/
plasma of pulmonary TB patients (6, 66). Employing an
animal model of lung cavitation, Kubler et al. infected rabbits
with a virulent Mtb strain and evaluated levels of cathepsin K
as well as MMPs. Upregulation of several MMPs including
MMP-1, MMP-13, MMP-14 as well as cathepsin K was
found in the lungs of Mtb-infected animals (66). These find-
ings suggest that inhibition of MMPs and cathepsin K may
serve as a potential target for adjuvant therapies in TB as
blockade of these enzymes may reduce pulmonary pathology.

MMPs are a family of proteases (which can be associated with
either zinc or calcium) that are able to degrade all components of
the ECM. Moreover, only certain MMPs are capable of cleaving
lung fibrillar collagens at neutral pH, which facilitates tissue
remodeling (45, 47). MMPs can be classified on the basis of their
substrate specificity into different subfamilies, namely colla-
genases (MMP-1, MMP-8, and MMP-13), gelatinases (MMP-2
and MMP-9), stromelysins (MMP-3, MMP-10, and MMP-11),
elastases (MMP-7 and MMP-12), and membrane-type MMP
(MMP-14, MMP-15, MMP-16, and MMP-17) (111).

In the lungs, MMP-1 (known as interstitial collagenase),
MMP-8 (referred to as neutrophil collagenase), MMP-13
(collagenase 3), and MMP-14 play important roles in cleaving
the primary architectural collagen in the tissue parenchyma
(43). Most MMPs are tightly regulated requiring gene tran-
scription induction before their secretion, except MMP-8 and
MMP-9 in neutrophils. The majority of MMPs are not ex-
pressed in healthy tissues, with their expression being ob-
served only in inflamed tissues, or in those undergoing repair
or remodeling (102). These enzymes are usually secreted by
monocytes-derived cells, neutrophils, and stromal cells (98).

Epithelial cells in the lungs are a significant source of MMPs
since they express MMP-1, MMP-2, MMP-7, and MMP-9. In
addition, highly differentiated macrophages express a broader

profile of MMPs than monocytes. Under all circumstances,
cytokines, exogenous stimuli, and cell–cell contact are re-
quired for MMP expression (24). MMPs have several physi-
ological functions in development, reproduction, maintenance
of homeostasis as well as facilitation of cell migration,
cleavage of cytokines and activation of defensins.

In TB, exaggerated generation of mainly MMP1 is asso-
ciated with progression of consolidated regions to cavities
with high bacterial loads as demonstrated in a rabbit model of
pulmonary TB cavitation (67). In addition, reduced level of a
metallopeptidase inhibitor TIMP-1 is found in consolidated
areas, leading to a potent activity of metalloproteinases and
promoting tissue destruction (48, 67). Several studies have
reported significant increase in MMP-1 levels in blood of TB
patients (8, 67), although the exact mechanism by which this
happens is poorly understood.

Interestingly, MMP-1 has been shown to be regulated by
mitogen-activated protein kinase (MAPK) signaling in hu-
man macrophages after Mtb infection (8, 49, 95, 107). In
addition, a number of studies have shown that increased
MMP-1 levels are critical for cavitation in TB pathogenesis
(45). It has been shown that mice do not express MMP-1,
impeding in vivo study on how this enzyme contributes to TB
pathogenesis. Of note, murine granulomas rarely progress to
necrosis as observed in humans, suggesting that expression of
MMPs, such as MMP-1, might be important for tissue dam-
age induction. This issue was addressed by infecting trans-
genic mice overexpressing human MMP-1 with virulent Mtb.
The upregulation of this enzyme has been shown to be det-
rimental via significant destruction of alveolar walls and lung
parenchyma, through enzymatic collagen degradation (45).

Furthermore, Mtb-infected mice deficient in MMP-9 dis-
play reduced macrophage migration into the lung and de-
fective granuloma formation, while being counterintuitively
more resistant to infection (126). Elevated migration of
neutrophils is also observed during early stages of Mtb in-
fection in mice and humans, with the corresponding high
MMP-9 levels after infection in both host species (57). Mtb
promotes MMP activity and collagen degradation by eliciting
cytokines such as TNF-a, which was shown previously to
augment levels of MMP-1 as well as MMP-10 and MMP-3,
thus propagating collagenase activity and causing tissue
damage. Interestingly, active TB patients display higher
levels of both heme oxygenase-1 (HO-1) and MMP-1 in
plasma compared with those with latent disease (8).

