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Abstract

Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the
embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for
bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative
strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic
processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic
conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act
as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the
concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights
the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the
challenges and future directions of translating current knowledge from the bench to the bedside.
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bone tissue;’” and (4) sufficient vascularization to meet the
needs of the growing tissue for a supply of nutrients and the
clearance of waste.®? In the past three decades, BTE has tra-
ditionally focused on mimicking an intramembranous ossi-
fication (IMO) pathway, by which mesenchymal stem cells
(MSCs) are induced to undergo osteogenic differentiation
with subsequent formation of a bone-like matrix. This
approach has achieved major progress in terms of bioreactor
design, scaffold engineering, and long-term tissue construct
maintenance,'®!! but there have also been encountered set-
backs and delays in clinical translation. An emerging para-
digm of developmental BTE, which advocates engineering
cartilage constructs by replicating certain aspects of ECO
for bone defect reconstruction, has been gradually adopted
by researchers to address the limitations of traditional BTE
strategies. However, the basis of ECO strategies is not
widely understood. Furthermore, several key design criteria
regarding the choice of cell sources, biomaterials, and endo-
chondral priming protocols remain to be elucidated. Thus,
this review introduces the concept of developmental bone
engineering, explores the routes of endochondral bone engi-
neering, and summarizes the current experimental data on
large bone defect reconstruction via ECO-based strategies.
Within this framework, emphasis is placed on the superior-
ity of ECO-based strategies, and future trends in the clinical
translation of these strategies are discussed.

Engineering endochondral bone: A
developmental engineering strategy

Embryonic bone development and fracture
healing

All bone is formed through two mechanisms: IMO and
ECO. Both mechanisms begin with MSC migration to
sites of future bone. Here, MSCs form condensations of
high cellular density that outline the shape and size of the
future bone. Within these condensations, the MSCs either
differentiate into osteoblasts to directly form flat bone
(intramembranous bone formation, Figure 1(a)),'? or dif-
ferentiate into chondrocytes and form a cartilaginous tem-
plate that is responsible for long bone formation (Figure
1(b)) as well as bone fracture healing (Figure 1(c)) (endo-
chondral bone formation).'?

The replacement of cartilage with mineralized bone in
endochondral bone is a complex process. Osteogenesis
begins when proliferating chondrocytes within the tem-
plate enter a non-proliferating, hypertrophic state. These
hypertrophic chondrocytes secrete osteogenic and angio-
genic factors, such as vascular growth factor (VEGF) and
alkaline phosphatase (ALP). Concurrently, the tissue is
invaded by vasculature, which delivers MSCs, osteoclasts,
endothelial cells, and hematopoietic cells to the diaphysis,
thereby forming a primary ossification center (POC).'*
Traditionally, hypertrophic chondrocytes undergoing

programmed cell death are believed to be removed by
osteoclasts from the template.!* MSCs then differentiate
into osteoblasts to produce bone matrix.'> However, recent
works have highlighted an alternative fate of hypertrophic
chondrocytes, consisting of transdifferentiation into osteo-
blasts and osteocytes in the final stages of endochondral
bone formation.'®'® Additional vasculature near the ends
of the bone will establish one or more secondary ossifica-
tion centers (SOCs), which contribute to the growth of the
bony epiphyses and articular cartilage (Figure 1(b)).!>!"
Bone fracture healing differs from natural bone develop-
ment. In general, bone fracture healing consists of three
overlapping phases: the inflammatory, reparative, and
remodeling phases;** ECO and IMO occur concurrently
during the reparative phase.!! When a bone fracture occurs,
the inflammatory phase begins immediately. The damaged
vasculature and bone marrow create a hypoxic microenvi-
ronment that recruits MSCs, fibroblasts, and endothelial
cells to the fracture site.?! The reparative phase consists of
two subphases: the soft callus and the hard callus phases.?
In the soft callus phase, the recruited MSCs start differenti-
ating in two different ways according to their microenvi-
ronment."* IMO primarily occurs along the periosteal
surface of the bone adjacent to the fracture site as MSCs
differentiate into osteoblasts that lay down woven bone.?
However, ECO occurs predominantly at the center of the
fracture site, where MSCs differentiate into chondrocytes.??
These chondrocytes then form a cartilaginous soft callus,
and the synthesized cartilage ECM mineralizes through
chondrocyte apoptosis. In the hard callus phase, osteoblasts
migrate to where blood vessels invade the calcified carti-
lage to produce a hard callus.?? Finally, after the fracture
has been filled with new woven bone, osteoclastic activity
occurs at the outer surface to initiate periosteal callus
resorption and the remodeling phase (Figure 1(c)).

Endochondral bone engineering: A promising
solution for large bone defect reconstruction

Inspired by the process of bone development and fracture
healing, current BTE strategies strive to generate bone
substitutes by emulating the body’s biochemical and phys-
ical environment. Traditional BTE strategies mimic the
embryological process of IMO, by which MSCs are
induced to undergo osteogenic differentiation with the
subsequent formation of a bone-like matrix in vitro. This
strategy has clear potential and has made major pro-
gress.'®!" A major drawback such strategies for engineer-
ing constructs is the limited size of the construct. In vitro
osteogenic induction results in extensive matrix deposition
on the surface of the construct, which hampers nutrient
delivery and makes it difficult to scale up the size.?*
Furthermore, extensive bone matrix on the surface hinders
the invasion of blood vessels upon construct implantation.
Thus, such traditional BTE approaches often fail due to
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Figure |. Overview of IMO and ECO during embryonic bone development and fracture healing: (a) IMO follows four steps. Step
I: MSCs undergo condensation and form ossification centers. MSCs within the areas of condensation lead to the development of
capillaries and osteoblasts. Step 2: Osteoblasts secrete osteoid, which then entraps the osteoblasts, and the osteoblasts transform
into osteocytes. Step 3: Osteoid secreted around the capillaries result in trabecular matrix formation, while osteoblasts on

the surface of the spongy bone become the periosteum. Step 4: The periosteum then creates compact bone superficial to the
trabecular bone. The trabecular bone crowds blood vessels, which eventually condense into red marrow. (b) ECO follows six
steps during embryonic bone development. Step |I: MSC condensation. Step 2: MSCs within the areas of condensation differentiate
into chondrocytes to form the cartilage template of the future long bone, and MSCs in the periphery form the perichondrium.
Step 3: Chondrocytes in the center of the template undergo hypertrophy, while cells in the periphery undergo direct osteogenic
differentiation to form a periosteal collar of compact bone around the cartilage template. Step 4: Hypertrophic chondrocytes
secrete osteogenic and angiogenic factors that initiate cartilage matrix mineralization and blood vessel invasion, resulting in POC
formation. Step 5: The diaphysis elongates, and a medullary cavity forms as ossification continues. Step 6: After this initial bone
formation, the same sequence of events occurs in the epiphyseal regions, leading to SOC formation, and (c) The healing of fractures
follows three consecutive and overlapping phases. Inflammatory phase: Approximately 6-8h after the fracture, a hematoma is
formed at the fracture site. Reparative phase: Within approximately 48h after the fracture, chondrocytes from the periosteum and
marrow create an internal callus between the two ends of the broken bone and an external callus around the outside of the break.
MSCs from the periosteum directly differentiate into osteoblasts, thereby stimulating appositional bone growth and enveloping the
defect. Over the next several weeks, the cartilage in the calli is replaced by woven bone via ECO. Remodeling phase: The woven
bone remodels into lamellar bone through osteoclast-osteoblast coupling, and the healing process is complete. The histological
image of the epiphyseal plate of a growing long bone was adapted from Human Anatomy, sixth edition (Copyright © 201 | Pearson
Education, Inc., Figure 6.12).

