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Intertemporal choices involve tradeoffs between the value of rewards and the delay before 

those rewards are experienced. Canonical intertemporal choice models such as hyperbolic 

discounting assume that reward amount and time until delivery are integrated within each 

option prior to comparison1,2. An alternative view posits that intertemporal choice reflects 

attribute-wise processes in which amount and time attributes are compared separately3–6. 

Here, we use multi-attribute drift diffusion modeling (DDM) to show that attribute-wise 

comparison represents the choice process better than option-wise comparison for 

intertemporal choice in a young adult population. We find that, while accumulation rates for 

amount and time information are uncorrelated, the difference between those rates predicts 

individual differences in patience. Moreover, patient individuals incorporate amount earlier 

than time into the decision process. Using eye-tracking, we link these modeling results to 

attention, showing that patience results from a rapid, attribute-wise process that prioritizes 

amount over time information. Thus, we find converging evidence that distinct evaluation 

processes for amount and time determine intertemporal financial choices. Because 

intertemporal decisions in the lab have been linked to failures of patience from insufficient 

saving to addiction7–13, understanding individual differences in the choice process is 

important for developing more effective interventions.

Substantial research shows that intertemporal choices between smaller, sooner (SS) and 

larger, later (LL) monetary rewards can be characterized by a hyperbolic discounting 

function in which rewards lose value very rapidly over short delays and then more slowly 

over longer periods of time1,2. A single hyperbolic discount rate (k) describes choices, such 
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that a higher k indicates steeper discounting of future rewards and thus more impatient 

choices, whereas a lower k indicates more patient choices. Such hyperbolic option-wise 

models have been generally accepted for several reasons: the discount rate often relates to 

other measures of individual differences7–9,11, hyperbolic models account for preference 

reversals as rewards become more proximal in time2, and value functions derived from 

hyperbolic models match well to neural data14–19. Yet, it is also known that directing 

attention toward one attribute (e.g., time) can alter decisions, perhaps by encouraging 

attribute-wise processing20–23. Recent research into heuristic and sequential sampling 

models has suggested that such an attribute-wise process may better fit choice behavior3–6, 

although there remains debate about whether the form of these previous models accounts for 

all factors24.

The current experiments examine whether amount and time make independent contributions 

to individual differences in intertemporal choice in young adults. To support this conclusion, 

three conditions must be met. First, intertemporal choices should be better modeled by a 

combination of uncorrelated parameters for amount and time than by either of those 

parameters in isolation. If this condition holds, two individuals could exhibit the same 

intertemporal patience (i.e., the same apparent k value) through different combinations of 

decision weights on amount and time. Second, a model that combines amount and time 

parameters in an attribute-wise manner (i.e., comparing amounts to amounts and times to 

times) should be better matched to choice behavior than a similar option-wise model that 

integrates amount and time information to determine the value of each option. Third, amount 

and time should have distinct influences on the attentional process during choice, measured 

independently of choice behavior; if such attentional effects are observed, they would 

provide an important lever for shifting the process of choice. Our experiments provide 

evidence that meets all three of these conditions.

We investigated the dynamic process of intertemporal choice using multi-attribute drift 

diffusion modeling (DDM)24–27. This approach builds on prior work indicating that 

intertemporal choice – like other forms of value-guided decision making – involves a 

dynamic accumulation of evidence before reaching a decision threshold5,25. Expanding on 

other studies, our multi-attribute model introduces a separation of amount and time 

information in multiple parts of the decision process. Drift diffusion models split up the 

decision process into fundamental components that shape both choices and response times; 

each component provides a potential source for inter-individual variation in choice patience 

(see Supplementary figure 1 for more information on the structure of the DDM)26. A 

necessary component to account for differences in patience is variation in attribute-specific 

drift slopes for amount compared to time. The drift slope reflects the weight placed on an 

attribute during the evidence accumulation process. On a given trial, the total evidence 

accumulation (i.e., trial drift rate) depends on the trial-specific value differences between the 

two options as modulated by the subject- and attribute-specific drift slope. Because drift 

slopes play a dominant role in evidence accumulation, they will necessarily have a large part 

in driving choice and thus explaining individual differences. A steeper drift slope for amount 

compared to time would promote more patient choices while a steeper drift slope for time 

would promote more impatient choices. Nevertheless, another possible contributing 

mechanism is attribute latency, or the temporal advantage that results if one attribute is 

Amasino et al. Page 2

Nat Hum Behav. Author manuscript; available in PMC 2021 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processed earlier than another. Faster latency for one attribute would initially bias choice 

toward the better value on that attribute before the other attribute starts influencing value 

accumulation27. Finally, decision bounds represent response caution, which can manifest as 

a tradeoff in speed vs. accuracy28. Differences in boundaries could contribute to individual 

differences in choice with lower bounds relating to faster, less cautious, and noisier 

responses, although bounds do not directly bias choice in one direction.

