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a b s t r a c t

The outbreak of coronavirus (COVID-19) in early 2020 posed a significant threat to people’s health and
economic sustainability in China and worldwide. This study investigated whether the lockdown mea-
sures precipitated by the COVID-19 pandemic affected air pollutants in the short term. Moreover, we
investigated the impact of the heterogeneity of cities and regions. Using city-level daily panel data for the
2018e2020 lunar calendar, we employed a two-way fixed effects model and interrupted time-series
analysis to inspect the effects of the lockdown measures. Interesting empirical findings emerged from
our analysis. First, compared with the base period from 2018 to 2019, the COVID-19 lockdown measures
significantly reduced air pollutants. In 2020, compared to 2018, PM10 and SO2 dropped by 15.28 mg/m3

and 6.55 mg/m3, and compared to 2019, PM2.5, PM10, and SO2 declined by 7.4 mg/m3, 19.34 mg/m3, and 1.41
mg/m3, respectively. Second, our dynamic analysis showed that as more time elapsed since the start of the
lockdown, the associated reduction in air pollution became more significant. Third, the proportion of
secondary industries and the cumulative number of confirmed cases had a considerable heterogeneity
impact on lockdown measures. Policymakers should encourage investment in new infrastructure and
initiatives to boost efficiency and enhance environmental outcomes.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, environmental pollution, and particularly air
pollution, has garnered increasing attention globally, especially in
developing nations such as China. Since the economic reforms and
the opening of China, the economy has entered a stage of rapid and
extensive development. Simultaneously, the level of air pollution in
China poses a significant health risk, including extensive premature
mortality (Dong et al., 2018; He et al., 2016; Wang et al., 2016)
where air pollution induces nearly a million people mortality per
year (Yue et al., 2020). Air pollutants are primarily solid particles,
including fine particulate matter (PM2.5), inhalable particulate
matter (PM10), and sulfur dioxide (SO2), that result fromnatural and
human activities (Galindo et al., 2011; Miao et al., 2019). To control
severe air pollution in China, the Chinese government imple-
mented the Air Pollution Prevention and Control Action Plan from
huan Agricultural University,
, China.
), 14159@sicau.edu.cn (H. Li),
3.com (L. Zhang).
2013 to 2017 (The State Council, 2013), which aimed to lower the
concentrations of PM2.5 in cities by 10%e25% (Feng and Liao, 2016;
Feng et al., 2019; Zhang et al., 2016). Additionally, the new Three-
year Action Plan to win the Blue Sky Defense War(The State
Council, 2018) from 2018 to 2020 aimed at lowering PM2.5 con-
centrations by 18% from the 2015 baseline. More specifically, and in
addition to policies that can directly remedy external factors
affecting air quality, the occurrence of certain major events may
also impact air quality. In China, air quality have been controlled
during large-scale events, competitions, and conferences, with
noteworthy results, and is commonly referred to as the APEC Blue or
Military Review Blue (Li et al., 2017) whereby the government often
implemented short-term temporary control policies around a
venue and provided samples that researchers analyze to determine
the effect these major events have on air quality. A further conse-
quence of air pollution includes reduced economic growth through
damage to people’s healthdsuch as respiratory and heart compli-
cationsdwhich in turn influences labor mobility and efficiency
(Peretto and Valente, 2015).

Atmospheric processes that determine concentrations of air
pollutants are nonlinear, and fluctuating weather plays a significant
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role in pollution formation, emphasizing the importance of mete-
orological and joint controls of pollutants (Li et al., 2019; Wang
et al., 2019). Meteorological conditions and pollutant emission re-
strictions work together to influence air quality. Previous literature
has revealed the impact of pollution controls, such as traffic and
industrial emission controls, on air quality (Wang et al., 2014; Yu
et al., 2019; Zhang et al., 2016). However, studies on the impact of
policies that do not target pollution control on air quality are
lacking.

In response to the coronavirus (COVID-19) outbreak, the central
government in China implemented severe nationwide lockdown
measures from the end of January 2020. Due to the restrictions and
the Spring Festival (Kong et al., 2015), many factories ceased doing
business, the traffic volume on roads declined, and the burning of
fireworks was banned, especially in China’s megacities. This pro-
vided an excellent opportunity to analyze the impact of such a long-
term and continuous reduction of pollutant emissions on air
quality. China had experienced several social disruptions, such as
the Olympic Games, G20, and the Shanghai World Expo. Regardless
of whether they were spontaneous or obligated, these activities
tended to weaken production activities, but also provided unique
opportunities for atmospheric research (Chan et al, 2015, 2019).
One notable difference between the COVID-19 lockdown measures
and previous social disruptions was that the latter has been more
enduring. The COVID-19 pandemic broke out in Wuhan at the end
of 2019 and was confirmed to involve human-to-human trans-
mission in January 2020, resulting in Wuhan’s isolation from other
regions from January 23. Other provinces and cities subsequently
adopted corresponding lockdown measures. As the epidemic came
under control, the main cities in China gradually lifted lockdown
measures from February 10. Of the disruptions to Chinese society in
the past 50 years, the lockdown measures caused by COVID-19 had
been the most protracted, and its impact on human society and
economic activities was also the most severe. In this study, both
Spring Festival and Lantern Festival were included in the study
period, during Spring Festive Season people travel intensively (Lai
and Pan, 2020; Li et al., 2016). The COVID-19 lockdown measures
affected the return of labor from rural areas to cities after the
Lantern Festival. In 2020, many migrant workers remained in their
hometowns in the countryside after the Lantern Festival, unlike in
previous years, when the number of migrant workers returning to
their city would reach a peak after the Lantern Festival. This pro-
vided a natural control group for this study to identify the effects on
air quality.