poor perfusion, leading to avascular necrosis and core deg-
radation.” Consequently, attention has shifted toward an
alternative route of “developmental engineering,” which
strives to stimulate in vivo developmental processes and
imitates natural factors governing cell differentiation and
matrix production.?3-26

In contrast to IMO-based approaches, approaches based
on developmental engineering involve engineering carti-
laginous constructs by replicating certain aspects of ECO

for bone defect reconstruction. Briefly, MSCs are induced to
differentiate into chondrocytes in vitro to form a hyper-
trophic cartilage construct, which contains essential “bio-
logical instructions” to initiate the ECO process after
implantation, and the defect is subsequently repaired by
endochondral bone formation (Figure 2).%° This strategy
offers a solution to overcome problems associated with poor
vascularization after implantation: (1) chondrocytes that are
born in an avascular environment can intrinsically resist
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Figure 2. Schematic illustration of ECO-based strategies for large bone defect reconstruction.

hypoxia,** while MSCs and osteoblasts are less tolerant to a
hypoxic environment;*"* (2) hypertrophic chondrocytes
can induce neovascularization and ossification through the
release of VEGF, vesicles containing hydroxyapatite, and
bone morphogenic proteins (BMPs);**** and (3) endochon-
drally primed grafts allow for faster host integration and
bone formation after implantation in vivo.>>3¢ Therefore,
ECO-based strategies have brighter prospects and interest in
ECO has gradually increased in recent years.

Engineering strategies for the in vitro
recapitulation of ECO

Developmental engineering strategies for recapitulating
endochondral bone formation typically involve two steps:
(1) engineering a cartilaginous intermediate in vitro and
(2) implanting the cartilaginous template in the defect site
to induce bone regeneration. As these are tissue engineer-
ing approaches, some fundamental factors related to cell
sources, bioscaffolds, biochemical factors, and priming
protocols have been studied extensively to mimic natural
bone development.

Cell sources

Cell from an ideal cell source for endochondral bone engi-
neering must have the capacity to undergo hypertrophic
chondrocyte differentiation and synthesize hypertrophic
cartilage-specific ECM. Cells derived from numerous
sources, including bone marrow, adipose tissue, embry-
onic tissue, and the nasal septum, have been successfully
applied in endochondral bone engineering.

Adult MSCs. Bone marrow-derived mesenchymal stem
cells (BMSCs) are currently the most frequently used cells
in endochondral bone engineering. These cells are favored

for their potential to differentiate into chondrocytes and
subsequently develop a hypertrophic phenotype in vitro.?’
Generally, the chondrogenic differentiation of BMSCs in
vitro shows similarities to the process of ECO: the cells
progressively produce collagen type II (COL II) and COL
X; when a phosphate donor is added to the culture medium,
mineralization can occur in the engineered constructs;®
and when the chondrogenically primed constructs are
implanted in vivo, bone formation, mineralized matrix
deposition, and blood vessel ingrowth can be observed.*
Furthermore, BMSCs have shown greater chondrogenic
potential***! and 15-fold greater COL X expression*? than
adipose-derived stem cells (ASCs) under the same culture
conditions. In donor-matched comparison studies, BMSCs
have shown a significantly higher chondrogenic capacity
than ASCs after 21 days of culture in chondrogenic differ-
entiation medium (CHM).* Cartilaginous constructs engi-
neered from BMSCs follow a process similar to that of
ECO, with greater COL X expression and mineralization
than constructs engineered from joint tissue-derived stem
cells under the same conditions.’” The use of allogeneic
MSCs, which have shown the ability to elicit endochon-
dral bone regeneration in critical-sized femoral defects in
immunocompetent rats,* represents an interesting alterna-
tive to overcome these limitations. However, further
research on achieving robust bone formation with alloge-
neic MSCs is needed. Although BMSCs have shown
excellent performance in endochondral bone engineering,
limitations of BMSCs, including donor variability, inva-
sive harvesting protocols, and difficulty expanding cells in
vitro, have also been reported.

ASCs are a heterogeneous population of cells that are
harvested from subcutaneous adipose tissue and exhibit
several distinct translational advantages over MSCs from
other tissues.* ASCs have multilineage potential compa-
rable to that of BMSCs,***7 but they are easily accessible
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Figure 3. Engineering hypertrophic cartilaginous tissue directly from human adipose tissue: (a) Human adipose tissue was
harvested during liposuction surgery; the human adipose tissue was positive for COL IV but negative for fibronectin, COL I, and
COL X. After 3 weeks of culture in proliferation medium, the adipose tissue was positive for COL IV and fibronectin but negative
for COL Il and COL X, indicating that proliferative culture results in more stromal cells in the adipose tissue. (b) Then, the cultured
adipose tissue was subjected to endochondral priming. After 4 weeks of chondrogenic priming, the engineered constructs showed
a cartilaginous phenotype, which was characterized by positive safranin O staining for GAG, weakly positive staining for COL |
and COL X, and strongly positive staining for COL Il. The chondrogenically primed constructs were cultured in HYM for 2 weeks,
which resulted in strong positive staining for COL X, (c) The endochondrally primed constructs were subcutaneously implanted
into nude mice for 12 weeks. MicroCT scanning of the retrieved constructs showed a bony shell around bone trabeculae inside.
Bone tissue formation and morphological evidence of bone marrow in the retrieved constructs were identified histologically by
hematoxylin and eosin (H&E) staining and osteocalcin (OCN) staining. Intensive bone resorption by osteoclasts, characterized as
tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, was observed in the inner margins of the bone marrow-

like cavity surrounded by newly formed bone tissue.