HO-1 cleaves heme, which is generally obtained from
heme-containing proteins, and generates three by-products
such as biliverdin, carbon monoxide (CO), and free iron. HO-
1 is induced in Mtb-infected macrophages by a mechanism
associated with ROS production and increased activity of
NRF-2 (Fig. 4) (110). Human monocyte-derived macro-
phages, when exposed to Mtb or intracellular ESAT-6, were
shown to upregulate HO-1 and simultaneously downregulate
MMP-1. Inhibition of MMP-1 is associated with CO pro-
duction as a result of HO-1 activity (8). However, free iron,
another by-product of HO-1 activity, was shown to trigger
high levels of MMP-9 through activation of AP-1/ERK/AKT
pathway (63), but did not impact induction of MMP-1 (8, 63).
Notably, increased cellular iron was associated with en-
hanced secretion of both MMP-9 and MMP-1 (79).

With recruitment of inflammatory cells and their subse-
quent death as a result of cell stress, caseous necrosis appears
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within days after Mtb infection, creating an optimal envi-
ronment for bacterial proliferation. Granuloma formation is
an effective way to contain Mtb proliferation and with an
appropriate host immune response maintain an intact ECM,
thereby preventing TB transmission by infected individuals.
However, when an imbalance between MMP-1 and TIMPs
occurs, the granuloma progresses to instability, facilitating
bacterial dissemination through tissue as well as between
individuals (98). MMP inhibitors have been shown to en-
hance both delivery and/or retention of TB drugs in the lungs
resulting in improved drug efficacy (137). In contrast, the
inhibition of MMP-7 in mice has been associated with more
severe pathology (99), suggesting a different role for MMPs
in regulating host resistance against Mtb.

Oxidative Stress Mechanisms in Pulmonary TB

Oxidative stress results from the imbalance of total oxidant
over total antioxidant status. After Mtb infection, the first im-
mune response is characterized by significant production of
oxidants by AMs (18), a critical process for the initial destruc-
tion of Mtb. During the initial stages of infection, immune cells,
primarily macrophages, produce ROS to promote the death of
Mtb. Under physiological conditions, high levels of ROS occur
concurrent with increased production of antioxidants to neu-

tralize potentially harmful effects of ROS in tissues (Fig. 5A).
The sensitive balance between antioxidant and oxidants is the
key of tissue homeostasis and, when disturbed, results in irre-
versible cell damage with pathological consequences.

While initial infection with Mtb triggers intense production of
ROS, in certain situations there is no commensurate and pro-
portional increase in antioxidants, thereby leading to an imbal-
ance between ROS and antioxidants in the tissue (Fig. 5B).
Through its continuous interaction with the host immune system,
Mtb triggers progressive increases in ROS production by mac-
rophages that culminate in excessive oxidation and lipid perox-
idation (Fig. 5C) (3, 4). Human monocyte-derived macrophages
infected with Mtb in vitro exhibit increased lipid peroxidation,
DNA oxidation, and more frequent cell death resulting from
dramatic accumulation of intracellular ROS (3, 4, 110).

Via an unknown mechanism, macrophages lose their primary
antioxidant enzymatic functions involved in the regulation of
lipid peroxide accumulation, resulting in increased pathogen
burden and proliferation. Excessive macrophage stress leads to
DNA peroxidation, which, consequently, downregulates cellular
metabolism resulting in a cascade of alterations that increases
ROS generation along with reduction of antioxidants, culmi-
nating in significant tissue damage and pathogen dissemination.

Peroxidation of lipids is a natural process that occurs in
steady state in small proportion in the body mainly by the effect

FIG. 4. Induction of HO-1 in Mtb-infected macrophages. HO-1 is a key antioxidant enzyme, which is produced in
response to cellular stress. In steady state conditions, the HO-1 transcription factor NRF-2 is not found at higher con-
centrations in the nucleus, and is rather in the cytosol, where it interacts with the molecule Keap-1, which leads to
proteasome-mediated degradation. Inside macrophages, Mtb induces HO-1 through a mechanism dependent on the release
of the virulence factor ESAT-6. ESAT-6 is secreted by Mtb inside the phagolysosome and creates pores in the membrane,
leaking to the cytosol. This process leads to potent activation of the NADPH oxidase complex (subunits p22phox and
gp91phox) and results in significant ROS production, including superoxide and hydrogen peroxides. This accumulated ROS
interferes the interaction between NRF-2 and Keap-1, releasing NRF-2 to be translocated to the nucleus and to induce HO-1
transcription. ESAT-6, 6 kDa early secretory antigenic target; NADPH, nicotinamide adenine dinucleotide phosphate; NRF-
2, nuclear factor erythroid 2-related factor 2.
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of several ROS, including hydroxyl radical, hydrogen perox-
ide, and others. These ROS attack most often the PUFAs ini-
tiating a self-propagating chain reaction. In brief, lipid
peroxidation is initiated by the hydrogen abstraction or addition
of an oxygen radical causing a rearrangement of the double
bonds in polyunsaturated lipids, which eventually culminates
in destruction of membrane lipids. Due to the presence of
methylene CH2-groups, which contain hydrogen that is par-
ticularly reactive to ROS, PUFAs are considered to be more
sensitive than saturated lipids to this peroxidation process (34).