The single-difference method, the difference-in-difference
method (DID) (Chen et al., 2013), regression discontinuity designs
(RDD) (Hausman and Rapson, 2018; Neidell, 2010), and interrupted
time-series analysis (Linden, 2015), among others, are frequently
used in economics and social science to study the impact of envi-
ronmental and air quality policies. Each technique has its advan-
tages and weaknesses. When the government implements policies,
there are factors such as expectations and pro-environmental
enthusiasm, which could also affect policy implementation and
air pollutants (Athey and Imbens, 2017), making the parallel trend
hypothesis difficult to satisfy (Pei et al., 2020). Endogeneity prob-
lems cannot be effectively solved, which has become a considerable
challenge in evaluating the impact of policies on air quality. The
COVID-19 lockdown measures during the Chinese Spring Festival
severely restricted social and economic activities nationally.
Because the primary method of slowing the infection and death
rates in China was to impose strict social distancing regulations,
endogenous issues did not have a severe impact; thus, we used this
exogenous shock to quantify the changes in air quality in mega-
cities. The main aim of this study was to investigate how air pol-
lutants were affected by lockdown measures in response to the
2

COVID-19 pandemic and to gain insights by comparing 2020 with
2019 and 2018 using the same lunar calendar. We also analyzed the
heterogeneity of air quality changes arising from different urban
characteristics during the period up to the Lantern Festival. The
results confirmed an improvement in air quality which varied due
to differences in urban industrial development and the prevalence
of the COVID-19. Development suggestions for improving air
quality were presented; possible future changes in living and office
styles and the speeding up of the transformation of the industrial
structure were also recommended. Finally, we discussed opportu-
nities for saving energy and reducing emissions concerning new
infrastructure, 5G, and other novel lifestyle changes.

Compared to the existing literature on the association between
COVID-19 lockdown and air quality in China, our research made
two important contributions. First, the coverage of this research
was wider, including 31 megacities in China, whereas the existing
literature only focuses on Wuhan or a few cities such as Beijing,
Wuhan, and Guangzhou (Lian et al., 2020; Pei et al., 2020). Second,
we used the lunar calendar for the control group and not the
Gregorian calendar. Considering the Chinese Spring Festival Season
and its associated travel rush, using the lunar calendar as a control
group can reduce the effects of the Spring Festival in obtaining
more reliable estimation results.

The novelties of this study are as follows:
a. From 10 days before the Spring Festival to 14 days after the

Lantern Festival of the same lunar calendar, the equivalent national
average daily coal consumption in 2020 decreased by 20.77% (2018)
and 14.72% (2019). The average daily congestion index of China’s
five main citiesdShanghai, Chengdu, Guangzhou, Suzhou, and
Zhengzhoudwas 1.52 (2018), 1.43 (2017), and 1.19 (2020). Thus in
2020, when compared to the same period, this decreased by 22.22%
(2018) and 15.6% (2019). The average daily subway ridership of all
five cities was 3.93 million (2018), 4.192 million (2019), and 1.488
million (2020)da comparative decreased in 2020 of 62.12% (2018)
and 64.55% (2019), respectively.

b. During the same lunar calendar, after controlling for meteo-
rological factors such as daytime and nighttime wind and tem-
perature, dummy variables for rainfall, city, and year fixed effects,
the estimation results showed that the improvements in air quality
were both quantitatively and statistically significant. For 2020,
PM10 and SO2 decreased by 15.28 mg/m3 and 6.55 mg/m3, respec-
tively, from 2018, and compared to 2019, PM2.5 dropped by 7.4 mg/
m3, PM10 dropped by 19.34 mg/m3, and SO2 dropped by 1.41 mg/m3.

c. In the analysis of heterogeneity, we found that for cities with a
high proportion of secondary industries, the improvement in air
quality in 2020 was more significant. Cities faced more severe
infection rates (with more people diagnosed in COVID-19) had
more significant air quality improvements.

2. Research design

COVID-19 epidemic suddenly struck Wuhan at the end of 2019
and soon spread to the rest of the world in 2020 (Zhu et al., 2020).
To alleviate this epidemic, the Chinese government had adopted
unprecedented strict measures throughout the country, such as
social distancing and postponing the resumption of work and
production. Thirty-one provinces and cities (except Hong Kong,
Macao, and Taiwan) initiated the first-level response to major
public health emergencies. The number of confirmed cases in China
reached an inflection point around the time of the Lantern Festival.
The timing of the outbreak corresponded to leisure travel during
the Spring Festival and resumption of labor after the Lantern
Festival (Fig. A in appendix). This provided a precious sample for
examining how air quality responds to rapidly declining anthro-
pogenic emissions on a national scale, which provided a critical
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foundation for our understanding and development of relevant
policies. The overall research thinking of this study was described
by Fig. 1.