in abundant quantities by a minimally invasive proce-
dure*®**® and have a higher proliferative capacity.’® ASCs
have shown the ability to recapitulate ECO in vitro and in
vivo. ASCs, either cultured as micromass pellets’*? or
spheroids®® or seeded onto collagen sponges!>* in CHM,
can mature into hypertrophic cartilage tissue. Upon sub-
cutaneous implantation, these hypertrophic cartilage con-
structs are able to undergo an ECO process and develop
into bone containing bone marrow elements.*!* However,
the clinical translation of this approach may still be ham-
pered by the complex ASC processing protocol and

long-term in vitro expansion procedures, which impair
their multilineage differentiation potential.™® Therefore,
our team innovatively fractionated human lipoaspirates
into small adipose tissue particles and used them as
numerous ASC niches and native scaffolds for hyper-
trophic cartilage engineering. The resulting constructs
develop a hypertrophic cartilage phenotype and even
show higher efficacy in endochondral bone formation
than ASC-seeded collagen sponges (Figure 3).>* These
studies provide a clinically translatable approach for bone
defect repair.
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Another clinically relevant cell type for recapitulating
ECO is periosteum-derived cells (PDCs), which are found
in the inner cambium of the periosteum and play a promi-
nent role during fracture healing.’ In the context of BTE,
PDCs exhibit strong MSC-like multipotency characteris-
tics at the single-cell level®® but greater clonogenicity, dif-
ferentiation potential, and bone regeneration capacity.'?
Furthermore, PDCs acquire the capacity for endochondral
bone formation in response to injury,”® which has made
them an attractive cell type for endochondral bone engi-
neering.” Callus organoids engineered by the chondro-
genic priming of human PDC (hPDC) microspheroids in
vitro can form bone microorganoids in an ectopic environ-
ment and heal murine critical-sized long bone defects.*® In
another study, the preconditioning of hPDC microaggre-
gates in vitro resulted in the formation of intermediate car-
tilage tissue, which could ectopically develop into bone
tissue via ECO and facilitate bone defect healing.®'

Embryonic stem cells (ESCs). ESCs possess the potential to
differentiate into any cell type and have been shown to
achieve bone formation via ECO. The chondrogenic
induction of mouse ESCs in vitro results the deposition of
cartilage matrix on ceramic scaffolds, which in turn dem-
onstrate robust endochondral bone formation upon
implantation in subcutaneous sites or in critical-sized cra-
nial defects.®® The chondrogenesis of differentiated ESCs
is typically characterized by five overlapping stages,
which are similar to the stages of the embryonic develop-
mental processes of ECO: (1) condensation of differenti-
ated ESCs; (2) differentiation and fibril scaffold formation;
(3) ECM deposition and cartilage formation; (4) hypertro-
phy and degradation of cartilage; and (5) bone replace-
ment with membranous calcified tissues.®

However, concerns regarding ethical objections,
immune rejection, and teratoma formation continue to
impede the clinical implementation of ESCs. To produce
functional bone tissue without these risks, MSCs derived
from ESCs (ESC-MSCs), which possess the lineage-spe-
cific differentiation potential of MSCs but enhanced pro-
liferative and immunosuppressive capabilities,** have also
shown the capacity to recapitulate the ECO process and
repair bone defects semiautonomously without preimplan-
tation differentiation into osteo- or chondroprogeni-
tors.%5-%7 Furthermore, embryonic limb-derived progenitor
cells can also form bone via the ECO pathway in an ectopic
environment, which has been harnessed to bridge parietal
bone defects in a mouse model.®®

Chondrocytes. Chondrocytes, which constitute mature and
functional cartilage, are a logical cell type for endochon-
dral bone engineering. As mentioned before, hypertrophic
chondrocytes within the fracture callus stimulate osteo-
genesis and vasculogenesis during bone fracture healing,
and hypertrophic chondrocytes isolated from fracture cal-
luses, even from callus tissue directly, have demonstrated

the capacity to promote bone regeneration.®”’® These
inherent biological features suggest that the use of hyper-
trophic chondrocytes is a logical therapeutic strategy for
bone regeneration.

Articular cartilage is normally a permanent tissue that
resists hypertrophy, vascularization, and ossification.”!
Under physiological conditions, articular chondrocytes
remain in a resting state and refrain from proliferation or
terminal differentiation. However, under the conditions of
osteoarthritis, articular chondrocytes enter ECO-like cas-
cades of proliferation and phenotypical dysregulation,
becoming hypertrophic and abnormally expressing genes
such as COL X, matrix metalloproteinase (MMP)-13, and
ALP.”? Therefore, by leveraging these inherent biological
characteristics, human osteoarthritic articular chondro-
cytes have been used to engineer endochondral constructs
that subsequently undergo ECO after implantation either
subcutaneously or orthotopically.”? Interestingly, ectopic
bone formation has also been observed in healthy articular
chondrocyte-engineered constructs, indicating the bone-
forming potential of healthy articular chondrocytes.”
Indeed, healthy articular cartilage lesions often undergo
progressive degeneration toward osteoarthritis under path-
ological conditions, and continuous efforts have been
directed to optimize conditions for redirecting articular
chondrocytes toward hypertrophy. A recent study has dem-
onstrated that upon transforming growth factor (TGF)-f3,
administration during ex vivo expansion, human articular
chondrocytes are redirected toward a hypertrophic pheno-
type,”* which is an undesirable effect for cell culture but
could be useful in endochondral bone engineering.
Similarly, with the help of BMP-2, primary porcine articu-
lar chondrocytes can produce hypertrophic cartilage matrix
on poly(e-caprolactone) (PCL) scaffolds in vitro and even
result in bone and bone marrow formation upon implanta-
tion.” Furthermore, ECO with marrow cavity formation
can be observed in the long term after the ectopic implan-
tation of primary human articular chondrocytes isolated
from the epiphyseal cartilage of infants in nude mice, even
without in vitro expansion, induction, and scaffold seed-
ing.” Although promising results have been reported, the
clinical translation of articular chondrocyte-engineered
constructs is still limited by phenotype stability, donor site
morbidity, and in vitro expansion.

Chondrocytes derived from other tissues have also
shown potential as a cell source for endochondral bone
engineering. Nasal septal cartilage derives from the same
multipotent embryological segment that gives rise to the
majority of maxillofacial bones and has been considered
an autologous cell source for cartilage and BTE.”” The
hypertrophic induction of adult human nasal chondro-
cyte-based micromass pellets in vitro results in the for-
mation of mineralized cartilaginous tissue rich in COL X,
but the tissue remains avascular and reverts to stable hya-
line cartilage upon subcutaneous implantation in nude
mice.”® In contrast, chondrogenically primed rat nasal
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chondrocyte-seeded constructs are not only rich in COL
X but also show angiogenesis, mineralization, and bone
formation upon subcutancous and orthotopic implanta-
tion.” These results demonstrate the plasticity of nasal
chondrocytes in engineering endochondral bone. In addi-
tion, chondrocyte-like progenitors possessing a transient
phenotype in vitro have been effectively induced toward
endochondral bone formation in vivo.%-82

Biomaterials

Generally, an ideal scaffold for endochondral bone engi-
neering should have mechanical characteristics that resem-
ble those of hypertrophic ECM, possess appropriate cues
to enhance cellular attachment and subsequent differentia-
tion, and provide an architecture for allowing cellular
adhesion, matrix production, and vessel ingrowth in vivo.
Typically, four types of biomaterials, natural polymers,
synthetic polymers, bioceramics, and decellularized/devi-
talized ECM (dECM), are used in endochondral bone
engineering.