Several by-products such as malondialdehyde (MDA) and 4-
hydroxy-2-nonenal (4-HNE) are generated during homolytic
decomposition of lipid hydroperoxides in this complex process.
The accumulation of these by-products has severe consequences
for cell function. Both MDA and 4-HNE have mutagenicity
properties due to their high ability to form DNA-adducts (82). As
mentioned above, failure of the natural biological membrane
repair leads to destruction of these cellular membranes, favoring
the accumulation of lipid peroxides (lipid ROS), which are
dangerous for cellular and tissue integrity. Interestingly, high
levels of lipid peroxidation by-products have been reported in
several noninfectious maladies, including Alzheimer’s disease,
renal failure, hepatotoxicity, fibrosis as well as infectious dis-
eases such as HIV/AIDS, malaria, and TB (3, 39, 91, 114).

HO-1 is an antioxidant enzyme highly expressed in lung
tissue that functions as a key stress-response component in-
volved in degradation of heme molecules resulting in gen-
eration of three by-products free iron, CO, and biliverdin, as
mentioned previously (30, 36, 119, 127). HO-1 displays a
dual role in the host stress response as it may work as an anti-
inflammatory component that improves cell viability through
generation of two important antioxidant molecules, CO and
biliverdin, or may conversely augment oxidative stress, in-
duce cell death, and stimulate pathogen growth by releasing
free iron from heme (4, 53). HO-1 has emerged as an im-
portant mediator in several diseases, such as malaria (88),
leishmaniasis (73), TB (8, 30, 36, 110, 119), and sepsis (113),
being frequently associated with severity of disease (9).

As mentioned above, Mtb drives production and secretion
of HO-1 and oxidant factors, such as MMPs (8). HO-1 and

MMP-1 are differentially regulated in infected macrophages
as a result of different inflammatory responses leading to
distinct clinical presentations, and the balance between these
molecules influences the extent of lung lesions and bacterial
loads. Mtb infection is associated with substantial increase in
total oxidation status in pulmonary TB patients when com-
pared with those with latent infection and uninfected controls
(3, 8). HO-1 has also been implicated in the promotion of
lipid peroxidation by liberating free iron and thus regulating
ferroptotic cell death (68, 80). Cells overexpressing HO-1
undergo ferroptosis, whereas cells deficient in HO-1 display
increased resistance to this form of necrotic cell death in
several in vitro models (68). How HO-1 is involved in the
induction of lipid ROS as well as cell death triggered by Mtb
remains unclear.

Lungs are continually exposed to high levels of free radi-
cals under stress conditions. Excessive production of ROS
has been highly associated with the oxidation of proteins,
DNA, and lipids, causing direct lung injury. Biological
membrane lipids are highly susceptible to free radical dam-
age, which is detrimental to cell functions and viability. Lung
functions are significantly impaired by accumulation of free
radicals. Initial oxidation of few lipid molecules is sufficient
to result in significant tissue damage, as lipid peroxidation is
a self-propagating chain reaction. Interestingly, lipid ROS are
also involved in the induction of MMP-1 expression (105).