2.1. The impact of COVID-19 on economic activities and air quality

The overall strategy of the study is to compare the concentration
of selected pollutants, economic activities, and other indicators in
the same Lunar Calendar from 2018 to 2019. First, we present the
various charts of traffic conditions and energy consumption during
the COVID-19 outbreak, demonstrate the impact of COVID-19 on
economic activities, and visually present the basic facts of air
quality in China. TheWuhan Covid-19 lockdownwas happening on
January 23, 2020, and the 2020 Lunar New Year is January 25. So, in
this study, the first day of the first lunar month and the Lantern
Festival were taken as dividing points. The research period is
divided into three parts: 10 days before the Lunar New Year, from
the Lunar New Year to the Lantern Festival, and 13 days after the
Lantern Festival.

2.2. Empirical results of the air quality from 2020 with that in
2018e2019

In the second step, after controlling the fixed effects of years,
cities, and variousmeteorological factors, we examine the impact of
the COVID-19 outbreak on each city and discuss the heterogeneous
effects of the COVID-19 epidemic according to the proportion of
secondary industry as represented by GDP and the cumulative
number of confirmed cases in each city. The empirical model is as
follows:

AQit ¼b0 þ b1yrdum2020 þ bcontit þ hi þ εit (1)

AQit ¼b0 þ b1yeardum2020 þ b2yrdum2019 þ bcontit þ hi þ εit

(2)

Where the subscript i indicates the corresponding city, the
subscript t indicates the corresponding year and AQit represents the
air quality. Furthermore, yrdum is dummy variable representing the
relative time window of the occurrence of COVID-19, and the
subscript number is marked as the corresponding year. In addition,
we also add other meteorological factors as control variables contit ,
mainly including temperature, wind force in daytime and night-
time, and it was raining, snowing or not to control the influence of
meteorological factors on air quality. hi represents city fixed effects.
εit is a random disturbance term that changes with time. In the
above reference groups, 2019 and 2018 are the two models, b1
Fig. 1. A flow chart of the

3

which is the coefficient of the yrdum2020, the parameters of interest
capture the changes in air quality after the COVID-19 outbreak
compared with other periods.
2.3. The dynamic trend effect of the COVID-19 shock on air quality

The third step is to test the dynamic effect of the COVID-19
shock on air quality. Using event analysis, we used the Lunar New
Year as the starting point and divided the period after the Spring
Festival into 10 intervals. The dynamic trend effect of the COVID-19
shock was tested by the following method.

AQit ¼b0 þ
Xk¼10

k¼1

bk � Dik þ hi þ b1yeardum2020 þ bcontit þ εit

(3)

AQit ¼b0 þ
Xk¼10

k¼1

bk � Dik þ hi þ b1yrdum2020 þ b2yrdum2019

þ bcontit þ εit

(4)

Dik is a series of time interval dummy variables referred to above,
with values (0, 1) to control the interval between each day and the
lunar new year. For example, D2020;1 is the first dummy variable
representing the first 3-day interval from the lunar new year in
2020. The data for 37 days after the Spring Festival are collected in
this study. Therefore, it is divided into 10 interval periods. The co-
efficient of concern in the trend effect test was bk, which represents
differences in air quality between the COVID-19 period in 2020 and
the reference years of 2018 or 2019 in the K-th period after the
Lunar New Year, to characterize the dynamic change of air quality in
the COVID-19 period and the previous year.

And we also use the interrupted time-series analysis (ITSA)
method to identify the effects of Wuhan Covid-19 Lockdown on air
pollution. First, there is no doubt that the Covid-19 epidemic out-
breaking in Wuhan in the early of the 2020 year is exogenous to all
cities in China. No city officials were able to anticipate the outbreak
and take action in advance. So, we use a single-group to analyze the
effects of Wuhan COVID-19 Lockdown. The standard ITSA regres-
sion model assumes the following form (Biglan et al., 2000;
Briesacher et al., 2013; Huitema and Mckean, 2000; Muller, 2004).

AQt ¼ b0 þ b1Tt þ b2Xt þ b3XtTt þ εt (5)

AQt is the aggregated air quality variable measured at each equally
analysis in this study.
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spaced time point t, Tt is the time since December 1, 2019, Xt is an
indicator variable representing the intervention (Wuhan Lockdown
on January 23, 2020), and XtTt is an interaction term. In consider-
ation of robustness, we used not only the day of the closure of the
Wuhan but also five days before the lockdown point.

Secondly, we consider using two kinds of control groups for
comparison and modify the single-group model to the multiple-
group model.

AQt ¼ b0 þ b1Tt þ b2Xt þ b3XtTt þ b4Z þ b5ZTt þ b7ZXtTt þ εt

(6)

Here Z is a dummy variable to denote the cohort assignment
(treatment or control group), and ZTt ; ZXt ; ZXtTt are all interaction
terms among previously described variables. Amultiple-group ITSA
may be particularly valuable when there is an exogenous policy
shift that affects all the groups. The critical assumption is that the
change in the level or trend in the outcome variable is presumed to
be the same for the control group and, counterfactually, for the
treatment group had it not received the intervention.