We adopted a multi-stage procedure for data collection, analysis, and replication (see 

Supplementary figure 2 for approach and Supplementary figures 3–5 for manipulation 

checks). Our task (Figure 1) offered participants incentive-compatible choices between 

smaller rewards delivered that day and larger rewards delivered up to a year later. In our 

primary sample, options were presented vertically with amount information at the top of the 

screen and time information at the bottom. In our replication sample, options were presented 

horizontally with amount and time information location (left or right) switching halfway 

through the experiment. In both samples, the locations of the SS and LL options were 

randomized across trials. While participants performed the task, we sampled their gaze 

position at high temporal resolution using eye-tracking, so that we could obtain real-time 

assessments of information processing in advance of each decision29–34. We examined not 

only the relative gaze bias between the SS and LL options, which has been linked to overall 

patience in intertemporal choice35, but also the pattern of eye movements between elements 

in the display, which can reveal variation in decision heuristics across individuals36,37. We 

used choices and response times from the task to fit the drift diffusion models and data from 

the eye tracker during choice periods to characterize gaze patterns. Successful analyses in 

the primary sample determined which analyses were conducted in the replication sample – 

and all analyses are reported in this paper, regardless of replication success.

We tested two drift diffusion models that differed in how and when amount and time 

information contributed to the decision process. The attribute-wise model [Equation (3)] 

assumes that people make direct comparisons between amounts and direct comparisons 

between times, whereas the option-wise model [Equation (2)] assumes that people integrate 

time and amount for each option before comparing options. We compared model fits using 

Bayesian information criterion (BIC); because both models fit the same number of 

parameters, here the BIC is a transformation of the negative log likelihood. Nearly all 

participants were better fit by an attribute-wise model (Two-sided exact binomial tests: 

primary sample 107/117, p < 0.001, 95% CI = 0.85 – 0.96; replication sample 99/100, p < 

0.001, 95% CI = 0.95 − 1.0), and analyses reported in the following sections use parameters 

from that model (see Supplementary Figures 6 and 7 for option-wise results). Moreover, the 

difference in fit was significantly correlated with discount rate (Figure 2) as tested by a two-

tailed Pearson’s product-moment correlation: primary sample t(103) = 12.66, p < 0.001, r = 

0.78, 95% CI = 0.69 – 0.85; replication sample t(77) = 5.56, p < 0.001, r = 0.54, 95% CI = 

0.36 – 0.68), such that more patient individuals’ choices were much better fit by an attribute-

wise model, while very impatient individuals’ choices tended to be more similarly fit by 

both models.

Because intertemporal choices involve trade-offs between two attributes – amount and time 

– those attributes influence choice in opposite directions; that is, an increased decision 
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weight on time will potentiate SS choices, while an increased decision weight on amount 

will lead to LL choices. Within the DDM, an increased weight on one attribute would be 

evident in a steeper drift slope compared to the other attribute. For every participant, we used 

a multi-attribute DDM (see Methods) to estimate the unique drift slopes associated with 

amount information and with time information. We found that these two drift slopes were 

uncorrelated across participants (Figure 3a; Two-sided Pearson’s product-moment 

correlations: primary sample t(115) = 0.24, p = 0.81, r = 0.02, 95% CI = −0.16 – 0.20; 

replication sample t(98) = 0.74, p = 0.46, r = 0.07, 95% CI = −0.12 – 0.27) indicating that 

amount and time make distinct contributions to the process of intertemporal choice.

As a manipulation check of the fit of the drift slopes, we examined the relationship between 

the difference in drift slopes for amount and time and individual differences in intertemporal 

choice as measured by the discount rate (Figure 3b). As expected, more patient individuals 

accumulated amount information at a faster rate than time information, whereas more 

impatient individuals accumulated time information at a faster rate than amount information 

(Two-sided Pearson’s product-moment correlations: primary sample t(103) = −19.14, p < 

0.001, r = −0.88, 95% CI = −0.92 – −0.83; replication sample (t(77) = −16.22, p < 0.001, r = 

−0.88, 95% CI = −0.92 – −0.82). This result confirms that the model correctly distributes 

weight between the amount and time parameters to predict choice. Together, these results 

demonstrate that patience results from the combination of two uncorrelated factors—time 

and amount—rather than from a single factor or a slower overall drift slope (i.e., the sum of 

the axes on Figure 3a). Preferences in intertemporal choice are proportional to the difference 

between these drift slopes but the drift slopes themselves are not correlated with each other.

While the previous section shows that attribute-specific differences in drift slope are closely 

connected to intertemporal choice, differences in attribute latency could amplify (or 

moderate) those effects. We found that the latency for amount information was shorter than 

that for time information overall (Two-sided Welch’s paired t-test: primary sample, mean 

difference of 160 ms, t(116) = −3.24, p = .0015, Cohen’s d = −0.30, 95% CI = −0.56 – 

−0.04; replication sample, mean difference of 325 ms, t(99) = −7.17, p < 0.001, Cohen’s d = 

−0.72, 95% CI = −1.00 – −0.43), and that the difference between attribute latencies for 

amount and time was positively correlated with k values (Figure 3c, Two-sided Pearson’s 

product-moment correlations: primary sample t(103) = 6.21, p < 0.001, r = 0.52, 95% CI = 

0.37 – 0.65; replication sample t(77) = 4.86, p < 0.001, r = 0.48, 95% CI = 0.29 – 0.64). That 

is, people who are more patient begin accumulating amount information more quickly, while 

those who are less patient begin accumulating time information more quickly.