Natural polymers. Natural polymers, such as hyaluronic
acid (HyA), collagen, gelatin, and fibrin, are widely used
in endochondral bone engineering. Collagen and HyA are
both key components of the native cartilage matrix. Highly
porous collagen-based scaffolds have been extensively
used to support the in vitro growth and differentiation of
MSCs toward both osteogenic and chondrogenic lineages
due to their biocompatible and biodegradable nature.338¢
Porous collagen sponges were first used to generate carti-
lage in vitro and have recently also been used to generate
endochondral bone.?*!¥” HyA is an important physiologi-
cal component of the cartilaginous ECM that provides a
favorable environment for endochondral bone engineering
and has achieved promising results.®® HyA-based scaffolds
have been shown to support cell migration and differentia-
tion. MSCs seeded into HyA hydrogel have shown greater
COL II and chondroitin sulfate production but less COL 1
deposition than other materials.?> Therefore, composite
scaffolds developed using collagen and HyA have shown
greater hypertrophic cartilage formation in vitro and endo-
chondral bone formation in vivo,** but a high HyA con-
centration in such composite scaffolds may result in a low
proportion of cells with a hypertrophic phenotype in the
engineered constructs.’!

Gelatin is a naturally derived protein obtained by col-
lagen hydrolysis. Due to its biocompatibility, biodegrada-
bility, and ability to form hydrogels, gelatin plays a
significant role in 3D cell culture models and has been
used alone and as a basic material for improving endo-
chondral bone regeneration.’” Porous gelatin sponge scaf-
folds have been shown to support chondrogenesis in vitro
and calvarial healing via ECO.” Gelatin-methacrylamide
(GelMA) hydrogels produced by the chemical modifica-
tion of gelatin retain some properties of collagen and

gelatin, such as cell adhesion domains, thermosensitivity,
and biodegradability.”** Thus, this material can be used as
an embedding material and in the fabrication of bioprinta-
ble scaffolds for endochondral bone engineering. For
example, GeIMA hydrogels have been loaded with MSCs
and chondroinductive particles, and the resulting compos-
ite constructs stimulated endochondral bone formation in a
subcutaneous rat model.”® Additionally, MSC-loaded
GelMA hydrogels are used to print constructs with an
interconnected microchannel network which are subse-
quently used for engineering cartilaginous constructs. The
3D-printed microchannels within the cartilage template
can promote osteoclast/immune cell invasion, hydrogel
degradation, and vascularization during endochondral
bone formation.”’

Fibrin is a biopolymer of the monomer fibrinogen that
plays critical roles in blood clotting, cell-matrix interac-
tions, inflammation, and wound healing.’® Fibrin hydrogels
facilitate MSC-mediated vascularization, endochondral
bone formation, and bone marrow development.”” Fibrin
hydrogels reduce the standard chondrogenic priming dura-
tion from 28 days to 7 days but yield comparable endochon-
dral bone formation.'” Fibrin supports cell attachment,
condensation, and proliferation but is mechanically weak
and degrades rapidly. Hyaluronan is mechanically stronger
and degrades much more slowly than fibrin. Therefore, a
novel hybrid system composed of 70% hyaluronan and
30% fibrin has been developed to closely mimic the ECM
microenvironment. This combination supports cell micro-
aggregation and differentiation and demonstrates the
healthy development of chondrogenic and hypertrophic
stages with abundant stage-specific ECM components.'"!
Similarly, fibrin glue combined with MSCs and B-tricalcium
phosphate (3-TCP) particles can enhance heterotopic endo-
chondral bone formation.'®?

Other naturally derived polymers, such as alginate, chi-
tosan, and agarose, have also been used as biocompatible
hydrogel materials in endochondral bone engineering.
Alginate hydrogels have been used to engineer endochon-
dral bone tissue in subcutaneous spaces or bone defects.?%!%3
Furthermore, similar to GeIMA hydrogels, alginate hydro-
gels are also used as beads for cell encapsulation®® or as
bioinks for 3D printing'®* for endochondral bone engineer-
ing. Chitosan is structurally similar to various glycosami-
noglycans (GAGs) and has been shown to support
hypertrophic cartilage matrix deposition and endochondral
bone formation.?*! However, compared with alginate and
fibrin hydrogels, chitosan hydrogels are resistant to vascu-
larization and bone remodeling.”® Agarose is a polysaccha-
ride that has been used to encapsulate MSCs, MSC pellets,
or other materials in endochondral bone engineering.37-%103
By leveraging the good mechanical and thermoreversible
properties of agarose hydrogels, agarose hydrogels con-
taining an array of microchannel structures have also been
shown to support vascularization and conversion to endo-
chondral bone.'%
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Synthetic polymers. Natural polymers are sometimes lim-
ited by their poor mechanical strength and rapid degrada-
tion. Synthetic polymers including polylactic acid (PLA),
poly(L-lactic acid) (PLLA), polyglycolic acid (PGA),
poly(lactic-co-glycolic acid) (PLGA), PCL, and their
copolymers have been extensively utilized for endochon-
dral bone engineering due to their good chondrogenic con-
duction, biocompatibility, slow degradation, and easily
altered mechanical properties.!'?’

Synthetic polymers have demonstrated good chondro-
genic conduction both in vitro and in vivo. PLGA scaffolds
loaded with chondrogenically predifferentiated rat BMSCs
have been shown to heal large bone defects in rats by mim-
icking ECO.!% Similarly, nasal chondrocyte-seeded PGA
scaffolds can promote endochondral bone formation in rat
cranial defects.”” The biochemical cues provided by syn-
thetic polymer scaffolds control cellular proliferation and
differentiation. PLGA/PLLA copolymer scaffolds can
induce human ESC differentiation via an ECO pathway,
while hydroxyapatite (HAp)-based PLGA/PLLA compos-
ite scaffolds result in bone formation via an IMO path-
way.® However, cell adhesion and proliferation are limited
due to the hydrophobicity of these synthetic polymer
scaffolds.!0%110

Synthetic polymers have better mechanical properties
and flexibility than natural polymers. Porous PLGA scaf-
folds have been added to hyaluronan-fibrin hydrogels to
enhance their mechanical strength and fabricate a load-
bearing scaffold system. In this polymer-gel hybrid scaf-
fold, the gel phase provides a microenvironment to guide
the endochondral process, while the polymer phase is
expected to provide mechanical strength to the overall
polymer-gel structure.!'! PCL possesses an appropriately
high bulk stiffness to facilitate MSC differentiation toward
skeletal lineages and has been selected as a scaffold mate-
rial to support chondrogenesis and hypertrophic minerali-
zation.!'? In addition, bioprinted PCL microfiber networks
have been used to reinforce the mechanical strength of
engineered cartilaginous templates, which support the
development of a vascularized bone organ containing tra-
becular-like bone and a supporting hematopoietic marrow
structure.!%