We consider two kinds of control groups. The first set of control
group includes Chengdu, Chongqing, Hangzhou, and Shanghai. The
reason for choosing these four cities as the closure of Wuhan is that
the dimensions of these four cities are similar to Wuhan. The sec-
ond control group selects Chongqing, Changsha, Nanchang, Hefei,
Zhengzhou, and Xi’an cities. These six cities are the capital cities
bordering Hubei Province.
3. Study area, measurement, and period

3.1. Sample selection

The Chinese Spring Festival was one of the most important
traditional festivals in China. The peak transport in the Spring
Festival season which was also referred to the “spring travel rush”.
During this period, extremely high traffic inflows and outflows
occurred as numerous migrant residents return to their home-
towns. Most people were recorded twice or more due to the round-
trip and other trips they made in the Spring Festival season (Hu,
2019). The emission sources were expected to vary greatly during
this time due to tremendous fluctuations in human activity (Huang
et al., 2012). In China, the COVID-19 lockdown period began since
2020-01-23 and lasted until the end of February. This lockdown
period overlapped with the Spring Festival season which included
the Spring Festival and Lantern Festival. Traffic inflows and out-
flows in the Spring Festival season were concentrated before the
Spring Festival and around the Lantern Festival. In order to ensure
the comparability of the sample air quality from 2018 to 2020, a
total of 31 megacities in mainland Chinawere selected for research.
Locations of these metropolises are demonstrated in Fig. 2. In the
empirical research section, we use 1 day before the Spring Festival
(Lunar New Year’s Eve) to 13 days after the Lantern Festival as a
research period.

Air quality is the core variable of this paper, and there are many
evaluation methods for air quality. For example, according to the
“environmental air quality standard” (GB 3095e2012) issued by the
national Ministry of Environmental Protection, the basic items of
air pollutants included SO2, PM10, PM2.5, and other three categories,
in terms of index selection for measuring air pollution, some
scholars have chosen AQI (Chen et al., 2012), PM2.5, PM10 and SO2

and soot (dust) emissions (Kleanthous et al., 2009; Lee et al., 2005;
Troncoso et al., 2012) are taken as research indicators. Acknowl-
edging that if single pollutant data is selected as the proxy variable
of air quality, data coincidence will be challenging to avoid, and
sulfur dioxide and particulate matter have always been the focus
4

data in air quality detection. PM2.5, PM10 and SO2 from
JanuaryeFebruary 2018 to JanuaryeFebruary 2020 is selected as
the main indicators of air quality and mainly derived from the
national urban air quality real-time distribution platform of the
China National Environmental Monitoring Centre (http://www.
cnemc.cn/).

Besides, considering that meteorological conditions are the
main factors affecting air quality through its influence on the
diffusion, transmission, and accumulation of pollutants (Wang
et al., 2009; Zhou et al., 2018). So, we control day and night tem-
perature, day and night wind power, rain levels, snow levels. All
such data is derived from the China meteorological website (http://
www.cma.gov.cn/). Urban economic data is derived from the Na-
tional Bureau of Statistics (http://www.stats.gov.cn/), and the
number of confirmed cases of COVID-19 comes from the National
Health Committee (http://en.nhc.gov.cn/).

3.2. Descriptive statistics

Table 1 shows the descriptive statistics of selected variables. The
2018, 2019 and 2020 columns present the mean values and stan-
dard deviation by years. Relative to 2018 and 2019, 2020 on
average, has no significant difference in Meteorological conditions,
and lower PM2.5, PM10, SO2, NO2. The literature suggests that rain
and snow may wash away the air pollution (Olszowski, 2017).
However, there is no significant difference in the proportion of rain
and snow in the research sample over the last three years, with the
lowest proportion in 2020 on average. 2020 average temperature is
the lowest in the last three years, and the daytime wind speeds in
2020 are not the highest they have been in the last three years.

4. Results and discussions

4.1. Comparison of air quality between 2020 and 2018e2019 for the
same lunar calendar

Asmention above, we select the period January 15 to January 24,
2020, ten days before spring festive as the first stage; the period
January 25 to February 8, 2020, fifteen days between Chinese New
Year to Lantern Festival as the second stage; the period February 9
to February 22, 2020, fourteen days after Lantern Festival as the
third stage. Then we have compared these periods with the his-
torical corresponding lunar periods from 2018 to 2019. Fig. 3 de-
picts the three-stage scatter plot of the mean and confidence
interval for the PM2.5, PM10 and SO2. The mean of PM2.5 in 2020 is
77.63 mg/m3 which is higher than in previous years in Stage 1. In
Stage 2 the mean of PM2.5 in 2020 is 60.58 mg/m3 which still is
higher than that in 2019. However, themean of PM2.5 is 41.39 mg/m3

in Stage 3 which is significantly lower than that in previous years.
For PM10 in 2020, the mean for Stage 1 and 2 are 92.76 mg/m3 and
68.19 mg/m3 which have no significant difference from 2019.
However, the mean of PM10 is 58.12 mg/m3 in Stage 3 which is
significantly lower than that in previous years. As for SO2, a similar
pattern is observed.