Within the DDM, the decision boundary provides a measure of how much evidence is 

required before making a choice – and thus expanded bounds could be plausibly linked to 

patient intertemporal choices. However, there were no correlations between decision bounds 

and discount rate in either sample (Two-sided Pearson’s product-moment correlations: 

primary sample t(103) = −0.85, p = 0.40, r = −0.08, 95% CI = −0.27 – 0.11; replication 

sample t(77) = 0.18, p = 0.85, r = 0.02, 95% CI = −0.20 – 0.24). We found a positive 

correlation between discount rate and response time such that impatient participants actually 

took longer to make choices than more patient participants (primary sample t(103) = 3.49, p 

< 0.001, r = 0.33, 95% CI = 0.14 – 0.49; replication sample t(77) = 4.16, p < 0.001, r = 0.43, 
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95% CI = 0.23 – 0.59, Supplementary Figure 8). Together, these data suggest that there is no 

systematic relationship between patience in the intertemporal domain and the amount of 

evidence or speed required to make a decision; instead, individual differences in attribute-

specific latency and drift slopes account for which individuals exhibit intertemporal 

patience.

If amount and time are uncorrelated contributors to intertemporal choice, there should be 

observable attentional biases toward one attribute or the other that relate to variation in drift 

slope. We tested this hypothesis by examining whether differences in drift slope showed a 

relationship with our Attribute Index, which quantifies relative looking time at amount 

versus time information (Figure 4a). There was a significant positive correlation between 

difference in drift slope and relative gaze in both the primary sample (two-sided Pearson’s 

product-moment correlation: t(103) = 6.35, p < 0.001, r = 0.53, 95% CI = 0.38 – 0.66) and 

the replication sample (t(83) = 6.05, p < 0.001, r = 0.55, 95% CI = 0.39 – 0.69). That is, 

individuals direct more attention toward the attribute for which they show a higher drift 

slope. This could be due either to attention driving the information gathering process or to 

underlying preferences driving attention; the challenge in separating these explanations is 

considered below. We also tested whether the location of the first fixation was related to 

individual differences in attribute latency for amount and time and found a significant 

correlation in our primary sample (two-sided Kendall’s rank correlation tau: z(103) =−3.40, 

p < 0.001, tau = −0.23, 95% CIs = −0.35 – −0.12) and in our replication sample (z(83) = 

−2.16, p = 0.031, tau = −0.16, 95% CIs = −0.30 – −0.03) such that those who had a faster 

amount latency were more likely to fixate first on amount information (Supplementary 

figure 9).

While the results from the previous sections show attribute-specific biases in decision 

making, they do not in themselves provide evidence that participants directly compare 

attribute values when making decisions. To obtain that evidence, we identified all gaze 

transitions in our eye-tracking data and then measured the relative proportions of attribute-

based transitions (e.g., SS time to LL time) and option-based transitions (e.g., SS time to SS 

amount). The difference in transition probabilities is quantified by the Payne Index38, for 

which positive values reflect more option-based gaze transitions. We observed a strong 

negative correlation between the Payne Index and the difference in attribute drift slopes: 

individuals with a higher drift slope for amount were indeed more likely to engage in 

attribute-wise comparisons, while those with a higher drift slope for time used more option-

wise comparison (Figure 4b two-sided Pearson’s product-moment correlations: primary 

sample t(103) = −7.60, p < 0.001, r = −0.60, 95% CI = −0.71 – −0.46; replication sample 

t(83) = −5.51, p < 0.001, r = −0.52, 95% CI = −0.66 – −0.34). Moreover, those with higher 

Payne Index values tended to look more at amounts than times (t(103) = −7.80, p < 0.001, r 

= −0.61, 95% CI = −0.72 – −0.47; replication sample t(83) = −11.04, p < 0.001, r = −0.77, 

95% CI = −0.85 – −0.67 Supplementary Figure 10). We also examined the relationship 

between eye tracking indices and the discount rate (Supplementary figure 11). Together, 

these results indicate that people who make more patient choices tend to directly compare 

the amounts offered (and largely ignore temporal information), whereas those who are less 

patient tend to integrate amount and time within an option before comparing the two 

options.
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Collectively, our results support the conclusion that intertemporal choices result from the 

combination of two distinct processes – one evaluating amount information and the other 

evaluating time information – that combine to shape an individual’s choice patience. This 

conclusion follows from converging evidence drawn from choice behavior, multi-attribute 

drift diffusion modeling, and metrics of attention obtained using eye-tracking 

(Supplementary tables 1 and 2 summarize these results). Moreover, markers of the choice 

process (e.g., patterns of gaze transitions, latency of attribute integration) were predictive of 

subject-specific individual differences in patience (see Supplementary figure 12 for trial by 

trial differences in the choice process). These markers contribute to an improved 

understanding of the mechanisms of intertemporal choice, which in turn could inform policy 

and interventions that ameliorate negative real-world outcomes7–12,39–43.