Synthetic polymer scaffolds with nanofibers similar in
size to natural cartilage matrix fibers facilitate tissue
regeneration. 3D PLGA/PCL scaffolds fabricated by elec-
trospinning have been demonstrated to support the chon-
drogenic differentiation of rat BMSCs in vitro and
endochondral bone formation in vivo.''>!"* Furthermore,
the pore size and architecture of nanofibrous polymer scaf-
folds affect the conversion of cartilage to bone tissue.
Under the same in vitro priming and in vivo implantation
conditions, nanofibrous PLLA scaffolds with large pores
(425—-600 um) have been shown to support endochondral
bone formation by allowing blood vessel ingrowth,
whereas scaffolds with very small pores (60—125 pm) have

been shown to allow cartilage formation but inhibit
ECO.' In another study, an electrospun PCL 3D nanofi-
brous scaffold with interconnected and hierarchically
structured pores morphologically similar to natural ECM
could lead to high cell viability. More importantly, it could
promote the BMP-2-induced chondrogenic differentiation
of mouse BMSCs in vitro and act as a favorable synthetic
ECM for endochondral bone regeneration in vivo.''®

Bioceramics. Known for their good biocompatibility, bone
bioactivity, and osteoconductivity, bioceramics, such as
HAp, B-TCP, and biphasic calcium phosphate (BCP), have
been utilized as scaffolds for endochondral bone engineer-
ing. However, due to their high brittleness, bioceramics are
typically combined with various natural or synthetic poly-
mers to create highly porous biocomposite materials with
improved mechanical properties.

HAp is one of the main inorganic components of the
natural bone matrix. HAp-based scaffolds have been used
extensively to promote bone regeneration because of their
good biocompatibility and high osteoconductivity.!'”-!
Recently, nano-HAp particles, when used to coat titanium
scaffolds, have been shown to support the chondrogenic
differentiation of MSCs and enhance endochondral bone
regeneration in mandibular defects in rats.'"” Furthermore,
when incorporated into biodegradable polymers, such as
collagen® and poly(vinyl alcohol),'””® HAp particles
enhance the mechanical properties of scaffolds, resulting
in mechanical strength very similar to that of bone or car-
tilage. Moreover, the osteoinductivity of HAp can affect
the chondrogenesis, hypertrophy, and ECO of MSCs. In a
bioprintable HyA-based hydrogel system, a small number
of HAp particles has been shown to promote both the
chondrogenic and the hypertrophic differentiation of
ASCs, whereas larger numbers of HAp particles promote
hypertrophic conversion and early osteogenic differentia-
tion of ASCs."?! In another study, CaP-coated HAp min-
eral particles have been shown to promote the gene
expression of chondrogenic markers and enhance the
hypertrophic phenotype of ESC aggregates in vitro in a
dose-dependent manner.®’

B-TCP has been shown to promote cartilage regenera-
tion and biomineralization'?? and support endochondral
bone formation'? because of its biodegradability, biocom-
patibility, and bioactivity. B-TCP is often combined with
other materials to enhance the chondrogenic and endo-
chondral potential of scaffolds. It has been shown that the
addition of B-TCP particles to a 3D biomimetic hydrogel
scaffold not only induces abundant expression of the chon-
drogenic markers COL II and aggrecan but also, most
notably, results in overexpression of the hypertrophic
marker COL X and the osteogenic marker ALP.!**

BCP consists of two CaP phases, namely, a stable HAp
phase and a soluble B-TCP phase, in distinct proportions.
These two materials are proportionally combined to obtain
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a suitable balance between the predictable biodegradabil-
ity offered by B-TCP and the improved resiliency provided
by HAp. The chemical and structural cues provided by
porous HAp/TCP scaffolds have been shown to support
progressive lamellar-like bone formation and mature bone
marrow development.'?® Our previous study showed that
porous HAp/B-TCP granules support endochondral bone
formation at ectopic sites by enhancing biomineraliza-
tion.*® Furthermore, porous HAp/TCP scaffolds are more
suitable for implantation in loadbearing areas than other
scaffolds, including those made of polyurethane foam,
electrospun PLGA/PCL fibers, and COL I gel, due to their
excellent mechanical properties.''*

dECM. dECM not only retains the original 3D morpho-
logical architecture of the tissue but also retains a complex
mixture of proteins and macromolecules that facilitate the
proliferation and differentiation of endogenous or exoge-
nous cells.'?® Importantly, the structural and functional
proteins of the ECM are highly conserved across species,
which allows xenogeneic dECM to be implanted in recipi-
ents of different species without an immune reaction.'?”!28
dECM derived from natural bone and cartilage tissues has
been used as scaffolds for endochondral bone engineering.
Recent works have shown that endochondral constructs
can be engineered by culturing ASC-seeded decellularized
bone matrix (dBM) sequentially in CHM and then hyper-
trophic medium (HYM). These engineered constructs have
been shown to enhance bone deposition, bone remodeling,
and bone marrow formation in critical-sized femoral
defects inrats.> In addition, decellularized cartilage matrix
(dCM), which consists predominantly of COL II but lacks
GAGs and cells, is a promising scaffold material for endo-
chondral bone engineering.'” The biological integrity of
dCM can stimulate endochondral bone regeneration by
enhancing the chondrogenesis of MSCs, PDCs, or chon-
drocytes in vitro and eliciting a regenerative response upon
implantation in vivo®®'?® but has no significant effect on
construct mineralization®® and a lower potential for endo-
chondral bone formation.'*° Therefore, the use of dCM for
endochondral bone engineering remains controversial, and
studies have demonstrated that dCM promotes the chon-
drogenic differentiation but inhibits the hypertrophic dif-
ferentiation of MSCs in vitro and subsequent ECO in
vivo."317133 Tt has long been realized that viable hyper-
trophic cartilage will form bone in vivo; decellularized
hypertrophic cartilage matrix ({HCM), which is manufac-
tured from native epiphyseal plates or fractured callus tis-
sue, can also trigger the natural ECO process upon
implantation.'3*

A major drawback of these types of naturally derived
dECMs is the limited donor source, which hinders their
clinical application. Recent works have sought to engineer
off-the-shelf decellularized/devitalized tissue engineered-
cartilaginous matrix (dTECM) for endochondral bone
engineering, which is expected to induce regenerative

processes not only through specific “organomorphic”
structures but also through the physiological presentation
of different cocktails of regulatory molecules in a suitable
environment.'3>13¢ Bourgine et al. engineered a novel
hypertrophic cartilage construct using immortalized
human MSCs, in which decellularization was achieved by
the induction of apoptosis with efficient ECM preserva-
tion. The resulting dHCM could efficiently remodel to
form endochondral bone tissue of host origin, including a
mature vasculature and a hematopoictic compart-
ment.'3”"13° Furthermore, dTECM engineered from vari-
ous cell sources, such as ATDCS cells,'% adipose-derived
stromal vascular fraction (SVF) cells,'*’ and BMSCs, 41142
has shown the ability to be activated by MSCs to initiate
ECO and induce new bone formation upon implantation
without long-term endochondral priming in vitro. These
promising results offer an alternative solution to overcome
the drawbacks of naturally derived dECM and the exten-
sive production of dECM using allogenic MSCs.