In general, we find that there is no significant difference in air
pollution levels in stage 1, while air pollution is significantly lower
than in previous years in Stage 3. Air pollutants show a decreasing
trend in 2020. In previous years, the air pollutant trend shows a “V"
shape. Air pollutants arise with work resumption around the Lan-
tern Festival after reaching their lowest point at stage 2. Fig. 3 show
these results.

In addition to air pollutants, we also found that:
(1) Subway passenger volume. As the main form of urban

transportation, the subway is often regarded as the “heart” of the
city. Fig. B in the appendix shows the impact of COVID-19 on urban

http://www.cnemc.cn/
http://www.cnemc.cn/
http://www.cma.gov.cn/
http://www.cma.gov.cn/
http://www.stats.gov.cn/
http://en.nhc.gov.cn/


Fig. 2. Map of the study area.

Table 1
Descriptive statistics.

Variable Observations 2018 2019 2020

mean Std. Dev. mean Std. Dev. mean Std. Dev.

PM2.5 2697 56.78 42.27 61.52 50.67 51.32 44.37
PM10 2697 90.73 61.32 84.92 62.03 63.37 48.43
SO2 2697 18.56 15.55 13.16 10.5 11.27 8.72
O3 2697 59.11 18.77 46.27 17.33 58.75 15.16
NO2 2697 38.68 17.96 36.18 19.61 22.69 12.8
Temperature 2697 13.34 8.39 8.82 8.3 8.62 7.7
Rain and Snow (ratio) 2694 18.80% 29.25% 18.35%
Wind Speed 2697 3.25 0.54 1.95 0.92 2.31 1.19

Note: Rain and Snow (ratio) statistic is the proportion of rain or snow days during the research period in each year.
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subway traffic. On average, the mean values of subway passenger
volume (Ten Thousand) are 358.46, 376.22, and 426.17 in stage 1;
477.15, 363.11, and 48.15 in stage 2; and 477.15, 511.98, and 58.65 in
stage 3. It is apparent that after the Spring Festival in 2020, subway
passenger volumes in the five cities decline precipitously. In later
lockdown periods when the city closed the subway, passenger
volumes approach zero. This decline is more prominent compared
to the same period in the previous years, suggesting that the
lockdown measures significantly impacted urban residents’ choice
of the subway as a transportation mode. Urban public trans-
portation is not the first choice for people who wanted to travel
during the outbreak, and it is halted when incidences become
severe.

(2) Urban congestion index. This is an accurate indicator of road
traffic conditions in cities (Requia et al., 2018). Fig. C in the appendix
shows the impact of COVID-19 on urban road traffic conditions.
5

There is no significant difference between the congestion index in
stage 1 of 2020 and the previous yearsd1.47 (2018), 1.34 (2019),
and 1.33 (2020). Due to the nationwide lockdown measures, the
stage 2 congestion index in 2020 is quite different from that of 2019
and 2018. On average, Stage 2 congestion indices were 1.37 (2018),
1.31 (2019), and 1.1 (2020). In stage 3, after the Lantern Festival in
2018 and 2019, the congestion index returns to the average levels
experienced before the Spring Festival but remains at low levels
throughout 2020. On average, Stage 3 congestion indices are 1.72
(2018), 1.63 (2019), and 1.13 (2020). Therefore, we may draw pre-
liminary conclusions based on the trends of subway passengers and
the urban congestion index: the lockdown measures caused by
COVID-19 significantly reduced people’s travel and particularly
their use of public and other means of transportation.

(3) Daily average coal consumption: Coal is an essential factor
affecting air quality and is one of the primary sources of SO2. We



Fig. 3. Three stages of average air quality (PM2.5, PM10, SO2) status from 2018 to 2020.
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make an approximate comparison of the daily average coal con-
sumption of the six power plants between the Lunar New Year and
the Lunar Lantern Festival from 2018 to 2020 (Fig. D in the ap-
pendix). The results show that no significant difference between
the first stage of 2020 and that of previous years. In contrast, the
daily average coal consumption in 2020 decrease significantly after
the Spring Festival, from 450,000 tons to 350,000 tons per day,
approximately 22% in the second and third stages. Possible expla-
nations are that many heavy industries with high coal consumption
postponed returning to work due to the COVID-19, resulting in
considerable changes in their coal consumption.
4.2. Baseline estimation

Table 2 presents the COVID-19 lockdownmeasures effects on air
quality upon the baseline model specification (1) and (2). The
benchmark group in the columns (1) to (3) is 2018, and columns (4)
to (6) is 2019. All columns consist of the city-level meteorological
conditions, including temperature, wind force in daytime and
nighttime, and raining or not. Besides, city fixed effect is included.
Standard errors presented in the parenthesis are clustered at the
city level.