Three features of our results are particularly relevant for understanding intertemporal choice. 

First, we show that the processing of amount information and time information have 

uncorrelated contributions to the choice process. While our design cannot confirm complete 

statistical independence, the observed lack of correlation between drift slopes for amount 

and time stands in contrast to other models that assume a limited capacity constraint on 

attention such that weights on amount and time trade-off within the decision process (i.e., 

sum to a constant)5,44. Moreover, prior work suggests that although attention can constrain 

processes of evidence accumulation in decision making, this bias is partial rather than 

absolute30. We note, however, that modeling approaches like ours could miss idiosyncratic 

violations of independence, as could be the case if a subject adopts different choice 

heuristics on different trials that are mixed across trials in an overall model. Future work 

should extend these analysis procedures to identify potential decision heuristics, including 

attentionally constrained trade-offs in processing, that may be manifest in some contexts.

Second, because the pattern of gaze transitions provides an index of overt attention30,45–49, 

we could link parameters extracted from diffusion models to observable online behavior 

during the period of choice. This connects biases observed in the models (e.g., a steeper drift 

slope for amount information) to potential heuristics observed in eye movements (e.g., 

attribute-wise transitions between amounts).

Third, our large sample size and replication strategy allowed us to make strong claims about 

inter-individual variability in patience. We showed, for example, that the overall biases 

toward amount information in drift slope and latency are modulated by participants’ 

preferences, with more patient individuals showing more bias toward amount information. 

While our study focused on young adults, expanding this understanding of inter-individual 

variability in the mechanisms of intertemporal choice will be particularly important for 

studies of groups characterized by excessively impatient choices (e.g. people with 

addiction9).

Our modeling results revealed a strong bias toward an attribute-wise comparison process, 

rather than an integration of attributes within a choice option. Importantly, our eye tracking 

data indicated that this bias was not universal; there is not one best-fitting approach, but 

rather both attribute-wise and option-wise strategies may be employed in different contexts, 

with substantial individual variability. This result builds upon the similar finding (using 
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mouse-tracking methods) from Reeck and colleagues37; we extend their results by showing 

that the attribute-wise model fits best for those at the most patient end of the spectrum 

whereas the option-wise model fits better for those who are less patient. Moreover, Wulff et 

al. (2017) have suggested that specifics of the modeling can influence the dominance of 

attribute-wise vs. option-wise models. Indeed, while the relationship between modeling and 

eye tracking is as expected, many of our participants show a small positive (option-wise) 

bias in their eye tracking. More research is needed to confirm the underlying psychological 

mechanism, particularly for participants with no extreme measurable eye tracking bias who 

likely look at all information on the screen. Further experiments could extend a display to 

include more options as has been done in risky decision-making50,51 to explore whether 

clearer patterns of information gathering develop. Therefore, while the attribute-wise 

computational model fits better overall, individuals may still differ in the mechanisms by 

which they make these choices, given the clear individual differences both in choice 

behavior and in processes of information acquisition.

High-patience individuals showed a striking – and potentially counterintuitive – pattern of 

behavior. Rather than exhibiting a slow and analytic comparison process that integrated all 

available information, they tended to employ a heuristic strategy of directly comparing 

amounts and choosing the larger. In contrast, low-patience individuals showed a more 

balanced process of examining both amounts and times, as evident in gaze tracking and 

model parameters. This combination of results – with patient decisions arising from 

heuristics, and impatient decisions arising from a more analytic comparison process – seems 

counter to rational choice models. However, it echoes previous findings in other choice 

domains that point to the use of heuristics as a characteristic feature of effective decision 

making52–55. Interventions to promote patience by encouraging analytic integration of 

outcome attributes might not be effective, accordingly. Instead, patient decisions might be 

nudged through interventions that encourage comparison of amounts, rather than times to 

delivery, which could be considered a “cost” or “penalty”22,56,57. Attentional manipulations 

may be particularly effective for decisions involving relatively short periods of time until 

reward delivery; in such cases, attention toward the time component increases the number of 

smaller, sooner choices21–23. While our study cannot disentangle whether attentional bias 

itself drives choice or whether some underlying preference drives both attentional biases and 

choices, research showing a positive feedback loop between attention and preference (i.e., 

the gaze cascade effect) suggests that even externally directing attention can influence 

choice58. Future interventions could provide strong tests of the directionality of our effects 

by attempting to force the “patient” attentional patterns we observed.

Our results do not obviate conclusions derived from simpler models that assess individual 

differences in behavior. The commonly used hyperbolic model assumes a relatively steeper 

discount curve for immediately available rewards, while the beta-delta model explains 

temporal variability in discount rates through separate parameters for relatively immediate 

and for relatively distal rewards2,15,59,60. Each of these approaches explains dynamic 

inconsistencies in behavior (e.g., preference reversals with the passage of time) while also 

being measurable through simple survey or laboratory experiments14. We emphasize that for 

diagnostic tests in the field or in clinical settings, such simpler measures that are restricted to 

choice behavior will often be preferable to the more complex models used in our analyses61. 
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We use modeling and eye tracking to better understand the attentional processes underlying 

the mechanisms of intertemporal choice – and where those mechanisms might be 

incompletely specified by behavioral models (e.g., the limitations of option-wise integration, 

as assumed by both hyperbolic and beta-delta models). The resulting insights into 

mechanism could in turn generate new hypotheses for future research and provide markers 

that could be studied in other populations.