The depletion of GSH, an important antioxidant, triggers the
accumulation of ROS along with increased levels of MMP-1.
Inhibition of lipid peroxidation through treatment of cells with
Trolox (a potent antioxidant) and by free iron chelation re-
duced the expression of MMP-1 in vitro (105). Despite ex-
tensive efforts in the field of lipid peroxidation, it is not clear
whether lipid peroxide accumulation is the cause or conse-
quence of pathological conditions. It seems that tissue damage
is initiated by excessive ROS production, and thus contributes
to the generation of several MMPs culminating in ECM deg-
radation, which in turn amplifies lipid ROS accumulation as
well as widespread necrosis. Since MMPs, HO-1, and lipid
peroxidation are all associated with severe TB disease (10, 30,
36), it is reasonable to consider the prevention of excessive

FIG. 5. Oxidative stress during infection. In a balanced response found when a pathogen is eliminated by infected cells
(A), initially there is a substantial increase in ROS generation, followed by a counter-response characterized by increased
production of antioxidant molecules, which prevents excessive stress and damage. When a pathogen persists, the ROS pro-
duction may increase incessantly over time. In this setting, the antioxidant responses could either fail to increase pro-
portionally (B) or be insufficient to dampen the pathological oxidation regardless of its induction capacity (C). The
persistent and unbalanced accumulation of ROS is called oxidative stress, and has important deleterious consequences in
cell metabolism and viability.
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ROS production through augmentation of host antioxidant
response as a target for host-directed therapy in TB.

Interplay Between Oxidative Stress and Tissue
Remodeling: Therapeutic Perspectives

Despite the fact that Mtb infects humans over millennia,
and that intense research toward identification of new ther-
apies has been done, TB treatment remains ineffective, with
multidrug therapy required for long periods focused on
halting replication and driving Mtb death. This treatment
strategy has limitations with ongoing significant mortality
resulting from TB disease and emergence of resistant strains.
Alternative and adjunct therapies are thus needed against
Mtb infection. A thorough understanding of the three main
drivers of pathology in TB, as shown in this review, high-
lights areas for new therapeutic strategies that target aberrant
host responses to Mtb infection, an approach that will com-
plement pathogen death by reducing pulmonary injury.

Several studies have associated oxidative stress with var-
ious lung diseases, such as chronic obstructive pulmonary
diseases, asthma, acute pulmonary distress syndrome, and TB
(93). Prior clinical trials have evaluated the efficacy of
therapies aiming to dampen inflammation in TB through
decreased ROS secretion and tissue remodeling in pulmonary
TB, focused primarily on steroids that have been used as
adjunctive treatment for several decades (37, 42, 123) to re-
duce IFN-c, TNF-a, and IL-1b (77). Dampening inflamma-
tion through reduction of proinflammatory cytokines may
impact the ability of immune cells to control Mtb infection.

Although ROS production is important for pathogen death,
it can also trigger a series of oxidative reactions of PUFAs on
host cells inducing cell death by accumulating lipid peroxides
on biological membranes (4, 50). High levels of lipid per-
oxidation have been reported in patients with pulmonary TB
compared with healthy individuals (3, 52). As mentioned
previously, lipid peroxides can also induce MMPs, which in
turn promote ECM degradation. Thus, it seems that targeting
excess generation of ROS is a promising therapeutic strategy
for TB, since overproduction of these molecules initiates a
series of chemical reactions and causes damage to cellular
components and excessive immune response activation by
interfering transcription factors, kinases activation, and
expression of proinflammatory mediators (31, 58, 92).

Convergence of these pathological pathways during TB
disease promotes oxidative stress and tissue remodeling
through mediation of the immune response. MMP activity is
balanced by TIMP function, while other mechanisms in-
cluding the prostaglandin signaling cascade and extracellular
signal-regulated kinase (ERK) MAPKs also regulate MMP-1.
In this context, p-aminosalicylic acid (PAS) has been shown
to be effective as one of the first treatments for TB. Despite the
absence of a well-understood mechanism of action, PAS is
now known to immunomodulate PGE2 production, suppres-
sing the release of MMP1 (107). These findings point PAS as a
promising novel approach to adjunctly treat TB.

Similarly, doxycycline has been shown to modulate MMP
secretion, primarily MMP-1 and MMP-3, in Mtb-infected
primary human macrophages at 72 h in a dose-dependent
manner as well as in bronchial epithelial cells (134).

FIG. 6. HDTs focused on
control of oxidative stress
may control TB. To be
transmitted, Mtb requires
lung tissue damage and
cough. Targeting key pro-
cesses, such as unbalanced
oxidative responses, may re-
sult in decreased loss of cel-
lular metabolism and better
preservation of effector func-
tions as well as in diminished
cell death and dampened tis-
sue damage. Together with
antimicrobial drugs, such
therapy may optimize treat-
ment by reducing its length,
by promoting better pathogen
clearance, and by minimizing
chances of residual tissue
damage after treatment. No-
vel clinical trials testing
HDTs are warranted to test
this hypothesis. HDTs, host-
directed therapies.
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Moreover, doxycycline suppresses TNF-a secretion by
macrophages, downregulating host inflammation in re-
sponse to Mtb infection (134). Concurrent with this anti-
inflammatory function, doxycycline has a direct bacteriostatic
action against Mtb. By acting on multiple pathways involved
in TB pathogenesis, doxycycline may serve as a potential
adjunctive drug to combat TB and reduce tissue complications
related to excessive inflammation. Interestingly, several stud-
ies have shown that broad spectrum inhibition of MMPs im-
proves TB drug treatment and also reduces tissue damage
in different animal models (78, 125). To date, there is one
clinical trial investigating the effect of doxycycline in the
modulation of tissue destruction in pulmonary TB patients
(retrieved from clinicaltrials.gov ID: NCT02774993).