Optimal endochondral priming medium and
duration

Chondrogenesis is the first stage of the ECO process,
involving with differentiation and maturation of chondro-
cytes. Different endochondral priming protocols have been
used to replicate the initial stages of ECO by driving pro-
genitors toward a hypertrophic phenotype.

Endochondral  priming  medium. Endochondral priming
largely relies on the chondrogenic differentiation stage, as
chondrocytes possess specific metabolic features and
secrete diverse biochemical cues when they are in different
developmental stages. Generally, the engineering of a car-
tilage template from MSCs in vitro is necessary to reca-
pitulate the process of ECO because chondrogenically
differentiated MSCs tend to simultaneously acquire a cer-
tain degree of hypertrophic properties upon persistent
exposure to CHM.'431% However, chondrogenic induction
alone usually results in “early hypertrophic” tissues with
low and localized COL X expression,®"#” which is specifi-
cally produced by hypertrophic chondrocytes.'* Due to
the critical roles of hypertrophic chondrocytes during
ECO, an additional in vitro hypertrophic priming step is
often applied to the chondrogenically primed constructs to
elicit the most extensive ECO.'**!%7 The differentiation of
MSC:s In vitro into mature and hypertrophic chondrocytes
requires a precise combination of growth and differentia-
tion factors. However, standard medium formulations for
chondrogenic differentiation and hypertrophic induction
are lacking. CHM is typically defined as Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with 100 U/
mL penicillin/streptomycin, 100 pug/mL sodium pyruvate,
40 ug/mL L-proline, 50 pug/mL L-ascorbic acid 2-phos-
phate, 4.7 ug/mL linoleic acid, 1.5mg/mL bovine serum
albumin (BSA), 1X insulin-transferrin-selenium (ITS)
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premix, and 100nM dexamethasone, along with various
growth factors. Serum is sometimes used, but serum-free
media are more common because serum-free cultures
closely mimic the serum-free physiological environment
in which chondrocytes reside. Growth factors play a domi-
nant role in the differentiation of MSCs toward chondro-
genic phenotypes in vitro; these growth factors include
TGF-Bs and BMPs, which play fundamental roles in early-
stage MSC differentiation and chondrogenic phenotype
maintenance. Some of these factors are also involved in
terminal differentiation.

TGF-B superfamily members including TGF-f,, TGF-
B,, and TGF-p, are the core components of most chondro-
genic differentiation protocols.'*!1%? In vitro, TGF-Bs induce
chondrogenesis, proliferation, and matrix deposition in
MSCs, with eventual progression toward hypertrophy. TGF-
B, and TGF-B, initiate MSC condensation during the early
stage of endochondral bone development. TGF-B, has
stronger effects than TGF-B,'*° or TGF-B,"! on the chon-
drogenic differentiation of MSCs. Furthermore, BMPs,
which are morphogens in the TGF-f superfamily, have been
shown to regulate chondrogenesis and osteogenesis during
skeletal development. BMP-2, BMP-4, and BMP-6 are the
most commonly used BMPs for chondrogenic differentia-
tion. BMP-2 has been reported to induce chondrogenic dif-
ferentiation by upregulating the levels of COL II and
aggrecan in various types of stem cells in vitro'*>!*3 and to
promote chondrocyte hypertrophy by increasing COL X
and ALP expression as well as upregulating of Indian hedge-
hog expression.'**! BMP-4 plays a fundamental role in
early-stage MSC chondrogenic differentiation and chondro-
genic phenotype maintenance'*® and is also involved in
regulating the terminal differentiation of chondrocytes.'s?
BMP-6 participates in mediating chondrocyte hypertrophy.
The treatment of chondrocytes with BMP-6 has been widely
shown to stimulate COL X gene expression. '’

Various combinations of TGF-Bs and BMPs have
shown a synergistic ability to enhance chondrogenic dif-
ferentiation and hypertrophy and have been widely used in
endochondral bone engineering. For example, a combina-
tion of TGF-B, and BMP-2 has been shown to increase the
GAG and collagen content and initiate robust endochon-
dral lineage commitment.'3¥ 1% The dual delivery of TGF-
B, and BMP-2 within BMSC aggregates has been shown
to result in enhanced chondrogenesis and an enhanced
osteogenic phenotype, as well as a greater degree of min-
eralization and COL X expression.'"!92 Additionally,
compared to TGF-f; alone, combinations of TGF-f3, and
BMP-6 can enhance the chondrogenic potential of BMSCs
and ASCs.'%1%* Among numerous growth factor combina-
tions, TGF-B, in conjunction with BMP-6 appears to be
the most effective for chondrogenic induction and ECO in
ASCs’!3436 because TGF-B, alone is a potent inducer of
chondrogenic differentiation, whereas BMP-6 acts syner-
gically with TGF-f3, by inducing the expression of TGF-f3
receptor I, which is usually not expressed by ASCs.!®

Additional culture in HYM has been applied to promote
chondrocyte hypertrophy and ossification in vitro. HYM is
typically defined as CHM without growth factors, with a
reduced dexamethasone concentration (1-10nM), and
with B-glycerophosphate (B-GP, 10mM) and thyroxine
(1-50nM) or triiodothyronine (T,, 1nM). The reduced
dexamethasone concentration can induce Runx2 upregula-
tion, followed by COL I upregulation. 3-GP can act as a
source of phosphate for HAp.'*® In addition to these basic
supplements in HYM, other molecules or growth factors
have been added to improve the efficiency of hypertrophic
induction. Thyroid hormone and T, have been shown to
induce morphological and hypertrophic marker expression
without inducing proliferation.'®” Furthermore, inflamma-
tory cytokines, such as interleukin-1f, have been used to
induce inflammation to improve hypertrophic cartilagi-
nous construct remodeling into bone tissue without ham-
pering mineralization,?%'%8