Because both this study and others27,62 have found that attributes processed more rapidly 

have an overall advantage in choice, interventions intended to encourage patient choices 

could draw attention to amount information before time information (e.g., via sequential 

presentation or a manipulation of stimulus salience)63–67. Similarly, to facilitate attribute-

wise transitions during the process of choice, amounts could be placed closer to each other 

and further from time information to encourage attribute-wise processing, or information 

could be revealed in a step-wise manner that promotes attribute comparison37,68–74. For 

example, Reeck et al. (2017) were able to shift strategies toward attribute-wise (or option-

wise patterns) by changing the speed of revealing key information based on the transition 

pattern used and thus reduce (or increase) discount rates37. Future work should investigate 

what factors predict whether an individual can flexibly shift decision strategies (e.g., the 

pattern of information acquisition) across contexts. Also important for interventions will be 

extensions to impatience in other domains such as primary food rewards, health outcomes, 

and even environmental consequences39,41–43.

Our sample included relatively few people at the extreme end of impatience, which limits 

our ability to extend our claims to all populations (e.g., individuals with pathologically 

impatient choices, as in addiction). We hypothesize, however, that a different heuristic, 

attribute-wise approach may also be utilized in extremely impatient people who compare 

options according to their time-to-delivery attribute instead of their amounts. If that result 

were observed, there would be a quadratic relationship between response time and patience. 

Some evidence in our data supports this hypothesis; in our larger primary sample, which has 

more extremely impatient individuals, this relationship is best fit by a quadratic curve 

(Supplementary Figure 8). However, this conclusion must be tempered because our 

replication sample does not have a sufficient number of extremely impatient individuals to 

confirm this finding. Future experiments could test the shape of this relationship with 

varying stimuli and across a larger sample with people with more diverse socioeconomic 

backgrounds and in populations known to be at the more extreme end of impatience. Such 

an approach could show that extreme discounters fall along the continuum of information-

gathering patterns we observed or could find that those individuals employ an entirely 

different pattern altogether.

Another limitation of our study is that we allowed some stimulus information to vary (SS 

amount and LL delay) while keeping other information constant across trials. While one 

might hypothesize that participants would attend primarily to information that varies across 

trials, our eye-tracking results show that participants still used all information on the screen 

and made very few diagonal transitions between the cells with variable information. This 

suggests that attention was not driven by novelty or salience but instead by the information 

carried by each attribute, similar to prior research37,75. Future experiments could manipulate 
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additional features of the display, in order to evaluate whether reported moderators of choice 

behavior (e.g., the magnitude of the later reward) have concomitant effects on the patterns of 

attention. Dai & Busemeyer (2014) found that an attribute-wise model could account for 

variations in stimuli such as the magnitude effect, although that conclusion about choice 

behavior has not yet been accompanied by process-tracing data5. Furthermore, it would be 

interesting to test how the frequency of attractive LL or SS options for a given individual’s 

discount rate affects their attentional strategies and response times76.

Temporal discounting has a profound influence on overall well-being and life outcomes – 

and interventions to encourage intertemporal patience could have a significant impact in 

many life domains. Both behavioral work and neural findings have suggested that working 

memory may be involved in choosing delayed options, and that training this skill may 

improve choice77–80. In addition, time perception, positive episodic prospection, and 

concreteness of future events can influence intertemporal patience81–85. Finally, framing 

choices using default options, directing attention to options or attributes or tradeoffs can 

shift choices4,8,20,22,37,86. Our results are consistent with this last category, in that we show 

that factors that shape attention also influence selective parameters of the choice process – 

leading to more patient or impatient choices. These results could direct new interventions 

(e.g., modulations of attention that lead to heuristic choices) to help individuals focus more 

on the benefits of future rewards rather than the cost of waiting for these rewards. Through a 

better understanding of the underlying mechanisms of intertemporal choice, interventions 

that work for financial decision making could potentially be extended to improve choices 

across many contexts.

METHODS

Participants:

Primary Sample.—We recruited 117 subjects (mean age=21.3 years, SD=2.3 years; 75 

female). Before data collection, we established a target sample size of 100 participants. No 

statistical methods were used to pre-determine sample sizes, but our sample sizes are larger 

than those reported in previous publications32,35,87. Because of a data collection error with a 

second unrelated task completed by the same participants, we collected additional 

participants who completed both tasks – leading to a final sample of 117 for this experiment. 

Of these participants, 12 were excluded from eye tracking analyses because of poor-quality 

or insufficient data (subjects were excluded if in 50% or more of the eye tracking data for 

one or both eyes could not be identified or if their calibration was poor.) All participants 

were recruited from the Durham, NC and Duke University communities and provided 

informed consent under a protocol approved by the Institutional Review Board of Duke 

University.