Statins are widely used as inhibitors of cholesterol bio-
synthesis. It is known that these drugs have broad anti-
inflammatory effects, such as preventing excessive ROS
generation and also inducing autophagy in vitro, a host
strategy for eliminating the pathogen without triggering a
necroinflammatory response (54, 101). Of note, there is ev-
idence of an association between statin use and reduced risk
of developing active pulmonary TB (69, 124). In murine
models of pulmonary disease, statin treatment reduces lung
pathology. Nevertheless, there is still no direct evidence that
this drug prevents tissue damage in TB patients. Thus far,
there are two clinical trials of statin use as adjunctive therapy
for TB and TB-IRIS (retrieved from clinicaltrials.gov ID:
NCT03882177 and ID: NCT03456102).

Conclusions

TB infection has persisted as a significant cause of mor-
bidity and mortality despite the availability of antimicrobials
that aim to inhibit replication or cause mycobacterial death.
While much research to date has focused on novel anti-
mycobacterial therapies to address emerging drug resistance,
it is now clear that a shift in focus is needed to modulate
aberrant host responses. Emerging pathways involved in
tissue remodeling, excess lipid ROS generation, and systemic
inflammation offer novel targets for adjunctive therapies to
temper host immune responses. Methods to dampen systemic
inflammation must be balanced against the need for a robust
initial immune response driven by infected macrophages to
promote granuloma formation and Mtb containment (Fig. 6).

Prolonged macrophage activation in the course of chronic
infection leads to imbalance of oxidants and antioxidants.
Existing therapies including PAS and doxycycline, in addi-
tion to systemic steroids, are currently available options that
may modulate the host immune response via inhibition of
MMP-1 activity in chronic Mtb infection. Moreover, novel
therapies that target inflammatory pathways early in infec-
tion may represent an effective strategy to avoid disease
progression and tissue damage.
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Laboratório de Inflamação e Biomarcadores
Instituto Gonçalo Moniz
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Abbreviations Used

�OH¼ hydroxyl radical
4-HNE¼ 4-hydroxy-2-nonenal

5-LO¼ 5-lipoxygenase
AKT¼ serine/threonine kinase 1
AM¼ alveolar macrophage

AP-1¼ activator protein 1
ATP¼ adenosine triphosphate

BALF¼ bronchoalveolar lavage fluid
CO¼ carbon monoxide

COX¼ cyclooxygenase
DAMPs¼ damage-associated molecular patterns

DCs¼ dendritic cells
ECM¼ extracellular matrix
ERK¼ extracellular signal-regulated kinase

ESAT-6¼ 6kDa early secretory antigenic target
ESX-1¼Mtb secretion system

GPx¼ glutathione peroxidases
GPX4¼ glutathione peroxidase 4

GSH¼ glutathione
HO-1¼ heme oxygenase-1

IFN¼ interferon
IL¼ interleukin

IRIS¼ immune reconstitution inflammatory syndrome
LTB4¼ leukotriene B4
LXA4¼ lipoxin A4

MAPK¼mitogen-activated protein kinase
MDA¼malondialdehyde
MMP¼matrix metalloproteinase

Mtb¼Mycobacterium tuberculosis
MyD88¼myeloid differentiation primary response 88

NADPH¼ nicotinamide adenine dinucleotide phosphate
NLRP3¼NACHT, LRR and PYD domains-containing

protein 3
NRF-2¼ nuclear factor erythroid 2-related factor-2

O2�-¼ superoxide
PAS¼ p-aminosalicylic acid

PGE2¼ prostaglandin E2
PUFA¼ polyunsaturated fatty acid

ROS¼ reactive oxygen species
TB¼ tuberculosis

TIMP¼ tissue inhibitor of metalloproteinase
TNF-a¼ tumor necrosis factor alpha
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