Endochondral priming duration. Endochondral priming pro-
tocols typically aim to reach a stage with a certain degree of
hypertrophy before implantation. For chondrogenic prim-
ing, the in vitro induction duration varies from 1 to 5 weeks
for different cells, media, and culture systems but usually
lasts for 3 to 4 weeks. For clinical translation, prolonged in
vitro culture is associated with high treatment costs and a
large regulatory burden, which are not ideal. Fine coordina-
tion between the progression of chondrogenesis and endo-
chondral transformation needs to be achieved by choosing
the optimal duration of in vitro chondrogenic and hyper-
trophic priming. Typically, mineralization occurs in con-
structs cultured for 3 weeks in CHM followed by 2 weeks in
HYM.'® It has been shown that the priming of BMSC pel-
lets in vitro for 3weeks in CHM followed by 4 weeks in
HYM optimized GAG production and mineralization,
resulting in a construct with mineralization throughout the
core.!”” However, a longer chondrogenic priming duration
resulted in a significant increase in the homogeneous depo-
sition of cartilage matrix, whereas the bone volume was not
affected by the priming duration. Two weeks of chondro-
genic priming in vitro is sufficient to generate a substantial
amount of vascularized endochondral bone in vivo.!?®

Bone defect reconstruction via the
endochondral route: current state of
the art

Cartilaginous constructs engineered via endochondral
priming tend to undergo hypertrophy and generate endo-
chondral bone tissue at ectopic sites, which opens the pos-
sibility of using endochondrally primed constructs for bone
defect repair. Such an ectopic model is useful for investi-
gating vascular invasion and mineralization but does not
offer an ideal environment for assessing the efficacy of
bone defect reconstruction. In an orthotopic environment,
bone regeneration starts with a low-grade inflammatory
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| 3826 Records identified from PubMed l

—'I 526 Duplicates removed |

| 3300 Title and/or abstract screened I

717 Records excluded
318 Not original research study
313 Full text not available
86 Not English language

| 2583 Title and/or abstract screened |

—-| 2501 Records excluded |

| 82 Full-text screened l

57 Records excluded
16 Not in vitro endochondrally
primed construct
41 Not bone defect model

25 Records included in review l

Figure 4. Flow diagram for study selection.

The inclusion criteria were as follows: (1) the constructs were
engineered via chondrogenic and/or hypertrophic priming in vitro; (2)
bone defect reconstruction in animal model. The included studies must
meet all the above criteria at the same time. The excluded criteria
were: (I) not an original article; (2) full text was not available; (3) not
English language; (4) duplicate publications. Reports meet any of the
above criteria were excluded.

phase,”® low oxygen tension,!”! and continuous biomechan-
ical stimuli, which are all known to affect bone regenera-
tion. To analyze the current state of bone defect
reconstruction using ECO-based strategies, we searched
the PubMed databases for articles published between
January 1, 2000, and March 1, 2021, using the search terms
“endochondral ossification,” “bone defect reconstruction,”
“bone regeneration,” and “bone tissue engineering.” Here,
we include 25 publications related to bone defect recon-
struction using tissue-engineered endochondral grafts. A
flow diagram of the initial identification, exclusion, and
final selection of studies is shown in Figure 4. The included
publications are categorized according to whether the endo-
chondral grafts were engineered by chondrogenic priming
alone (Table 1) or a combination of chondrogenic and
hypertrophic priming (Table 2) to analyze the efficacy of
two different endochondral bone engineering strategies.

Chondrogenically primed cartilaginous grafts
act as logical templates for bone repair at
orthotopic sites

As shown in Table 1, a wide range of distinct approaches
have been adopted to engineer cartilaginous grafts by
chondrogenic priming. In 2006, a cartilaginous construct
engineered via the chondrogenic priming of autologous
BMSC-seeded biodegradable scaffolds for 3 weeks effec-
tively prevented carpal collapse in a New Zealand white

rabbit model.'”” This is the first report demonstrating that
tissue-engineered cartilaginous grafts could recapitulate
the ECO process and support bone formation at orthotopic
sites. Inspired by this study, attempts have been made to
engineer cartilaginous grafts in vitro for critical-sized bone
defect reconstruction and have yielded promising results.
Tissue-engineered cartilaginous grafts have been observed
to mature and form bone tissue in critical-sized calvarial
defect models, although they are not the most logical
model for endochondral bone formation because craniofa-
cial bones form through IMO.'3? For example, compared
with sham implants, cartilaginous constructs engineered
via the chondrogenic priming of mouse ESC-seeded
ceramic scaffolds could transform into bone tissue in the
inner circle of the constructs in 8-mm rat cranial defects.®?
Moreover, cartilaginous grafts engineered via the chondro-
genic priming of other cell sources, such as nasal chondro-
cytes” and PDCs,” have shown promising results in
critical-sized bone defect reconstruction. To further trans-
late the use of chondrogenically primed cartilaginous con-
structs for therapeutic applications, cartilaginous grafts
engineered by the chondrogenic priming of BMSCs-
seeded PLGA scaffolds have been used to heal both criti-
cal-sized (5-mm) and massive (15-mm) full-thickness
femoral defects in rats. After 8 weeks, the mean biome-
chanical strength of femora with 15-mm implants reached
75% of that of the normal rat femur, while there was no
significant difference in the strength of femora with 5-mm
implants.'% Collectively, this evidence suggests that engi-
neering of cartilaginous grafts via chondrogenic priming
alone is a viable, underexplored strategy for critical-sized
bone defect reconstruction.

Additional hypertrophic priming promotes the
efficiency of endochondral bone formation

Although chondrogenically primed constructs have shown
a certain degree of hypertrophy and can recapitulate ECO
upon implantation in vivo, insufficient construct ossifica-
tion and vascularization have also been observed in sev-
eral studies.’%” Additional hypertrophic priming of
chondrogenically primed constructs not only maintains
the chondrogenic features but also promotes the abundant
expression of hypertrophic markers and ultimately results
in abundant vascularization and mature bone matrix for-
mation.?” Similar results have also been observed in adi-
pose tissue-derived SVF-based cartilaginous constructs.’!
These results from ectopic bone formation models sug-
gest that the hypertrophic priming of cartilaginous grafts
provides a valuable solution for enhancing endochondral
bone regeneration and accelerating vascularization.
Unfortunately, to date, no studies have compared the effi-
ciency of bone formation between cartilage constructs
engineered via chondrogenic priming alone and those
engineered via a combination of chondrogenic and hyper-
trophic priming in orthotopic bone formation models.
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However, several studies have revealed the superiority
of hypertrophically primed constructs over traditional
IMO-based constructs in bone defect reconstruction.
Thompson et al. compared the orthotopic bone formation
efficiency of constructs engineered via chondrogenic and
hypertrophic priming with that of constructs engineered
by osteogenic priming. Because hypertrophic chondro-
cytes can secrete osteogenic and angiogenic signals, the
endochondral constructs showed better results than the
osteogenic constructs in terms of bone regeneration, vas-
cularization, and remodeling.’® Similar results have been
observed in a rat model of critical-sized femoral defects
repaired by hASC-based grafts. The hypertrophic grafts
engineered by 3 weeks of chondrogenic priming followed
by 2 weeks of hypertrophic priming substantially enhanced
bone regeneration associated with extensive bone remod-
eling and hematopoietic marrow formation. Furthermore,
the hypertrophic cartilaginous grafts resulted in signifi-
cantly greater bone volume in the defect space than the
osteoblast grafts and acellular scaffolds.>® However, the
additional in vitro hypertrophic priming step prolongs
the endochondral bone engineering period. A delicate bal-
ance between chondrogenic differentiation and hyper-
trophic induction should be further investigated to improve
the efficiency of ECO-based strategies in the future.