Participants:

Replication Sample.—We recruited 100 subjects (mean age=21.5 years, SD=2.0 years; 

68 female); 15 of whom were excluded from eye tracking analyses because of poor-quality 

or insufficient data. All recruitment, consent, and instructional procedures were identical to 

those of our Primary Sample.
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Procedure.—Following informed consent, participants read a brochure about financial 

decision making; that brochure described either a traditional information-based strategy or a 

social cognition strategy. Conditions were randomly assigned to subject numbers before 

participants signed up for the experiment. Data collection and analysis were not performed 

blind to the conditions of the experiments. Note that because initial analyses revealed that 

the strategies did not evoke differences in ITC behavior that replicated across experiments, 

we hereafter combine across them in all reported analyses. Participants then completed two 

independent economic decision-making tasks – an intertemporal choice task (reported here) 

and an unrelated shopping task – in randomized order. After both tasks, subjects provided 

open-ended feedback about the strategies they used during decision making and completed 

the Abbreviated Barratt Impulsivity Scale (ABIS) as a general measure of individual 

differences in impulsivity88. Because the ABIS did not correlate with intertemporal choice 

across samples, we do not further report on its relationship to other variables. See 

Supplementary Figure 2 for a detailed description of our analysis and replication workflow.

Tasks.—Participants completed 141 intertemporal choices. The SS choice was always 

available that day and varied between $0.50-$10 in increments of $.50, while the LL choice 

was always $10 but delivered between 1–365 days later (1, 7, 15, 30, 90, 180, and 365 days). 

All possible combinations of immediate amounts and later delays were used. In the Primary 

experiment (Figure 1, top row), the choice options were displayed on the left and right sides 

of the screen, with amount on top and time on bottom. In the Replication experiment (Figure 

1, bottom row), the choice options were displayed at the top and bottom of the screen; with 

left-right position of time and amount information counterbalanced across the first and 

second halves of the experiment in blocks. The left-right (Primary) or top-bottom 

(Replication) order of the SS and LL options was randomized across trials.

Participants indicated their chosen option via keyboard button press. The task was self-paced 

with a 10s maximum response time; most choices were much faster (primary sample: mean 

RT=2.21s, SD=.70; replication sample: mean RT= 2.14s, SD=.64). Our maximum response 

time was well above the average response time; it was implemented to minimize extended 

lapses of attention and to keep participants focused on the task. At the end of the experiment, 

each participant received a base payment of $6 (cash) for their participation, and 1 trial was 

resolved for additional payment in an Amazon gift certificate that was delivered via email at 

the date on that trial. We used this payment method to minimize transaction costs and risk of 

delivery for future rewards20,89,90; that is, subjects could be confident that they would 

receive the chosen reward on the promised date, with no additional time or effort 

commitment on their part.

Eye tracking.—Tasks were presented on a Tobii T60 eye tracker, which uses an 

unobtrusive camera system to sample gaze position at 60hz while allowing free head motion 

by the participant. We established areas of interest (AOIs) around the four pieces of 

information present on each display; each AOI was 350 by 350 pixels within the 1280 by 

1024 total resolution of the screen. Before ROI analyses (gaze indices), we preprocessed the 

gaze position data using a clustering algorithm that identified drifts in calibration and then 

shifted the centers of mass of fixation clusters into the appropriate AOIs.
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Analysis:

Modeling intertemporal value.—For each subject, we used maximum likelihood 

estimation to identify their temporal discounting coefficient (k) within a hyperbolic function 

(Equation 1).

SV = A
1 + kT Equation 1:

In this equation, SV is the subjective value of an option for an individual, A is its amount (in 

dollars), T is the time until its delivery (in days), and k is the discount rate. In addition, 

because k-values are non-normally distributed, we use a natural log transformation of k for 

analysis19,23,75. Participants with uniformly patient choices or almost all patient choices 

with a few highly inconsistent choices (Primary Sample, N = 12; Replication Sample, N = 

19) could not be fit by this function and were excluded from statistical analysis; on figures, 

their data is shown in lighter gray triangles to facilitate comparison with the other 

participants. Two additional participants in the replication sample had highly inconsistent 

choices that could not be fit to a single discount rate; those participants are excluded both 

from statistical analysis and from figures plotting the discount rate. Once k was identified for 

a given subject, we used its value to estimate the subjective value of the LL options on each 

trial, assuming a linear utility function for money over the range of values used; note that the 

subjective value for each SS option is equivalent to its nominal value. We chose the 

hyperbolic model for baseline comparison to our multi-attribute DDM as it has been shown 

to best fit with neural data and is widely used in relevant literature18,19,91.

Multi-attribute DDM models:

To examine individual differences in the processing of amount and time information, we fit 

two multi-attribute DDM models for each participant, one based on attribute-wise 

comparison and the other on option-wise comparison.