The coefficients for 2020.Year are negative and statistically sig-
nificant at the 1% level for PM10 and SO2 in columns (2) to (3). These
mean that PM10 and SO2 in the 2020 research period are statisti-
cally significantly lower than in 2018. The estimated coefficients
of �15.28 and �6.55 indicate that the lockdown measures in 2020
lead to a 15.28 and 6.55 decline in PM10 and SO2 compare to 2018. In
other words, after controlling for meteorological condition and city
fixed effects, relative to the average, PM10 dropped by 19.18% and
SO2 dropped by 45.71% in 2020. The coefficients for 2020.Year are
6

negative and statistically significant at the 1% level for PM2.5, PM10

and SO2 in columns (4) to (6). These mean that three air pollutant
indicators in the 2020 research period are statistically significantly
lower than in 2019. The estimated coefficient of �7.4, �19.34
and�1.41 indicate that the lockdownmeasures in 2020 lead to a 7.4
mg/m3, 19.34 7.4 mg/m3 and 1.41 7.4 mg/m3 decline compared to
2019. In other words, after controlling for meteorological condition
and city fixed effects, relative to the average, PM2.5 drops by 13.13%,
PM10 drops by 24.28% and SO2 decreases by 9.84%. Whether using
2018 or 2019 as the benchmark group, the overall air pollutant
levels in 2020 show a significant decline.
4.3. Dynamic estimation

In the benchmark regression analysis, we regard 2020 as a
whole and estimate the effects of COVID-19 on air pollution. To
estimate the dynamic effect of COVID-19 on air pollution levels in
2020, the interactive term of time to Spring Festival(t) and
2020.Year dummy variables are added to the baseline regression
equation. Time to Spring Festival is treated as a continuous variable
tomeasure the timing trend effect of air quality with the increase of
distance in time to the Spring Festival, and the results are shown in
Table 3.

In Table 3 the variable t represents the date from the Spring
Festival. For example, if t equals 10, this means ten days after Spring
Festival. The variable 2020:Year � t represents a year dummy var-
iable multiplied by the variable t. The coefficients for 2020:Year � t
are negative and statistically significant at the 1% level in columns
(1), (2) and (4) to (6), indicating that the further away from Spring
Festival, the greater decline in air pollutant levels. The benchmark
group in columns (1) to (3) is 2018, and in columns (4) to (6) is 2019.



Table 2
Benchmark regression Results.

J. Zhang, H. Li, M. Lei et al. Journal of Cleaner Production 296 (2021) 126475
Taking column (2) as an example, after adding year fixed effect and
city fixed effect, each day after the Spring Festival, the PM10 level
drops by 1.13 per day. These findings indicate that COVID-19 lock-
down measures contribute to a significant decline in air pollutants.
During our research period, the longer the time from the lockdown
started, the more significant the air pollution reduction was.

To test whether there is heterogeneity in the dynamic trend
effect during the lockdown measures period, this study specifies
models (3) and (4). We split the continuous variable t mentioned
above into 9 intervals. Each interval contains three days. Table 4
represents the corresponding results. The benchmark group in
columns (1) to (3) is 2019, and in columns (4) to (6) is 2018. Fig. 4
depicts the scatter plots of the estimate coefficients for lockdown
measures dynamic effects and the corresponding confidence in-
tervals. Fig. 4 has three subgraphs: 2018 vs. 2019, 2020 vs. 2018, and
2020 vs. 2019 of three air pollutant indicators. From Table 4 and
Fig. 3, we find that: First, the air pollutant levels have increased in
2019 relative to 2018. Second, Compared with 2018 and 2019, a
dynamic downward trend in air pollution levels due to lockdown
measures in 2020 relative to 2018 and 2019. Third, the dynamic
trend effects brought by lockdown measures present obvious het-
erogeneity. In the 6 and 8 intervals during the Lantern Festival, the
decline in air pollution levels was the largest and statistically sig-
nificant. At the beginning of lockdown measures, in the first few
intervals, there was no significant difference between the air
pollution levels in 2020 and previous years. Due to China’s urban-
rural structure and labor migration habits, around the Lantern
Festival is the peak period for labor to return to work. Combining
Table A in appendix and Fig. 3, there is no significant difference
between PM2.5 in 2020 and previous years in the early stage, but
PM2.5 around the Lantern Festival is significantly lower than that in
previous years. This further validates the human economic activ-
ities have a significant impact on air pollution.
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In this part of the empirical analysis, 2018 and 2019 are replaced
as different reference groups. The year 2020 is compared with the
same Lunar Calendar of the previous two years. Based on the
estimation results, we conclude that the COVID-19 lockdown
measures have a significant positive impact on air quality in China’s
main cities. In addition, the further away from the Spring Festival,
the better the air quality in 2020. In the literature, we learned that
the COVID-19 outbreak had a considerable impact on people’s daily
economic activities. Water, land, and air traffic, as well as subway
passenger traffic, energy consumption, and so on, demonstrated
precipitous declines. The source of air pollution, in addition to
objective natural factors, was human-made pollution sources,
which primarily included industrial waste, gas, coal-fired chim-
neys, and road traffic (motor vehicles, ships, etc.) The outbreak
reduced the generation of human-made pollution sources and
effectively improved air quality.
4.4. Heterogeneity analysis

First, the heterogeneity of the industrial structure is examined.
PM2.5 and PM10 are mainly derived from combustion smoke and
dust and secondary pollutants, and SO2 is primarily derived from
coal-fired power plants, industrial furnaces, etcetera. Power gen-
eration and steel are two industries that consume considerable
amounts of coal (Lu et al., 2013). Therefore, the industry that has the
greatest impact on air quality is the secondary industry, which
primarily includes the mining industry, manufacturing industry,
electricity, heat, gas and water production and supply industry,
construction industry, etc. The lockdown measures had a signifi-
cant impact on the secondary industry by delaying the resumption
of work.