Endochondrally primed cartilage grafts generated
from passaged OA chondrocytes underwent ECO,

undergo ECO in vivo.
Chondrogenically primed BMSC-alginate constructs

acted as templates to treat critical-sized defects

Highlighted results
chondrocytes without endochondral priming did not

variably remodeled into woven bone, and integrated

with host bone at 15/16 junctions.
within bones formed through either IMO or ECO.

Cartilage grafts formed from primary OA

immunocompromised
mice

5-mm femoral defect
and 7-mm circular
calvarial defect in

3-mm tibial defect in
Fischer rats

Bone defect model

Future perspectives

To date, numerous studies have shown promising results in
bone defect reconstruction using endochondrally primed
constructs in animal models. However, the translation of
these ECO-based strategies from the bench to the bedside
is still ongoing and will face many challenges.

Integration of “top-down” tissue engineering
and developmental engineering approaches
provides a new solution for repairing large bone
defects

followed by 3 weeks in CHM without
growth factors
4weeks in CHM containing TGF-f3,

In vitro priming condition
Pellet culture; | week in CHM
containing TGF-f3, and BMP-4
followed by 3weeks in HYM

Generally, tissue-engineered grafts for bone defect recon-
struction should ensure osteogenesis, angiogenesis, and
survivability after implantation. To date, successes in large
bone defect reconstruction using ECO-based strategies
have been achieved in small animal models, but no studies
have verified the practicability of such a strategies in a
large animal model, which is closer to the actual clinical
situation. For repairing large bone defects in large animal
models or under clinical conditions, scaled-up endochon-
dral constructs are needed to fit the defects, which poses a
new challenge.

Classic approaches for recapitulating ECO adopt a
“top-down” strategy that relies on seeding progenitor cells
onto scaffolds and then guiding the ECO process with
growth factors. Such strategies are limited in the fabrica-
tion of large tissue constructs in vitro. Conversely, an

Alginate hydrogels

Biomaterial

Cell source
Human OA
chondrocytes
Rat BMSCs

BMSCs, bone marrow-derived mesenchymal stem cells; CHM, chondrogenic medium; hASCs, human adipose-derived stem cells; iPSCs, induced pluripotent stem cells; HYM, hypertrophic medium; HAp,

hydroxyapatite; HyA, hyaluronic acid; PEGDA, poly(ethylene glycol) diacrylate; PLGA, poly(lactide-co-glycolic) acid; GelMA, gelatin-methacrylamide; OA, osteoarthritis.
HYM is typically defined as CHM with no growth factors, with a reduced dexamethasone concentration (1-10nM), and with 3-GP (10mM) and thyroxine (I-50nM) or triiodothyronine (I nM).

Table 2. (Continued)
Cunniffe et al.

Reference
Bahney et al.
(2016)2
(2015)'8!
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emerging “bottom-up” strategy for engineering large
endochondral constructs is the scaffold-free culture tech-
nique, which aims to precondition cells to form modular
tissue units represented by spheroid culture techniques,
including cell pellets, cell sheets, and cell aggregates.'$%184
These high-density cell cultures provide a more homoge-
neous 3D culture format than other cultures to allow cell-
cell interactions that are similar to the precartilage
condensation process during embryonic bone develop-
ment. Importantly, stem cell condensation has been shown
to enhance chondrogenic differentiation.'®® By integrating
the principles of “bottom-up” tissue engineering and
“developmental engineering” approaches, endochondrally
primed spheroids derived from MSCs or ESCs can sponta-
neously fuse with each other and recapitulate ECO events,
making them ideal building blocks for engineering large-
scale bone grafts.*” This integrated approach has several
advantages that may support its clinical translation: (1) the
possibility of scaling up tissue-engineered bone grafts to a
clinically relevant size; (2) the ability to create endochon-
dral bone tissues with high cellular densities without scaf-
folds; and (3) the potential to model an endochondral bone
graft with a complex geometric shape. The engineering of
endochondral constructs via cell aggregates®®! and pel-
lets’>!7 has been reported in the studies regarding critical-
sized bone defect reconstruction and large bone graft
prefabrication. '8¢

dTECM: An off-the-shelf material capable of
recapitulating ECO

A major obstacle to the clinical translation of ECO-based
strategies is the long-term in vitro endochondral priming
period. Furthermore, other issues, such as cost-effective-
ness, engineering process complexity, the need for two
surgical procedures, and tissue engineering-associated
regulatory hurdles, also need to be overcome. These limi-
tations have driven the development of dTECM as an oft-
the-shelf and immune-compatible alternative to living
grafts with the capability of recapitulating the ECO pro-
cess for bone defect reconstruction. The - TECMs could be
used to directly attract endogenous MSCs toward the scaf-
fold by leveraging bioactive cues embedded within the
dTECM!¥7:138 or activated by living cells prior to implanta-
tion, with the assumption that the dTECM is capable of
directing these cells to differentiate into hypertrophic
chondrocytes.!?>!13%178 To date, various chemical, enzy-
matic, and physical procedures have been developed to
eliminate the cellular components of tissue-engineered
cartilaginous tissue while minimally disrupting the
ECM.'87:188 Cunniffe et al. created porous scaffolds by
freeze-drying hypertrophic cartilage constructs engineered
from allogeneic BMSCs. The resulting scaffolds retained
their proangiogenic ability and capacity to direct host-
mediated orthotopic bone regeneration in critical-sized

femoral defects.'*? Bourgine et al. developed a decellulari-
zation methodology that induces the apoptosis of cells
within tissue-engineered hypertrophic cartilage. Compared
to standard production and freeze/thaw treatment, the
resulting dHCM showed superior ECM preservation, lead-
ing to enhanced bone formation upon implantation.'3’-13
Therefore, developing a reproducible and cost-effective
technique to manufacture a large amount of human tissue-
derived dTECM may have good potential for clinical
translation. Overall, the “off-the-shelf” availability and
immune-compatible properties of - TECM may determine
the extent of its clinical use.

Conclusion

Comprehensively, these initial results demonstrated that
ECO-based strategies can be considered highly promising
approaches for large bone defect reconstruction. Although
limited success has been observed in clinical cases, these
strategies have shown tremendously promising results in
critical-sized bone defect reconstruction in animal models
and have provided new insights into the fabrication of
large, vascularized bone grafts. Nevertheless, research in
this field is ongoing, and extensive research is undoubt-
edly needed to further improve bone output, scale up con-
structs, and enhance graft vascularization in the future.
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