DDMs assume that people stochastically accumulate evidence toward one choice option or 

the other until a relative value signal (RVS) reaches a decision boundary, triggering the 

execution of the choice92,93. Our computational implementation of the DDM involved the 

following steps. First, we model the decision as a choice between two options (i.e., left or 

right in the primary sample, top or bottom in the replication sample) that differ in two 

attributes: amount and time. We assume that the relative value signal (RVS) is unbiased and 

starts at 0, equidistant from the decision boundaries for the two options; this assumption is 

appropriate because of our randomization of options to left/right or top/down locations (see 

Supplementary figure 13). Second, we estimate separate attribute latency values for amount 

(tA*) and for time (tT*). These values reflect the interval after the onset of the stimulus when 

no information is accumulating related to that attribute; both attribute latency values include 

perceptual and motor processing94,95, while differences between latency values reflect a 

temporal advantage of one attribute over the other. The RVS accumulates in 10 ms time 

steps according to the amounts and times of each option weighted by separate drift slopes 

for time and amount attributes (δA or δT). All terms in the model are proportional to a 
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stochastic error signal (ϵt) that is defined by a Gaussian distribution centered at 0 with 

standard deviation σ = 0.1.

In our option-wise model, equation (2), amount and time for each option are integrated in an 

option-wise manner similar to typical hyperbolic models. Prior to the attribute latency for a 

given attribute, the average over the experiment is used in place of the actual amounts or 

times on that trial as a scaling factor. We kept amount and time in their original scales to 

preserve the relative relationship between them.

RV St = RV St − 1 + δA ⋅ Aleft
1 + δT ⋅ T left

− δA ⋅ Arigℎt
1 + δT ⋅ Trigℎt

+ ϵt Equation 2:

Where:

Aleft, Arigℎt = A if t < tA* ;

Tleft, Trigℎt = T  if t < tT* .

In comparison, in our attribute-wise model, equation (3), following an attribute-specific 

latency period, each attribute begins contributing to the RVS according to the difference in 

values. We normalized amount and time values to each be within the range [−1,1]; this 

allows their relative drift slopes to be directly comparable.

RV St = RV St − 1 + δA′ Aleft − Arigℎt + δT′ T left − Trigℎt + ϵt Equation 3:

Where:

Aleft − Arigℎt = 0 if t < tA* ′;

Tleft − Trigℎt = 0 if t < tT* ′ .

We estimated the parameters of this model for each participant, independently, from their 

response time and choice data. To improve the stability of our estimation process, we 

excluded the 2.5% slowest and 2.5% fastest response times for each subject. We simulated 

each participant’s data 1000 times to identify the combination of parameters that best 

generated their choices and response time distribution (using 8 RT bins for each subject). 

The two models take different forms, but both fit the same five parameters – amount latency, 

time latency, amount drift slope, time drift slope, and decision boundary – while holding 

noise and bias constant. This similarity means that model fits can be directly compared on a 

subject-by-subject basis.

We used the Bayesian Information Criterion (BIC) to compare model fits. The equation for 

the criterion is BIC = −2 × log likelihood + d × log(N) where N is the number of trials 
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completed and d is the number of parameters fit. Lower scores indicate better fit. See 

Supplementary Figures 14 and 15 for average model-predicted and actual choice and 

response time for each individual.

For all models we used a grid-search procedure with an initial common coarse grid for all 

subjects, followed by a finer grid search around each individual’s best fitting parameters (see 

Supplementary methods for parameter ranges). Linear spacing was appropriate for all DDM 

parameters, save for drift slope in the option-wise model (which used a log spacing to as 

log-normalization was needed to obtain a normal distribution for the time drift slope). We 

did not include negative drift slopes because they do not make theoretical sense in our 

paradigm; that is, subjects did not prefer to receive smaller amounts of money at later times, 

as would be needed to generate a negative slope. We note that there are a variety of methods 

to solve DDMs that seek to account for a variety of psychological processes such as 

inconsistencies in choice, but we chose a grid search to minimize assumptions about the 

attentional process93,96,97.

Indices of looking behavior.—We derived three measures of gaze behavior from our eye 

tracking data. All measures were scaled to a −1 to 1 range. The Attribute Index, equation (4) 

describes the proportion of time a participant looked at the amount AOIs (compared to the 

total time looking at AOIs); positive values indicate more time spent looking at amounts, 

negative indicate more time spent looking at time AOIs.

Gaze points in Amount ROIs−Gaze points in Time ROIs
Gaze points in Amount ROIs+Gaze points in Time ROIs Equation 4:

The Option Index, equation (5) measures the proportion of time a participant looked at SS 

AOIs (again compared to the total looking time); positive values indicate looking at SS 

options, negative at LL35.

Gaze points in Immediate option ROIs−Gaze points in Delayed option ROIs
Gaze points in Immediate option ROIs+Gaze points in Delayed option ROIs Equation 5:

Finally, the Payne Index38, equation (6), quantifies whether transitions in gaze tend to be 

within options (e.g., from the SS amount to the SS time; positive Payne Index) or within 

attributes (e.g., from the SS amount to the LL amount; negative Payne Index).