Therefore, according to the value-added of the secondary in-
dustry accounted for GDP, the major cities in China are divided into
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three categories: low, medium, and high. Table 5 presents the
heterogeneity of the industrial structure effects on COVID-19
lockdown measures. All columns consist of the city-level meteo-
rological conditions, including temperature, wind force in daytime
and nighttime, and it is raining or not. Besides, the city fixed effect
and year fixed effect are included. Standard errors presented in the
parenthesis are clustered at the city level. Columns (1) to (3)
represent the estimation of cities with relatively low secondary
industry proportions, columns (4) to (6) represent medium pro-
portion cities, and columns (7) to (9) represent high proportion
cities. Estimates show significant city heterogeneity for both PM10
and SO2. This indicates that the decrease in air pollutants due to
COVID-19 is more remarkable in cities with a higher proportion of
value-added by the secondary industry. Taking the PM10 indicator
as an example, in the low group, lockdown measures led to a
decrease in PM10 of 10.5 mg/m3, but in the high group, the corre-
sponding decline in PM10 was 20.3 mg/m3. There were notable
differences between the two groups.

Second, the heterogeneity of the cumulative number of
confirmed cases in provinces is also investigated. In addition to the
heterogeneity of the industrial structure, the heterogeneity of the
cumulative number of confirmed cases in each province also
affected local precise and differentiated epidemic control strate-
gies. The differences in the cumulative number of confirmed cases
will affect people’s daily lives, which will further affect the effect of
COVID-19 lockdownmeasures on air pollutants. Next, based on the
cumulative number of confirmed cases of COVID-19 released by the
National Health and Health Commission as of February 21, 2020,
our sample is divided into three groups. Table 6 represents the
8

heterogeneity of the cumulative confirmed cases of effects. Esti-
mates show a group that is more severely affected by the COVID-19
epidemic, the more significant the reduction in air pollution levels.
Estimates show significant city heterogeneity for both PM10 and
SO2. This indicates that the decrease in air pollutants due to COVID-
19 is more remarkable in cities with a higher proportion of value-
added by the secondary industry. Taking the PM10 indicator as an
example, in the low group, lockdownmeasures led to a decrease in
PM10 of 10.5 mg/m3, but in the high group, the corresponding
decline in PM10 was 20.3 mg/m3. There are notable differences be-
tween the two groups.
4.5. Interrupted time-series analysis (ITSA)

Table B and Fig E in the appendix have reported the estimation
of the model (5) and (6), which also show the air pollution ten-
dency. Posttreatment trend estimations that are the estimated co-
efficient of b1 þ b3 for the single-group model and the treatment
group, control group, difference for the multiple-group model.
Column (1) reports the single-group results. The starting level of
the air pollution PM2.5 was estimated at 106 and PM2.5 appeared to
decrease significantly every day from December 1, 2019, to January
23, 2020. We also found after the introduction of the Wuhan
lockdown policy, PM2.5 significantly daily reduced at a rate of 1.12
(95% CI ¼ [-1.84,-0.41]). Column (2) reports the robustness check
results. We use January 19, 2020, as the intervention date, the
Postintervention Linear Trend of Wuhan lockdown is �1.63 (95%
CI ¼ [-2.34,-0.93]). These indicate if COVID-19 is an exogenous
shock, under the single-group model, the Wuhan lockdown policy
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has significantly reduced air pollution levels. Column (3) reports
the multiple-group model estimated results of first type control
groups. Postintervention Linear Trend of treated group (Wuhan)
is �1.13 (95% CI ¼ [-1.94, �0.32]), correspondingly control groups
are �0.06 (95% CI ¼ [-0.61, 0.49]), the difference between treated
and control group is �1.07 (95% CI ¼ [-2.05, �0.09]). That means
that compared with the capital cities of a similar dimension, the air
pollution in Wuhan has dropped more after the lockdown. Column
(5) reports the multiple-group model estimated results of second
type control groups. The difference between Wuhan and control
groups is 0.672 (95% CI ¼ [-0.73,2.08]), so the difference is not
significant. This result may imply that the provinces surrounding
Wuhan may also have adopted strict control regulations so that
there was no significant difference between the control and treat-
ment groups.
5. Discussion

This study shows that, compared to 2018 and 2019, the
9

lockdown measures caused by the COVID-19 significantly affected
air pollutants in 31 megacities in mainland China. Furthermore, the
dynamic and heterogeneity analyses indicate that after the Spring
Festival, air quality increasingly improved in 2020. A higher pro-
portion of secondary industries and a larger number of confirmed
cases resulted in a more significant decline in air pollutants. Our
results are consistent with much of the recent literature (Lian et al.,
2020; Wang et al., 2020; Zheng et al., 2020), although they notably
differ from those of (Pei et al., 2020; Zambrano-Monserrate et al.,
2020). Reasons for this inconsistency in the existing literature
may include: First, part of the literature only studies three cities in
China, while this study covers 31 cities, and the research objects are
broader; Second, the reference group of this study is from the same
Lunar period, whereas certain studies use the equivalent Gregorian
perioddconsidering the Chinese New Year effect, using the lunar
calendar is a more reasonable choice.