Option−wise transitions − Attribute − wise transitions
Option−wise transitions + Attribute − wise transitions Equation 6:

Statistics:

All statistics are stated in the text and figure captions. Binomial tests are compared to a 

hypothesized probability of 0.5. Normality was not directly tested because of our large 

sample sizes, but unless otherwise noted, data was assumed to be normally distributed and 

individual data points are provided in the figure scatterplots.
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Programming environments:

MATLAB was used to calculate discount rates, run drift diffusion models, preprocess eye 

tracking data, and create eye tracking indices98. R was used to make plots and calculate 

statistics99,100.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Intertemporal choice task. On every trial, participants saw a fixation cross followed by a 

reminder to follow the task instructions. Next, they viewed and made a choice between a LL 

and SS option and received 1s of feedback highlighting the choice made. The positions of 

the LL and SS options were randomized across trials. The orientation of amount and time 

information in the primary sample was rotated in the replication sample.
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Figure 2. 
Attribute-wise vs. option-wise DDM model comparison using Bayesian Information 

Criterion (BIC). Shown are data from all participants (primary sample N = 117, replication 

sample N = 100); note that participants that could not be fit to a single discount rate (primary 

sample N = 12, replication sample N = 21) were excluded from subsequent statistical 

testing. a) A histogram of the difference in BIC for each participant across models showing 

that overall the attribute-wise model fit better. Two-sided exact binomial tests comparing 

model performance: primary sample: 107/117, p < 0.001 95% CI = 0.85 – 0.96; replication 

sample 99/100, p < 0.001, 95% CI = 0.95 − 1.0. b) The difference in BIC has a positive 

correlation with individual discount rate, log(k). Two-sided Pearson’s product-moment 

correlations primary sample: t(103) = 12.66, p < 0.001, r = 0.78, 95% CI = 0.69 – 0.85; 

replication sample: t(77) = 5.56, p < 0.001, r = 0.54, 95% CI = 0.36 – 0.68. Participants with 

all patient choices are displayed in light gray triangles at −9.5 on the y-axis for illustrative 

purposes. Gray shading indicates values better fit by the option-wise model, whereas no 

shading indicates values better fit by the attribute-wise model (lower BIC values indicate 

better fit). Because both models contain the same number of parameters this is a 

transformation of the difference in negative log likelihood.
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Figure 3. 
Patience reflects the difference in drift slopes and latencies for amount and time. Primary 

sample N = 117, replication sample N = 100, participants not able to be fit to a single 

discount rate were excluded from analyses involving the discount rate (primary sample N = 

12, replication sample N = 21). a) The drift slopes for amount (x-axes) and for time (y-axes) 

were uncorrelated across participants: Two-sided Pearson’s product-moment correlations: 

t(115) = 0.24, p = 0.81, r = 0.02, 95% CI = −0.16 – 0.20; replication sample: t(98) = 0.74, p 

= 0.46, r = 0.07, 95% CI = −0.12 – 0.27. Values are jittered (.001 horizontal and vertical 

jitter) to reduce over-plotting. The color-map indicates the log(k) value for each participant; 

note that participants with similar levels of patience had different combinations of drift 

slopes for the two attributes. b) The difference in drift slopes was related to patience, in both 

samples: Two-sided Pearson’s product-moment correlations primary sample, t(103) = 

−19.14, p < 0.001, r = −0.88, 95% CI = −0.92 – −0.83; replication sample t(77) = −16.22, p 
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< 0.001, r = −0.88, 95% CI = −0.92 – −0.82. c) The relative attribute latency for amount and 

time also relates to patience: Two-sided Pearson’s product-moment correlations primary 

sample: t(103) = 6.21, p < 0.001, r = 0.52, 95% CI = 0.37 – 0.65; replication sample: t(77) = 

4.86, p < 0.001, r = 0.48, 95% CI = 0.29 – 0.64. Participants with all patient choices are 

displayed in light gray triangles at −9.5 on the y-axis for illustration and were excluded from 

statistics.
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Figure 4. 
Differences in drift slope between amount and time attributes are reflected in measures of 

attention. Primary sample N = 105, replication sample N = 85 which includes all participants 

with sufficient eye-tracking data. a) The Attribute Index measures relative looking at 

amounts (index>0) versus times (index<0). Across participants, a bias toward looking at 

amounts was associated with a greater drift slope for amount information: two-sided 

Pearson’s product-moment correlation primary sample: t(103) = 6.35, p < 0.001, r = 0.53, 

95% CI = 0.38 – 0.66; replication sample: t(83) = 6.05, p < 0.001, r = 0.55, 95% CI = 0.39 – 

0.69. b) The Payne Index measures the relative likelihood of gaze transitions within options 

(index>0) or between attributes (index<0). Participants who tended to make more attribute-

wise transitions also showed a greater drift slope for amount information; two-sided 

Pearson’s product-moment correlation primary sample: t(103) = −7.60, p < 0.001, r = −0.60, 

95% CI = −0.71 – −0.46; replication sample: t(83) = −5.51, p < 0.001, r = −0.52, 95% CI = 

−0.66 – −0.34.
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