A key contribution of this study, compared to the existing
literature, is our exploration of the dynamic effects of lockdown
measures on air pollution. Considering the Spring Festival travel
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rush in China, we used the time period up to the Lunar New Year to
measure the dynamic effect, and the empirical results verify the
impact of the decline in human economic activity on air pollution.
Another contribution of this study is that it explores the impact of
the heterogeneity of cities and the cumulative number of confirmed
cases of air pollution. The existing literature on the impact of
COVID-19 on air quality mostly focuses on factors such as
geographical location and meteorological conditions, while
ignoring the economic structure and severity of the epidemic
(Collivignarelli et al., 2020; Mahato et al., 2020; Sharma et al.,
2020).

Unfortunately, we cannot determine the long-term effects on air
quality from this datadlong-term effects of lifestyle behavioral
changes, such as the lack of physical activity, alcohol use, mask
wearing, increased handwashing, and a greater willingness to drive
private cars (Aloi et al., 2020) are worthy of further exploration.
Additionally, the indirect effect of lockdownmeasures on air quality
was beyond the scope of this study. Quarantine policies, established
in most countries, have led consumers to increase their demand for
online shopping for home delivery. Consequently, waste generated
by households has increased. Medical waste is also on the rise
(Zambrano-Monserrate et al., 2020). These indirect effects caused
by COVID-19 are worthy of future research.
10
6. Conclusions and implications

Using the city-level daily panel data of 31 cities in mainland
China during the 2018e2020 lunar calendar, we conduct an
empirical study on the effects of the COVID-19 lockdown measures
on urban air quality. The empirical results show the following:

First, the COVID-19 lockdown measures have severely affected
everyday life. Subway passenger traffic volumes and the urban road
congestion index reflect urban transportation habits. Due to strict
prevention and control measures, the subway was closed, passen-
ger traffic volume ceased, and the congestion index dropped to 1
after the Spring Festival indicating that people reduced their fre-
quency of trips. The decrease in the daily average coal consumption
of approximately 22% demonstrated the delayed resumption of
work in factories.

Second, we controlled for meteorological factors such as day-
time and nighttime wind, temperature, and dummy variables for
rainfall, city, and year fixed effects during the equivalent lunar
period. Then, compared to 2018, PM10 in 2020 dropped by 15.28 mg/
m3 and SO2 dropped by 6.55 mg/m3; Compared to 2019, PM2.5

dropped by 7.4 mg/m3, PM10 dropped by 19.34 mg/m3, and SO2
dropped by 1.41 mg/m3. The improvement in air quality is both
quantitative and statistically significant. The results of further
analysis of heterogeneity show that the proportion of secondary
industries and the cumulative number of confirmed cases have a



Table 5
Heterogeneity effects of industrial structure.

Table 6
Heterogeneity effects of cumulative number of confirmed cases.

J. Zhang, H. Li, M. Lei et al. Journal of Cleaner Production 296 (2021) 126475
noteworthy impact on lockdown measures. The empirical findings
of this study provide a novel understanding of COVID-19 lockdown
measures. There is an apparent improvement in urban environ-
mental performance in the short term, such as pollution reduction
by the transportation and industrial sectors. The results of dynamic
empirical studies provide robust evidence for the conclusion that as
more time lapses after the initiation of the lockdown, the reduction
in air pollution becomes cumulatively more significant. The long-
term impact on environmental sustainability, however, requires
11
further assessment.
Based on our empirical results, several practical implications are

presented. First, policymakers should promote remote working for
specific businesses. In terms of environmental protection and air
management, the existing literature often discusses the role of
external policiesdsuch as number limitation and emission reduc-
tiondthe impacts of which are limited and only effective in the
short term. As a sudden external shock, the COVID-19 outbreak led
to reductions in travel and factory emissions. The pandemic has
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resulted in people reconsidering the possibility of remote working
as businesses face a bleak set of optionsdcontinue business as
usual but with the risk of grave illness, shut down the business, or
transition to working from home.

In China, remote work and online classes became a daily part of
social life during the crisis. In some situations, remote working has
been shown to improve employee productivity (Bloom et al., 2015),
and be a catalyst for creating more inclusive workplaces (Mas and
Pallais, 2017). Business heterogeneity will greatly affect the
adaptability of remote work as not all businesses can transition to
remote work, although businesses in industries with higher income
and better-educated employees may be more likely to achieve this.
This is also worthy of further research.

Second, policymakers need to promote investment in new
infrastructure. The interconnected, intelligent world has made
telecommuting and remote classes possible. Remote working re-
quires significant investment in new infrastructure to allow for
high-speed network access to foster increased efficiencies. Infra-
structure upgrades will also benefit the industrial sector by, among
others, establishing an intelligent transportation system through AI
technology to reduce air pollution and optimize waste recycling,
establish an intelligent water supply management system using 5G
technology to reduce hydrological risk, and utilize digital twin
technology to mitigate the risk of disasters to effectively improve
the levels of environmental assessment and resilience of industrial
development.
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